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Nonlinear defect theory of thermal relaxation in complex multimoded systems
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We show that a single nonlinear defect can thermalize an initial excitation towards a Rayleigh-Jeans (RJ)
state in complex multimoded systems. The thermalization can be hindered by disorder-induced localization
phenomena, which drive the system into a metastable RJ state. It can differ dramatically from the thermal RJ and
it involves only a (quasi)isolated set of prethermal modes whose density can be predicted using a renormalization
group theory. Importantly, we establish a connection between the modal relaxation rates that dictate the dynamics
towards (quasi)equilibrium and the Thouless conductance. This connection allows us to derive the whole modal
relaxation rate distribution. Our results are relevant to photonics, optomechanics, and cold atoms.
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I. INTRODUCTION

The complex dynamics of many-body/many-mode sys-
tems in response to nonlinear interactions is emerging as
fundamental to many different fields ranging from physics,
chemistry, and quantum information sciences to biology
and sociology [1–6]. Approaches that focus on the micro-
scopic behavior of such systems fail to provide actionable
descriptions. The one theory that has proven powerful is sta-
tistical mechanics and thermodynamics [7–9]. However, many
branches of science and technology have yet to adapt a theory
of thermodynamics and statistical mechanics suitable to their
field. For instance, the photonics community has only recently
begun to develop a thermodynamic theory of beam dynamics
in nonlinear multimode photonic platforms (NMPPs) such as
multicore/multimode optical fibers [10–14]. In these systems,
even at moderate injected powers, nonlinear interactions dom-
inate the beam evolution by introducing mode-mixing effects
that redistribute the initial power across individual modes
[15–19]. Such complex many-mode configurations are most
naturally described by a statistical framework.

In the few years since its conception [10], optical thermo-
dynamics (OT) has proven extremely successful at predicting
the modal power distribution of NMPPs. The key tenet of the
OT theory, the prediction of a thermal optical state taking
the form of a Rayleigh-Jeans (RJ) power distribution, has
been observed by various experimental groups using differ-
ent NMPPs [16,20–23]. Such developments hold promise for
a variety of technological applications including the design
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of efficient cooling schemes for high-power sources (lasers)
[16,24–27] or new fiber structures for medical imaging (en-
doscopy) [28–30] and fiber optic communications [31,32].
Another field that could benefit from developments in OT and
photonics is the area of cold atoms [33,34].

All current efforts are focusing on the analysis of ther-
malization in systems with spatially distributed nonlinearities,
overlooking the fundamental scenario of one nonlinear impu-
rity. To start with, is one nonlinear defect capable of causing
thermalization? If so, what are the timescales of such a pro-
cess? How might the complexity/disorder of the underlying
linear structure impact the power redistribution of an initial
excitation?

Here, we demonstrate that even one nonlinear defect can
lead to thermalization of an initial beam excitation towards
RJ. The simplicity of the setting allows us to derive analytical
expressions for the whole statistics of the modal relaxation
rates that dictate the dynamics towards (quasi)equilibrium.
The theoretical results are confirmed via detailed numerics
with one-dimensional and quasi-one-dimensional multimoded
systems with one nonlinear defect. Our analysis establishes
analogies between the relaxation rates and the Thouless con-
ductance describing transport in mesoscopic structures. In
chaotic/ergodic systems [35–37], the distribution is Porter-
Thomas, indicating a cohesive relaxation behavior of all
modes and the suppression of large relaxation rates. As An-
derson localization effects due to disorder become dominant
[38–40], the distribution shifts towards a log normal with a
group of fast relaxing modes separated from the rest. These
modes play a prominent role by enforcing a two-stage ther-
malization process and bear analogies to the prethermalized
modes occurring in quantum many-body localized systems
[41]. They first converge to a metastable RJ state that differs,
sometimes dramatically, from the thermal state. In the case of
spatial symmetries, the mode separation can be more extreme:
for example, in 1D periodic lattices we observe a bimodal
distribution of fast and slow (even vanishing) relaxation rates.
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FIG. 1. Schematics of (a) a quasi-one-dimensional multimode
waveguide with transverse random long-range coupling (Jnl ) and
(c) a 1D array of waveguides with disordered propagation constants.
The magenta core/waveguide indicates the position m of the non-
linear defect with strength χ . (b) An initial preparation of mode
occupancies 〈|Cα (z = 0)|2〉 (blue) evolves toward a prethermal state
(green) characterized by a prethermal RJ distribution composed of
only a fraction of the modes. At very long propagation distances
(z → ∞), the system thermalizes to a RJ distribution (red) incor-
porating all modes.

Using ideas from renormalization group theory [42] (RGT)
we describe the density of prethermal modes N by a first-
order nonlinear differential equation that takes the simple
universal form

∂N
∂ ln N

= β(N ), (1)

where N is the total number of modes of the system. The
above equation implies that the logarithmic derivative is a
function of N alone.

The structure of the paper is as follows. In the next
section, we present the theoretical models that describe one-
dimensional and quasi-one-dimensional multimoded struc-
tures with one nonlinear defect. Our analysis reveals the
mechanism by which such a single defect drives the ther-
malization as the disorder increases. Section III examines
the emergence of prethermal modes and the formation of
metastable states. Section IV develops an one-parameter scal-
ing theory for the density of these prethermal modes. Finally,
Sec. V analyzes the modal relaxation rates towards both a
metastable and a final RJ equilibrium distribution. We find the
whole statistics of relaxation rates and make connections with
concepts from mesoscopic theory of transport and specifically
the distribution of Thouless conductance. Our conclusions and
outlook are discussed in the last section, VI.

II. THEORETICAL FRAMEWORK

We consider beam propagation in one-dimensional (1D)
and quasi-1D photonic networks [40,43,44], Figs. 1(a) and
1(c). The beam dynamics is described by a coupled mode
theory

i
dψl

dz
=

∑
n

Jlnψn + χδlm|ψl |2ψl , l = 1, . . . , N, (2)

where ψl describes the complex field amplitude at the lth
core/waveguide, and the timelike variable z is the paraxial
propagation distance. The last term encodes a Kerr nonlin-
earity, with χ being the strength of the nonlinear defect at site
m.

The connectivity matrix J determines the geometry of the
system, where nondiagonal elements Jln describe the coupling
between sites l and n, and the Jl,l ’s correspond to the prop-
agation constants associated with each core/waveguide. The
setup in Fig. 1(a) can be modeled by a banded random matrix
(BRM) [45–48] whose elements Jln are given by a normal
Gaussian distribution with mean zero 〈Jnl〉 = 0 and variance
〈J2

nl〉 = N+1
b(2N−b+1) for |n − l| < b and Jnl = 0 for |n − l| � b.

This normalization guarantees that the Hamiltonian (internal
energy) associated with Eq. (2) is extensive. The parameter
b defines the long-range coupling and can induce Anderson
localization of the linear supermodes with localization length
�∞ ∼ b2. The limit b → N corresponds to the GOE matri-
ces used in Ref. [11] for the analysis of thermalization of
wave chaotic systems via spatially extended nonlinearities.
We also consider the 1D case of Fig. 1(c), modeled by a
nearest-neighbor (NN) connectivity matrix with Jl,l±1 = 1
and random Jll ∈ [−W

2 , W
2 ] given by a box distribution. The

localization length [49,50] of the supermodes is given by
�∞ ≈ 24(4 − ε2)/W 2.

We represent Eq. (2) using the supermode basis fα (l ),
where l refers to the site index and α the mode index. Then,
ψl (z) = ∑

α e−iεαzCα (z) fα (l ), and Eq. (2) reads

i
dCα

dz
= χ

∑
βγ δ

Qαβγ δC
∗
βCγCδei(εα+εβ−εγ −εδ )z, (3)

where εα is the α eigenvalue. The right-hand side (RHS)
represents the mode-mode interactions, where

Qαβγ δ = f ∗
α (m) f ∗

β (m) fγ (m) fδ (m) (4)

determines the strength of the four-wave mode mixing intro-
duced by the nonlinear defect.

In general, the rate of power exchange between various
modes is determined by two processes: the degree of phase
matching (εα + εβ − εγ − εδ ≈ 0) and the strength of the
mode-mode interaction. When Qαβγ δ is structureless, as in
chaotic wave systems where the amplitudes fα (m) are compa-
rable across all α eigenmodes, the phase matching mechanism
is the only means by which our systems can achieve ther-
malization. When the degree of mode overlap fα (m) at the
nonlinear defect m is α dependent, Qαβγ δ acquires a structure
that becomes relevant for the analysis of the modal power
distribution |Cα (t )|2. Specifically, modes that have a high am-
plitude at the nonlinear site have the potential to be involved
in many significant four-wave mode interactions. Conversely,
modes with small amplitudes are excluded from all four-wave
mode interactions. Thus we see the emergence of two groups
of modes: interacting ones and noninteracting ones. These two
groups act as (quasi)isolated systems with constant internal
energy and power.

III. PRETHERMALIZED MODES AND METASTABLE RJ

While standard analysis of the power redistribution in
NMPPs involves the numerical integration of many cou-
pled differential equations [see Eqs. (2) and (3)], the recent
development of optical thermodynamics (OT) offers an
elegant alternative [10–12]. This framework posits a ther-
mal equilibrium without addressing questions about the
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FIG. 2. (a) Initial (black circles) and final (green circles) modal
occupations for a BRM with b = N = 64. Due to supermode er-
godicity, the entire system reaches a RJ thermal state (dashed blue
line) with (T, μ) = (1.0, −2.0). (b) Evolution of energy density
hP ≡ HP/NP (top), optical power density aP ≡ AP/NP (middle),
and modal occupation 〈|Cα (z)|2〉 (bottom). The prethermal modes
(red) display a long-lived stability after reaching the prethermal RJ
state. (c) BRM setting, displaying a metastable RJ state (solid blue
line) with (TP, μP ) = (0.8,−1.5) that differs dramatically from the
final RJ state (dashed blue line) with (T, μ) = (1.3,−2.2). Prether-
mal modes are highlighted in red diamonds. (d) NN equivalent of
(c), with (TP, μP ) = (−8.8, 7.5) and (T, μ) = (24.9, −25.2). In (b)–
(c) N = 512, b = 3, and m = 256. In (d), N = 128, W = 4, and
m = 70. In all cases χ = 0.05.

thermalization process. It identifies intrinsic variables T, μ

that are optical thermodynamic forces analogous to chemical
potential and temperature in traditional statistical mechanics.
Both are uniquely determined by the two constants of motion
of Eq. (3): total power A = ∑

α |Cα|2 and total internal energy
H ≈ HLinear = ∑

α εα|Cα|2 (assuming weak nonlinearities)
[51]. The thermal RJ distribution of modal power takes
the form 〈|Cα|2〉 = nα = T

εα−μ
where 〈·〉 indicates thermal

averaging.
In Fig. 2(a) we examine a typical scenario of structure-

less Qαβγ δ that displays a predicted RJ thermal distribution
(dashed blue line). The main figure reports the final |Cα|2s
(green circles) associated with a random initial preparation
(black circles), demonstrating that, even though Qαβγ δ ∼
1/N2, a single nonlinear defect is able to thermalize the whole
array of size N .

Next, we consider the case of structured Qαβγ δ , which
we achieve by inducing Anderson localization of the super-
modes fα . This separates the modes into two distinct groups:
those with high amplitude at the position of the nonlinear
defect can interact with each other, while the rest are iso-
lated. Due to the exponential localization, only modes that are
centered in the proximity ∼�∞ of the nonlinear defect will
belong to the first group. Combinations exclusively involving
such modes will provide large Qαβγ δ’s that will overpower
the phase-matching mechanism. In practice, we have es-
tablished a cutoff amplitude | f cutoff (m)|2 ∝ 〈∑l | fα (l )|4〉α to
identify these high-amplitude interacting modes. We have

corroborated the selection of these modes by monitoring their
modal power evolution.

This set of Np prethermal modes maintains (quasi)constant
internal energy HP and power AP for an exponentially long
time [see Fig. 2(b)]. This is suggestive of a thermodynamic
analysis pertaining to a long-lived metastable state. Apply-
ing the OT methodology to this subset we can extract from
HP,AP the corresponding TP, μP defining a metastable RJ
that dictates the power distribution among the prethermal
modes. Importantly, as shown in Figs. 2(c) and 2(d) the
metastable RJ (solid blue line) might differ drastically from
the final thermal RJ (dashed blue line). The open black
circles and the solid green circles represent the initial and
postevolution power distributions, respectively, evaluated via
a direct numerical integration of Eq. (2). The prethermal
modes that form the metastable RJ distribution are highlighted
with red diamonds. We underline once more the longevity
of these metastable states, which renders them more practi-
cally relevant than the thermal RJ distribution. This can be
seen in Fig. 2(b) where the temporal evolution of the power
occupations is shown for the longest time that we have com-
putationally achieved. The formation of a metastable RJ is
unique to cases of structured Qαβγ δ , as systems displaying
structureless Qαβγ δ thermalize directly to the thermal RJ with-
out undergoing an intermediate metastable configuration.

IV. ONE-PARAMETER SCALING AND β-FUNCTION
FORMALISM

We are now equipped to formulate a one-parameter scal-
ing theory that describes the number of prethermal modes
NP. The underlying ansatz is that, although the metastable
RJ is determined by numerous system parameters (disorder
configuration, connectivity, position of the nonlinear defect,
N , H, and A), the number of prethermal modes is a simple
function of the scaling variable �rel ≡ l∞/N . In other words,
we postulate the existence of a universal function

N ≡ NP

Nref
= �(�rel ) ≈

{
�rel for �rel < 0.1
1 for �rel > 1 , (5)

where Nref ∝ N is the number of prethermal modes associated
with an underlying structureless (ergodic) system, which acts
as a reference system. For example, for BRM modeling, the
reference ensemble is the full RMT b = N , where all modes
are prethermal, i.e., Nref = N and therefore N = NP/N is the
density of prethermal modes [52]. We have numerically tested
the validity of Eq. (5) by integrating Eq. (2) using both BRM
and NN connectivity matrices Jln. In the case of BRMs (NNs)
various system sizes 64 � N � 2048 (64 � N � 256) and
bandwidths 3 � b � 64 (disorder strengths 0.01 � W � 4)
have been used. The numerical data shown in Fig. 3 con-
firms the scaling ansatz Eq. (5), encapsulating the transition
from completely thermalizing systems (N → 1) to systems
that support metastable states (N < 1). Specifically, when the
supermodes are extended over the whole system (�rel > 1),
they all have a non-negligible amplitude at the nonlinear de-
fect, and the entire system thermalizes. Conversely, when the
localization length is smaller than the system size, (�rel < 1),
the number of modes that interact with the nonlinear defect
is ∼�∞, and thus, the prethermal modes will have a density
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FIG. 3. (a) Prethermal mode density (N ), described by a one-
parameter function N (�rel ) = 1 − e−5.4�rel that only depends on the
relative localization length (�rel). Data from both NN and BRM sys-
tems are shown. Dot-dashed lines indicate the �1

rel and �0
rel behaviors.

(b) β−function associated with Eq. (1), featuring two fixed points at
N = 1 (unstable) and N = 0 (stable). (c) Unscaled data showing the
number of prethermal modes as a function of N−1.

N ∼ �rel. A law valid in all regimes is �(�rel ) = 1 − e−C·�rel

where C = 5.4 is the best fitting parameter, see Fig. 3(a).
Following ideas from renormalization group theory (RGT)

we recast Eq. (5) into an equivalent form given by Eq. (1).
This formulation highlights the fact that the density of prether-
mal modes is a solution of a (nonlinear) first-order differential
equation. The resulting β function takes the form β(N ) =
(1 − N ) · ln(1 − N ), which is always negative in the domain
of definition N ∈ [0, 1] [see Fig. 3(b)]. Moreover, it is a
continuous function since it describes how the density of the
prethermal modes evolves as a function of system size N .
Notice that, unlike the typical β functions in RGT, our β

function is nonmonotonic in N and features two fixed points,
a stable one at N = 0 and an unstable one at N = 1. This is
physically consistent with the fact that increasing the system
size N will decrease the fraction of prethermal modes N .

V. RELAXATION DYNAMICS

The dynamics towards the metastable and/or the thermal
RJ state are described via a kinetic equation (KE) approach.
The latter is derived from Eq. (2) under the following as-
sumptions [18,53,55]: (i) weak nonlinearities that ensure the
appropriateness of the linear supermode basis; (ii) phase ran-
domization of the field amplitudes; (iii) localization lengths
l∞, which are much larger than the lattice spacing such that
many linear supermodes are mixed with one another; (iv)
finally, the kinetic approach requires the system to be away
from the condensate regime where the normal modes of the
nonlinear equation Eq. (2) (linearized around the nonuniform
condensate), differ from the linear eigenmodes. The resulting
kinetic equation takes the form:

dIα
dt

= 4πχ2
′∑

βγ δ

|Qαβγ δ|2IαIβIγ Iδ

(
1

Iα
+ 1

Iβ
− 1

Iγ
− 1

Iδ

)

×δ(εα + εβ − εγ − εδ ), (6)

where Iα = Iα (t ) describes the optical power occupying the
linear supermode α at time t and the summation

∑′ excludes
the secular terms.

The analysis of the modal relaxation rates requires a
linearization of Eq. (6). Specifically, we considered small
variations of the modal powers around their RJ equilibrium
value, i.e., Iα → nα + δIα . Substitution of the perturbed modal
powers in Eq. (6) and neglecting the off-diagonal contribu-
tions in the relaxation process (see detailed description for
the derivation in Refs. [54,55]) we arrive at the following
equation for the modal relaxation rates α of the αth mode
towards its equilibrium value nα = T/(εα − μ),

α = 4πχ2

nα

′∑
βγ δ

|Qαβγ δ|2nβ nγ nδ δ(εα + εβ − εγ − εδ ). (7)

The numerical evaluation of Eq. (7) utilized matrices of size
N = 512, 1024. Numerically, we implement the δ function in
the rate equation using a tolerance �tol = 0.01. This value has
been chosen to guarantee that the calculations converge for
all disorder strengths under consideration. Additionally, we
have confined our analysis to a small frequency window such
that we only consider α modes at the center of the band. For
the statistical processing, we have used a sufficient number
of disorder realizations to ensure that the total number of
relaxation rates exceeded 35000 data.

The form of Qαβγ δ specific to the current problem of one
nonlinear defect [see Eq. (4)] allows us to further reduce
Eq. (7) to

α ∝ χ2Fα (T, μ) × | fα (m)|2, (8)

where Fα (T, μ) incorporates the various mode-mixing terms
appearing in the triple sum in Eq. (7). When analyzing the
distribution of relaxation rates P () towards the thermal RJ,
we assume that the α-supermode intensity at the position of
the defect | fα (m)|2 is the dominant statistical term in Eq. (8).
(For a validation of this assumption, see the Appendix.) From
the theoretical perspective, therefore, the statistical analysis
of α’s collapse to the analysis of the supermode intensities
at the defect site. Below we test the theoretical predictions
that rely on this assumption with a direct comparison of the
relaxation rates evaluated numerically via Eq. (7).

A. Statistics of relaxation rates in chaotic systems

We begin with the distribution of relaxation rates in
case of ergodic systems. In linear wave chaotic structures,
the distribution of supermode amplitudes is derived using
Berry’s random superposition hypothesis of plane waves
[35,36]. Then, the probability density of intensities follows the
so-called Porter-Thomas (PT) distribution P (y = N | fα|2) =
(1/

√
2πy)e−y/2. From these considerations, we conclude that

P (̃ = N) follows the distribution

P (̃ = N) ≈
(

1√
2πc̃

)
e−̃/2c, (9)

which resembles the standard Porter-Thomas statistics differ-
ing only by the additional factor of 1/c in the exponent. This
factor arises from the proportionality factor α/(χ2| fα (m)|2)
appearing in Eq. (7). Furthermore, our numerical
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FIG. 4. (a) The distribution of relaxation rates P towards the
thermal RJ of ballistic/chaotic systems. The PT distribution shown
is for P (̃) ∼ 1/

√
̃exp(−̃/2c), with c ≈ 2.5. (b) The distribution

of a 1D lattice with W = 0.001, which exhibits a bimodal behavior
resulting from the symmetry of the system.

analysis on this proportionality factor indicates that c ≈ 2.5
(see Appendix).

In Fig. 4(a) we report our results of the numerical evalu-
ation of Eq. (4) together with the PT prediction Eq. (9). The
observed agreement corroborates our original assumption that
the fluctuations of Fα are not relevant for the statistics of relax-
ation rates. The above distribution guarantees a well-defined
mean relaxation rate 〈̃〉 ∝ O(1), which reflects the fact as
the number of modes N (equivalent to volume in standard
thermodynamics) increases the relaxation rates  → 0.

Peculiar behaviors might arise in cases where symmetries
interfere with the underlying wave chaotic nature of a lin-
ear system. For example, in the limiting case W → 0 of 1D
translational-invariant lattices, fα (m) ∼ N−1/2 sin(kαm). As-
suming uniformly distributed wave vectors kα ∈ [−π, π ], we
get

P (̃ ≡ N ) ∼ [̃(1 − ̃/2)]−1/2, (10)

which is a bimodal distribution. The above distribution in-
dicates that there are two groups of fast- and slow- (or
non)thermalizing modes. Indeed, in this case, one can distin-
guish between modes that have a nodal point at the position
of the nonlinear defect, and therefore do not thermalize, and
modes that have an antinodal point and therefore thermalize
easily. The numerical data resulting from the exact evaluation
of Eq. (4) are shown in Fig. 4(b) together with the theoretical
prediction Eq. (10).

B. Statistics of relaxation rates in localized systems

Next, we analyze the scenario where localization dom-
inates the relaxation process. In this case, we deduce
from Eq. (8) that α ∼ | fα (m)|2 ∼ exp(−2|xα − m|/l∞ +
ηxα

), where xα represents the localization center of the αth
mode. The stochastic variable ηxα

introduces Gaussian noise
with zero mean and variance (�ηxα

)2 = |xα − m|/l∞ that de-
scribes random fluctuations around the mean intensity profile
[56]. Considering only the smallest relaxation rates, corre-
sponding to modes α for which |xα − m| ∼ N , this Gaussian
noise dominates the statistics. Consequently, the statistics for

FIG. 5. The distribution of relaxation rates P towards the thermal
RJ of a disordered system in the localized regime. We see that
as the system becomes more localized, the distribution stretches
out to incorporate more slow-relaxing modes. (a) Demonstrates the
log-normal distribution arising in localized systems. Colored circles
represent data from the evaluation of relaxation rates, and the black
lines are the theoretical predictions for localized systems [Eq. (11)].
For b = 256, the system is entering the extended regime, so the
corresponding red dashed line is a PT distribution [Eq. (9)]. (b) shows
the 1/̃ and 1/̃2 behaviors of the fast-relaxing modes of the most
localized system (b = 7).

this group of modes is given by

P (̃) = P (ηxα
)
dηxα

d̃
∼ exp

(
−�∞η2

xα

2|xα − m|

)
dηxα

d̃

∼ exp

(
−�∞[ln2(̃/̃0) − 2 ln(̃/̃0) ln(̃0)]

2N

)
̃−1,

where ln(̃0) = −N/l∞. Since this distribution applies in the
limit of small ̃, we can neglect the ln(̃/̃0) term, such that
we recover a log-normal distribution.

P (̃) ∼ exp((−�∞/2N ) ln2(̃/̃0))̃−1. (11)

Such a distribution is typical for the conductance statistics
of localized chains reflecting the normal distribution of the
inverse localization length around its mean value in the lo-
calized regime [49]. These predictions have been tested using
both disordered 1D NN and quasi-1D BRM matrix models.
Our numerical results are nicely described by the above theo-
retical predictions, see Fig. 5(a).

Next, we consider the group of modes with localization
centers closer to the defect site, such that xα is uniformly dis-
tributed in the proximity ∼�∞ of the defect site. In this case,
the Gaussian noise in the intensity profile can be neglected and
the relaxation rates can be approximated as α ∼ | fα (m)|2 ∼
exp(−2|xα − m|/l∞) where the localization centers xα are
considered to be uniformly distributed across a localization
domain ∼l∞ around the nonlinear defect. Thus,

P(̃) ∼ ̃−1, (12)

which nicely describes an intermediate range of  rates, see
Fig. 5(b).

For the description of the modes with the fastest relaxation
rates (i.e., extreme right part of the distribution), we em-
ploy a heuristic (classical) argument. We associate each mode
with a classical particle that explores the space ballistically.
When this particle reaches the nonlinear defect it scatters
to other modes—a process that leads to their relaxation. In
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FIG. 6. We report P (̃P ) of the (quasi)isolated set of prethermal
modes. The lines are the corresponding theoretical predictions (see
text). We also see the expected cutoff at ̃ ∼ 10−2.

this respect, the number of particles (modes) that relax by
time τR ∼ 1/ is proportional to the number of particles
that reside within a distance LR ∼ τR away from the defect.
The above consideration assumes a ballistic spreading of the
modes, which is expected to describe the dynamics of short
timescales where localization effects due to disorder are not
yet dominant. Furthermore, since each mode is localized to
a specific site, we associate the number of particles (modes)
that reach the relaxation center (nonlinear defect) with LR.
In other words LR ∼ ∫ ∞


P(′)d′ ∼ 1/ whose derivative

P() = −dLR()/d determines the probability density of
relaxation rates. We have

P (̃) ∼ ̃−2. (13)

This heuristic argument captures nicely the behavior of the
numerical data, see Fig. 5(b). Of course, the above argumen-
tation provides only a qualitative rationale and a more rigorous
derivation is desirable.

Similar arguments apply to the relaxation rates P of the
prethermal modes towards their metastable RJ. When eval-
uating the relaxation process towards the metastable state,
the summation involved in Fα (T, μ) is restricted to the NP

(quasi)isolated prethermal modes. Then, repeating the same
steps as above, we conclude that the distribution P (̃P ) ∼
1/̃P, with the fastest relaxation rates again following the
distribution P (̃P ) ∼ 1/̃2

P. We also note that the restriction
of the summation to the NP prethermal modes gives a lower
bound for Fα , which in turn bounds α . The numerical eval-
uation of the relaxation rates is shown in Fig. 6 and nicely
confirms the above considerations.

Let us finally point out that the rescaled form of the
relaxation rates ̃ that naturally appears in our analysis is
reminiscent of the Thouless conductance defined as gT =
γ /� where � ∼ 1/N is the mean level spacing and γ is the
linewidth of resonant modes. Like the Thouless conductance
captures the disordered/chaotic nature of mesoscopic trans-
port, our ̃ probes the underlying complexity of the linear
systems in the thermalization process and reflects the transi-
tion from a ballistic to a localized behavior.

FIG. 7. (a) The ratio of α to | fα (m)|2 for each mode α of a
BRM system of size N = 512. The ratio is approximately constant,
and varies only slightly on the selected mode. The dashed white line
indicates the average value of α/| fα (m)|2 ≈ 2.5. This confirms that
the statistics of α are indeed determined by the statistics of | fα (m)|2.
(b) The distributions of α (colored circles) and | fα (m)|2 (colored
circles with black border) for a BRM system of size N = 512 with
a variety of different bandwidths, showing that the two variables do
in fact have the same statistics. For both (a) and (b), similar results
were found for NN systems.

VI. CONCLUSIONS

We have analyzed the thermalization process of a beam
propagating in complex nonlinear multimoded systems. We
found that even a single nonlinear defect is capable of induc-
ing thermalization described by an RJ thermal state. When
Anderson localization effects are dominant, the mode-mode
interactions acquire a nonuniform structure. This enforces the
formation of metastable RJ states whose optical temperature
and chemical potential can be dramatically different from the
ones defining the thermal RJ state. The density of prethermal
modes is determined by a universal β function, which de-
scribes the system without recourse to its microscopic details.

The simplicity of our model also allows us to evaluate
the relaxation rates of the modes towards their (pre)thermal
state. The key element in the analysis is the connection be-
tween relaxation rates and wave-function statistics. The latter
is well studied in the framework of mesoscopic physics for
chaotic/disordered systems. Building on this connection, we
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have been able to analyze the whole statistics of relaxation
rates, which was found to resemble closely the statistics of
resonances and Thouless conductance of mesoscopic systems.

The above connection and the potential use of a nonlinear
defect as a probe for Anderson localization (AL), is not at all
trivial. Indeed, for the study of AL one needs to select states at
a given energy ε. However, in the thermalization problem the
four-mode interaction mixes modes with different energies,
so that even if the initial preparation selects a fixed energy, the
subsequent evolution will create excitations in other energies.
Further investigations along these lines are necessary in order
to establish this criterion as a probe for AL.
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APPENDIX: DEPENDENCE OF P (�̃) ON | fα(m)|2

We have stated that α ∝ Fα × | fα (m)|2, and proceeded
assuming that | fα (m)|2 is the dominant statistical term. Here,
we numerically demonstrate the validity of this assumption.
Figure 7(a) shows the ratio α/| fα (m)|2 versus εα for various
values of the bandwidth b and clearly demonstrates that the
ratio is a constant independent of α. The white line indi-
cates the center of the distribution at a value ≈2.5, which is
used in the derivation of the Porter-Thomas distribution. In
Fig. 7(b), we observe that the close match between the proba-
bility distribution functions of α and the ones associated with
| fα (m)|2, further confirming the proportionality between these
two statistics.
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