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Abstract: With aging being a major non-reversible risk factor for cardiovascular disease, the concept of
Vascular Age (VA) emerges as a promising alternate measure to assess an individual’s cardiovascular
risk and overall health. This study investigated the use of frequency features and Supervised
Learning (SL) models for estimating a VA Age-Group (VAAG), as a surrogate of Chronological
Age (CHA). Frequency features offer an accessible alternative to temporal and amplitude features,
reducing reliance on high sampling frequencies and complex algorithms. Simulated subjects from
One-dimensional models were employed to train SL algorithms, complemented with healthy in vivo
subjects. Validation with real-world subject data was emphasized to ensure model applicability, using
well-known risk factors as a form of cardiovascular health analysis and verification. Random Forest
(RF) proved to be the best-performing model, achieving an accuracy/AUC score of 66.5%/0.59 for
the in vivo test dataset, and 97.5%/0.99 for the in silico one. This research contributed to preventive
medicine strategies, supporting early detection and personalized risk assessment for improved
cardiovascular health outcomes across diverse populations.

Keywords: vascular age; machine learning; arterial pressure waveform

1. Introduction

Vascular age (VA) has emerged as a crucial concept in cardiovascular health re-
search [1], offering valuable insights regarding the individuals’ physiological age of blood
vessels, which may differ from their Chronological age (CHA). While CHA simply quan-
tifies the number of years since birth, VA takes into account the vascular health status.
Subjects with compromised health may have a higher VA than CHA [2], and vice versa for
those with good health. This distinction underscores the importance of healthy lifestyle
habits in maintaining a more favorable VA. Several risk factors, such as hypertension, smok-
ing, sedentary behavior and diabetes, are closely related to an increased VA [3]. For this
reason, understanding VA becomes particularly relevant for young adults, as it can serve
as an early indicator of potential cardiovascular issues and facilitate targeted interventions,
making young adults a crucial target group for VA inspection.

Arterial stiffness (AS) stands out as a hallmark marker of VA. AS is intricately related
to the morphology of the Arterial pulse waveform (APW), and its evolution is influenced
by age and lifestyle habits [3]. Moreover, AS is directly associated with Pulse wave velocity
(PWV) [4], a gold standard measure of vascular function [5], which, in turn, is linked to VA.
Exploring the relationship between AS and VA provides a deeper comprehension of vascu-
lar health and aging processes, thereby aiding in the early identification of cardiovascular
risk factors.
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Supervised learning (SL) techniques have opened new avenues for assessing VA in
cardiovascular health research [6]. SL offers valuable tools for accurate classification and
risk prediction to train models and make informed decisions [7]. However, a downside
of this algorithm is the amount of information needed to obtain satisfactory results. In
this sense, One-dimensional (1D) cardiovascular models have developed an important
role in relation to this techniques [8,9]. These models are able to simulate a complete
cardiovascular system under different conditions, and could eventually be extended to
pathological conditions. Nevertheless, some limitations arise, as 1D models might not
entirely capture the physiological variability observed in real individuals, emphasizing
the requirement to integrate real-world data into the simulated database for ensuring
robustness. Often, in open-access databases, a subject’s age is grouped to ensure privacy.
This practice leads to the concept of VA age group (VAAG), where individuals of similar
physiological age are clustered together based on their measurements.

SL models require labeled data or features to enable accurate assessment of the de-
sired target. While conventional amplitude and temporal-based features have historically
prevailed, their limitations become evident when compared to the advantage of frequency
features. Notably, one key advantage is their independence of a high sampling frequency
to accurately obtain important points. For instance, Brachial artery pulse wave (BAPW)
amplitude-based features, such as Augmentation index (AI), require a sampling frequency
of 500 Hz or more to carry out an adequate calculation. Another valuable characteristic
is the absence of need of sophisticated algorithms to obtain specific salient features from
the input data. It is worth noting that if a specific point necessitates a strict sampling
frequency to be accurately observed, it stands to reason that detecting such a point would
likely entail the use of a more complex algorithm. Under this premise, a more accurate
and representative set of features could be obtained, enhancing the precision of VAAG
estimation.

The aim of this study is to develop a SL-based method for estimating the VAAG of
different individuals by using frequency features extracted from the BAPW and both in
silico and in vivo data as a potential surrogate of CHA. The motivation behind this research
is to explore the plausibility of quantifying representative cardiovascular parameters in
terms of the impact of aging and its related risk factors. It is well known that early
detection of cardiovascular abnormalities is pivotal in preventive medicine, since the
existing methods for assessing cardiovascular health often lack individualization and rely
on conventional risk factors. The proposed method aims to provide valuable insights into
cardiovascular health and enable personalized VA assessments by harnessing SL techniques
and leveraging frequency features, thereby facilitating the implementation of preventive
strategies for improved cardiovascular well-being, ultimately contributing to the reduction
of the cardiovascular disease burden.

2. Materials and Methods

In order to address VAAG estimation, a classification approach was utilized. The aim
was to predict VAAG based on frequency features derived from the BAPW. To achieve this,
different SL models were tested to identify the most suitable approach.

The evaluation process involved two distinct case studies. In Case Study 1, an in silico
dataset [8], derived from a One-dimensional simulated model, was exclusively used for
model training, and subsequently, the models were tested on two different in vivo datasets.
One in vivo dataset contained information of healthy subjects, while the other one had a
combination of healthy and pathological subjects. This approach aimed to assess the model
performance when exposed to real-world data obtained from different sources.

To ensure robustness of the SL models, an alternative strategy to Case Study 1 was
proposed. Case Study 2 offered a different perspective which comprised the combination
of the in silico and in vivo datasets to train SL models. The in vivo dataset used for training
was the one composed exclusively of healthy subjects. Each dataset provided their 80%
part for training, and the remaining 20% for testing. Testing subjects were not combined
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as a whole so as to evaluate metrics from each dataset separately. The resulting models
were validated against the healthy and pathological in vivo dataset named "local clinical in
vivo Dataset". For this study, it was assumed that healthy subjects should have the same
VAAG as their CHA group or even lower, while pathological subjects should have a higher
VAAG. For that reason, the local clinical in vivo dataset was used as a form of validation
since information about each subject’s risk factors was provided.

2.1. In Silico Dataset

In this study, an in silico dataset published by Charlton et al. [8] was used. Said
dataset consists of 4374 adults, aged between 25 and 75 years old, each exhibiting unique
cardiac, vascular and arterial blood properties. The hemodynamic features of the simulated
pulse waves show tendencies that align with those observed in the existing literature, with
concurrence in terms of both values and morphology [8]. Non-invasive BAPW, available
within this dataset, was used for feature extraction, calibrated in (mmHg). Subjects were
already categorized into 6 different age groups, each spanning a 10-year interval from 25 to
75 years old. This group approach was extended to the other datasets to ensure a consistent
age distribution.

2.2. In Vivo Dataset

In addition to the in silico dataset, an in vivo one was used as well, published by Schu-
mann and Bär [10]. The study corresponding to this dataset was conducted by the Jena
University Hospital. Electrocardiography (ECG) and non-invasive BAPW recordings from
1121 volunteers were provided. The dataset providers reported that all volunteers were
healthy and measurements were taken in a calm and comfortable environment. The dataset
included the age of each participant in age groups with a 4-year gap difference. In order
to be consistent with the in silico dataset, said group categories were carefully merged to
form the previously mentioned 10-year interval from 25- to 75-year-old age groups.

Signal processing was carried out due to the varying lengths of recordings, typically
ranging from 10 to 30 min, and non-consistent signal quality. Each signal was divided into
10-second non-overlapping segments. Subsequently, each segment underwent individual
assessment to determine its inclusion or exclusion. Since the provided signals were cali-
brated, a Savitzky–Golay filter was used to avoid amplitude distortion when removing
baseline wander and noise. Each segment was required to fall within a narrow safety
margin around the normal values of blood pressure, setting the upper and lower limits in
160 and 60 mmHg, respectively. In addition to this, the skewness of the segment was used
as a Signal quality index (SQI). The segments meeting a skewness value of 0 or higher were
included for analysis [11]. Finally, a delineator tool [12] was used to partition each segment
beat by beat, enabling a beat-wise signal analysis. As a result of the filters and conditions
previously mentioned, the dataset was reduced to 1057 subjects. Age distribution is shown
in Figure 1.
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Figure 1. Distribution of subjects in each age group for the In Vivo Dataset.

2.3. Local Clinical In Vivo Dataset

A smaller in vivo dataset was used as a form of validation, including subjects with
different health backgrounds and pathologies, from healthy to several preconditions. A
total of 32 volunteers were recruited by Universidad de la República, Montevideo, Uruguay.
In the initial phase, participants underwent a clinical interview to gather lifestyle habits
and personal history information, in which risk factors were perceived. Height and weight
measurements were recorded to obtain the Body mass index (BMI), which was considered
as another significant risk factor in the study. Medication intake was assessed by asking
the subjects about their medication usage, as it was considered as risk factor mitigator,
since the type of medication taken was associated with the corresponding risk factor (e.g.,
a subject with high cholesterol taking medication specifically for cholesterol management).
Family history was exclusively evaluated for parents.

Participants were asked to rest in a supine position for 10 min before measuring systolic
and diastolic blood pressure (SBP and DBP, respectively) using an Omron HEM-433INT
Oscillometric System sphygmomanometer (Omron Healthcare Inc., Hoffman Estates, IL,
USA), ensuring alignment of the participant’s arm with their thorax in accordance with
the Guidelines of the European Society of Hypertension [13]. BAPWs were acquired
using the tonometry technique at a sampling rate of 500 Hz and a 16-bit resolution [14].
Subsequently, the tonometric signals were calibrated based on the assumption of a uniform
mean minus diastolic blood pressure value across the large artery tree. Signal processing
was performed, similar to that of the in vivo dataset. The age distribution is visualized in
Figure 2. This study [14] was approved by an independent institutional review board; all
subjects provided their written informed consent before inclusion in the study. Research
protocol was carried out in accordance with the Code of Ethics of the World Medical
Association (Declaration of Helsinki).



Appl. Sci. 2023, 1, 0 5 of 22

25 35 45 55 65 75
Age Group

0

2

4

6

8

10

Su
bj

ec
ts

7

9

5

10

1

0

Amount of subjects

Figure 2. Distribution of subjects in each age group for the Local Clinical In Vivo Dataset.

2.4. Frequency Feature Assessment

Frequency domain analysis was employed to extract the features used in this paper [15–17]
as inputs. Each individual beat obtained from signals was expressed as a finite series in
accordance with previous research works [18,19], expressed by

x(t) =
A0

2
+ {

k/2

∑
n−1

Ancosnωts +
k/2

∑
n−1

Bncosnωts}, (1)

where ω represents the angular frequency and ts represents the sampling time interval.
Fourier coefficients were determined for each pulse as

An =
2
k

k

∑
s−0

xscosnωts

(
for n = 0, 1, . . . ,

k
2

)
, (2)

Bn =
2
k

k

∑
s−0

xssinnωts

(
for n = 0, 1, . . . ,

k
2

)
. (3)

This facilitated the calculation of the Phase angle (Pn) and the Amplitude of n harmon-
ics (Ahn) present in each beat spectrum, defined as Ahn =

√
A2

n + B2
n and

Pn = arctan(Bn/An). To determine the Amplitude proportions (Cn), the formula
Ahn/Ah0 × 100% was used, considering a range of n values from 1 to 4, since that is
the amount of harmonics with representative harmonic amplitude. Additionally, the
Coefficient of variation (CVn) of Cn was determined.

Harmonic distortion (HD) serves as a measure of the BAPW characteristics through
Discrete Fourier transform (DFT). By computing the squared magnitudes of the Fourier
coefficients (|Ak|2) and their complex conjugates, HD quantifies the energy ratio above the
fundamental frequency and the energy at the fundamental frequency within the waveform.

HD =
∑6

k=2 |Ak|2
|A1|2

. (4)

Fourier coefficients beyond the fourth order were disregarded, as they had little influ-
ence on the resulting HD value. Finally, Welch’s power spectral density [20] was computed
for each individual beat, enabling the extraction of related features, such as Mean frequency
of the power spectrum (MeanF), Median frequency of the power spectrum (MedF), Average
band power (AP), Occupied bandwidth at 99% (OB), Half-power bandwidth at 3 dB (HB).
The Mean and Standard deviation (SD) of each feature was determined. Any values that
deviated by more than two SD from the mean for each beat analyzed were eliminated from
the signal dataset.
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2.5. Supervised Learning Models

In this study, SL was implemented to classify a subject’s vascular age group based on
frequency features provided by the BAPW. To further validate the predictive capabilities
of the models, an external local clinical in vivo dataset was used. This dataset contained
information about each patient’s risk factors and actual age group, providing a reliable
ground truth for evaluation.

For the SL models, three widely recognized algorithms were considered, namely
Support vector machine (SVM) [21], Random forest (RF) [22] and Multi-layer perceptron
(MLP) [23]. These methods were selected due to their proven performance, versatility
and broad acceptance in the field. The in silico and in vivo datasets were used for train-
ing and optimizing the SL models, which were randomly split into an 80–20% ratio for
training and testing, respectively. Then, a ten-fold Cross-validation (CV) strategy was
implemented, where, in each fold, one set was separated as the testing group, while the
remaining sets served as the training group to fine-tune the model parameters. To obtain
the best performance from each algorithm, hyperparameter optimization was performed
using RandomizedSearchCV. The hyperparameters for each algorithm were sampled from
predefined ranges, which can be seen in Table 1, and the configurations yielding the highest
performance metric on the testing sets were selected. This process aimed to achieve optimal
model performance while mitigating the risk of overfitting.

Table 1. List of hyperparameters to be optimized and their range of values.

Model Hyperparameter Values

SVM
kernel [linear, rbf, sigmoid]

gamma [0.001, 0.01, 0.1, 1, 10, 100]
C [0.1, 1, 10, 20, 50, 100]

RF

n estimators [500, 700, 1000, 2000, 3000]
max depth [5, 10, 20, 50, 100]

min samples leaf [5, 10, 50]
min samples split [5, 10]

MLP
hidden layer sizes

[(50,), (100, ), (200, ), (50, 50,
50), (50, 100, 50), (100, 100,

100), (200, 200, 200)]
alpha [0.0001, 0.005, 0.01, 0.05, 0.1]

learning rate [constant, adaptive]

2.6. Evaluation

The evaluation of the SL models was conducted to assess their performance and
generalization capabilities comprehensively. To achieve this, commonly used classification
metrics were employed, such as Accuracy, F1-score, Precision, Recall, Confusion Matrix
and Area under the receiver operating characteristic curve (AUC). The AUC metric was
evaluated with a "One vs Rest" approach. Graphics as Confusion Matrix and the Receiver
operating characteristic (ROC) curve were evaluated as well.

These evaluation metrics provide valuable insights into the strengths and weaknesses
of each model, aiding in making informed decisions about their practical applicability.
Additionally, they highlight potential areas for further refinement and improvement, con-
tributing to the development of robust and effective predictive models.

3. Results
3.1. Frequency Features

Table A1 shows the feature description, mean and standard deviation values for each
dataset. Even though there is a difference between the in silico and in vivo datasets, in terms
of mean values and standard deviation, the in vivo dataset displayed a closer resemblance
to the in silico one than the local clinical in vivo dataset. Figure 3 presents the values of
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feature Cn for the first harmonic, highlighting each distinct dataset used. The remaining
features can be seen in Appendix A, Figure A1. These features played a crucial role as
inputs to the SL algorithms.
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Figure 3. Overlapped values of Feature Cn for the first harmonic from each different dataset.

3.2. Case Study 1: In Silico Dataset

The study population in Case Study 1 consisted entirely of in silico subjects, a cohort
of 4374 simulated individuals. Evaluation metrics for Case Study 1 are presented in Table
2. The RF model presented the best accuracy and best performance for the test dataset.
However, SVM and MLP showed competitive results as well. Confusion Matrix and the
ROC Curve for the best-performing model are shown in Figures 4 and 5.

Table 2. Evaluation metrics for Case Study 1. Results from Training CV and In Silico Test Dataset.

Metrics (%)
Models

SVM RF MLP

Accuracy CV 94.45 98.03 95.03
Accuracy Test 96.68 97.60 97.71

F1-Score

25 97.31 95.44 98.64
35 95.51 95.54 97.16
45 95.20 97.52 96.55
55 95.36 99.66 96.34
65 98.11 98.47 97.72
75 98.93 99.29 100

Precision

25 96.02 91.82 98.64
35 97.38 96.77 97.47
45 93.29 98.57 95.23
55 95.36 99.34 96.67
65 98.48 100 98.47
75 100 100 100

Recall

25 98.64 99.32 98.64
35 93.71 94.33 96.85
45 97.20 96.50 97.90
55 95.36 100 96.02
65 97.74 96.99 96.99
75 97.88 98.59 100
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Figure 4. Confusion Matrix for the In Silico Dataset of Case Study 1.
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Figure 5. ROC curve for the In Silico Dataset of Case Study 1.

Subsequently, the RF model was evaluated against both in vivo datasets. Table 3
presents the obtained metrics, while Figures 6 and 7 show the Confusion Matrix and
the ROC Curve for the in vivo dataset, and Figures 8 and 9 for the local clinical in vivo
dataset for the best-performing model. The results from the in vivo dataset revealed a
significant bias towards the age group extremes, that is, the 25- or 75-year-old age groups.
Table 4 indicates the amount of subjects from both in vivo datasets that estimated an equal,
greater of lower VAAG. The metrics for the local clinical in vivo dataset indicate a less-
than-desirable performance, which could be expected given its composition of both healthy
and pathological subjects. Nevertheless, it is worth noting a distinct trend towards the
25-year-old age group.
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Table 3. Evaluation metrics for Case Study 1. Results from In Vivo and Local Clinical In Vivo datasets.
NDA: No Data Available.

Metrics (%)
Dataset

In Vivo Local Clinical In
Vivo

Accuracy 60.74 15.62

F1-Score

25 77.03 47.06
35 NDA 12.5
45 NDA NDA
55 NDA NDA
65 NDA NDA
75 19.84 NDA

Precision

25 65.52 40
35 NDA 14.28
45 NDA NDA
55 NDA NDA
65 NDA NDA
75 13.54 NDA

Recall

25 93.46 57.14
35 NDA 11.11
45 NDA NDA
55 NDA NDA
65 NDA NDA
75 37.14 NDA
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Figure 6. Confusion Matrix for the In Vivo Dataset of Case Study 1.
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Figure 7. ROC curve for the In Vivo Dataset of Case Study 1.

25 35 45 55 65 75
Predicted label

25

35

45

55

65

75

Tr
ue

la
be

l

3 3 0 0 1 0

7 1 0 0 0 1

2 2 1 0 0 0

8 0 0 0 1 1

0 0 0 0 0 1

0 0 0 0 0 0

Local Clinical In-Vivo Confusion Matrix

0

1

2

3

4

5

6

7

8

Figure 8. Confusion Matrix for the Local Clinical In Vivo Dataset of Case Study 1.
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Figure 9. ROC curve for the Local Clinical In Vivo Dataset of Case Study 1.
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Table 4. Distribution of subjects across the In Vivo and Local Clinical In Vivo test datasets based on
their VAAG estimation.

VAAG
Datasets

In Vivo Local Clinical In Vivo

Higher 84 (7.95%) 17 (53.12%)
Equal 642 (60.74%) 5 (15.62%)
Lower 331 (31.32%) 10 (31.25%)

3.3. Case Study 2: Combination of In Silico and In Vivo Datasets

The cohort used for Case Study 2 consisted of both in silico and in vivo subjects. Table
5 indicates the accuracy obtained for each tested model when training with CV. RF once
again proved to be the best-performing model. Table 6 metrics for each individual test
dataset are shown for said model. Confusion Matrix and the ROC Curve for the in silico
test dataset can be seen in Figures 10 and 11, while those for the in vivo test dataset are
shown in Figures 12 and 13, both for the best-performing model. Table 7 shows the amount
of subjects with higher, lower or equal estimated VAAG. As seen, for the in vivo dataset,
for most subjects, an equal VAAG was predicted, while for the in silico dataset, almost for
all the subjects, the same VAAG was predicted.

Table 5. Accuracy comparison between each tested model for Case Study 2.

Models

SVM RF MLP

Accuracy (%) 87.87 91.82 88.35

Table 6. Evaluation metrics for Case Study 2. Results from In Silico and In Vivo test datasets. NDA:
No Data Available.

Metrics (%)
Dataset

In Silico In Vivo

Accuracy 97.48 66.51

F1-Score

25 95.42 80.61
35 95.54 NDA
45 97.52 28.57
55 99.66 11.76
65 98.09 40
75 98.93 40

Precision

25 91.82 68.58
35 96.77 NDA
45 98.57 33.33
55 99.34 50
65 99.23 75
75 100 66.67

Recall

25 99.32 97.76
35 94.33 NDA
45 96.50 25
55 100 6.67
65 96.99 27.27
75 97.88 28.57
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Figure 10. Confusion Matrix for the In Silico Test Dataset of Case Study 2.
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Figure 13. ROC curve for the In Vivo Test Dataset of Case Study 2.

Table 7. Distribution of subjects across the In Silico and In Vivo test datasets based on their VAAG es-
timation.

VAAG
Datasets

In Silico In Vivo

Higher 29 (3.31%) 22 (10.38%)
Equal 830 (94.85%) 132 (62.26%)
Lower 16 (1.83%) 58 (27.36%)

3.4. Validation of Case Study 2

To validate the outcomes of Case Study 2, a population of both healthy and patho-
logical subjects (local clinical in vivo dataset) was implemented. Table 8 indicates the
evaluation metrics for said dataset. Metrics for the 75-year-old class could not be obtained.
The underlying reason for this observation becomes apparent when referring to Figure 2,
which illustrates that there were no subjects within this particular group. Figures 14 and 15
exhibit the Confusion Matrix and the ROC curve for the RF model. Table 9 presents the
distribution of subjects according to their estimated VAAGs, denoting those with higher,
lower or equivalent values. The majority of the subjects had a higher estimated VAAG.
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Table 8. Evaluation metrics from the Local Clinical In Vivo Dataset for Case Study 2.

Metrics (%) Local Clinical In Vivo

Accuracy 31.25

F1-Score

25 50
35 25
45 33.33
55 37.5
65 20
75 0

Precision

25 60
35 28.57
45 100
55 50
65 11.11
75 00

Recall

25 42.86
35 22.22
45 20
55 30
65 100
75 0

25 35 45 55 65 75
Predicted label

25

35

45

55

65

75

Tr
ue

la
be

l

3 1 0 1 1 1

0 2 0 2 4 1
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Figure 14. Confusion Matrix for the Local Clinical In Vivo Dataset of Case Study 2.
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Figure 15. ROC curve for the Local Clinical In Vivo Dataset of Case Study 2.

Table 9. Distribution of subjects across the Local Clinical In Vivo datasets based on their
VAAG estimation.

VAAG Local Clinical In Vivo

Higher 16 (50%)
Equal 10 (31.25%)
Lower 6 (18.75%)

As it can be seen on Figure 16, most of the subjects exhibit at least one risk factor.
Figure 17 presents a detailed breakdown of each risk factor individually. Figure 18 shows
the distribution of BMI for each subject.

True

25

35

45

55

65

75

Pre
dict

ed

25

35

45

55

65

75

0

5

10

15

20

25

30

Amount of Risk Factors

2+
1
0

Figure 16. Amount of risk factors for each subject of the Local Clinical In Vivo dataset.
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Figure 17. Distribution of individual Risk Factors in the Local Clinical In Vivo dataset.
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Figure 18. Distribution of BMI in the Local Clinical In Vivo dataset.

4. Discussion

This study aimed to estimate an individual’s VAAG using SL models based on fre-
quency features obtained from the BAPW. Our findings highlighted the potential of said
features as a compelling alternative to temporal and amplitude features, which often re-
quire higher sampling frequencies and sophisticated detection algorithms. To begin, one of
the main contributions of this study was that frequency features revealed age-dependant
variations, displaying either an increase or decrease with advancing age. For instance,
the HD feature manifested an augmentation trend with age, while the Cn feature of the
fourth harmonic demonstrated a decline. Other features, which appear unaltered by age,
suggested that employing dimensionality reduction algorithms could potentially enhance
the performance of the SL models applied. Additionally, an integrated dataset encom-
passing both simulated and real-world subjects was proposed, resulting in significant
improvements in model accuracy. Importantly, the use of subjects with risk factors (be-
longing to a local clinical dataset) for testing purposes contributed to the evaluation of
model performance, where differences in VAAG could be expected. This underscores the
critical importance of incorporating real-world subject data and considering risk factors
to enhance the precision of VAAG estimates, ultimately contributing to more effective
preventive strategies and improved cardiovascular health outcomes.

The use of simulated models enables the training of SL models on a larger population
and is not dependent on the number of volunteers who can participate. Different health
statuses could be simulated, allowing the inclusion of not only healthy subjects but also
pathological ones. However, it is worth noting that hemodynamic theoretical values do not
always align with those of real subjects, emphasizing the importance of real subject data. A
significant variability in these variables from different subjects on similar conditions has
been observed [24,25]. In this sense, it is essential to strike a balance between simulation
and real-world data, ensuring the models remain grounded in reality. This approach will
contribute to more robust and insightful results in the field of healthcare research.

Our findings are in agreement with those of Hsiu et al. [16], as both studies focus on
VA estimation using similar frequency features and SL. While Hsiu et al. [16] aimed to
discriminate between “Vascular Aging Group” and “Control Group” using binary classi-
fication with the Cardio-ankle vascular index (CAVI) as a guide of each subject’s arterial
stiffness status, the present study pursued a differentiated classification methodology. A
multi-class classification was implemented to estimate VAAG within six different groups,
serving as a surrogate of CHA. On the contrary, in this study, multiple SL models were
trained with (simulated and real) healthy subjects and subsequently tested with both patho-
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logical and non-pathological subjects to detect VA abnormalities. In contrast, Hsiu et al.
[16] utilized both healthy and pathological individuals for training. To the best of our
knowledge, no other studies have utilized spectrum features for the estimation of VA or
other AS indicators.

The findings of Case Study 1 provided valuable insights that justify the need for Case
Study 2. The metrics obtained from Case Study 1 demonstrated excellent performance
when applied to the in silico subjects. However, when tested on real-world subjects, the
results deviated from the expected outcomes. Notably, a significant bias was observed
towards the 25- and 75-year-old VAAGs, pointing out a trend to predict extreme values
if the subject fell outside the theoretical limits for all features. In contrast, Case Study 2
yielded improved results. However, a bias towards the 25-year-old VAAG was still evident
due to the imbalance given by the age distribution of the in vivo dataset (Figure 1) that
revealed a predominantly young population, possibly explaining the bias towards the
group with a greater number of datapoints. Furthermore, the local clinical in vivo dataset,
which mainly comprises pathological subjects, was also tested against Case Study 2 SL
models. As was previously mentioned, the metrics were expected to be low due to the fact
that the estimated VAAG presented higher values than CHA. Notably, Table 9 demonstrates
that the majority of subjects were indeed estimated to have a higher VAAG, aligning with
the primary objective of the study.

The comparative analysis of SL models, encompassing RF, SVM and MLP, unveiled
the superior performance of the RF model, evidenced by its highest accuracy and overall
metrics when contrasted with SVM and MLP. This trend is consistent across the two distinct
case studies. In Case Study 1 targeting the in silico population, models exhibited metrics
closely aligned with exceptional results, as demonstrated by AUC scores approaching unity.
However, evaluating the RF model against in vivo measurements revealed limitations
due to inherent biases, restricting full class-based evaluation and causing relatively lower
metrics, a challenge potentially shared by other algorithms. The ROC curves for the in vivo
dataset exhibited complexity. In Case Study 2, the RF model’s superiority strengthened,
showing a wider performance gap compared to Case Study 1. Robust performance was
witnessed in the in silico dataset, while in the in vivo dataset, inherent bias impacted
metric variations across classes. Notably, ROC curves, especially for the in silico dataset,
maintained a near-perfect trend, while Case Study 2 curves consistently favored the left side
of the central function. When scrutinizing the RF model from Case Study 2 against a local
clinical in vivo dataset, AUC scores ranged from 0.87 (highest) to 0.50 (lowest), indicating
favorable performance diversity. Overall, these findings underline the RF model’s prowess
in addressing bias-related challenges and delivering robust performance across diverse
datasets, both simulated and real-world.

The local clinical in vivo dataset was composed by subjects that exhibited one or more
cardiovascular risk factors, evidencing that VA could be altered [26]. This observation
supports the rationale behind the higher predicted VAAG for the study participants. No-
tably, a subset of subjects solely presented family history as a risk factor, which could
not be considered as a risk group. This subgroup, under normal circumstances, might be
overlooked, as they may not present symptoms or conditions. However, given that they
could harbor underlying issues that may manifest in 5 to 10 years, this subgroup emerges as
a prime candidate for a preventive medicine approach. Targeting this population could po-
tentially yield significant benefits in terms of improving cardiovascular health and overall
well-being while addressing potential future health challenges.

A critical challenge in the presented methodology arose from bias, particularly from
the in vivo dataset, given its abundance of younger individuals. This imbalance proved to
influence the training process, and, in consequence, the results lead to inaccuracies in the
predictions. This is acknowledged as a limitation of our study. To address this issue, data
augmentation techniques could be employed. Through data augmentation, synthetic BAPW
could be generated within underrepresented VAAG, thereby achieving a more balanced
dataset. This strategy is designed to enhance the robustness of SL models and improve
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their ability to generalize, ensuring more reliable predictions across all VAAG. Further data
collection would be needed to support data augmentation from several subjects.

For a thorough validation of the proposed approach, it is imperative to have a dataset
comprising both control subjects and those with known pathologies. By comparing the
predictions of our models against this well-defined dataset, a better understanding of the
model performance and identification of potential areas for improvement could be gained.
Additionally, the importance of utilizing PWV as a gold standard for precise evaluation of
individual vascular health status is recognized. The incorporation of PWV measurements
as a reference in future studies would enhance the reliability and clinical relevance of the
proposed estimation method.

Future research should focus on conducting a broader real-world validation study.
This would involve recruiting a diverse population of both healthy and pathological in-
dividuals in different age groups. In this sense, models could be refined to provide a
more reliable prediction for individualized risk assessments and early detection of vascular
abnormalities. Additionally, it is imperative that future studies incorporate data augmen-
tation techniques to ensure balance in the datasets, especially in cases where certain age
groups may be underrepresented. In conclusion, our findings contribute to advancing
the field of vascular age estimation and pave the way for more accurate and personalized
approaches to cardiovascular health assessment, ultimately supporting preventive mea-
sures and improving overall well-being for individuals across different age groups and
health conditions.

5. Conclusions

Overall, this study highlights the use of frequency features for the estimation of an
individual’s VAAG through SL methodologies. The use of frequency features, which are
less dependent on sampling frequency compared to temporal and amplitude features,
allow simplification of data acquisition and effective capture of age-related variations.
Moreover, the inclusion of One-dimensional cardiovascular models to enhance population
quantities proves to be highly useful, but the need to combine it with data from real
subjects is important as well to obtain more accurate results. The results are validated
using a comprehensive dataset containing information from both pathological and healthy
individuals, ensuring the robustness and generalizability of the models. Among the
evaluated SL algorithms, the RF model emerges as the most effective in predicting VAAGs,
closely followed by the MLP model. This research provides valuable insights into vascular
age estimation and contributes to improving preventive strategies and cardiovascular
health outcomes.

Author Contributions: Conceptualization, E.I., L.J.C. and R.L.A.; methodology, software and valida-
tion, E.I.; writing—original draft preparation, E.I.; writing—review and editing, L.J.C.; supervision,
L.J.C.; project administration, R.L.A.; funding acquisition, L.J.C. and R.L.A. All authors have read
and agreed to the published version of the manuscript.

Funding: This work was funded by the Universidad Tecnológica Nacional (Grants: ICTCBA8443 and
ICUTIBA7647 R&D Projects).

Institutional Review Board Statement: The study was conducted in accordance with the Code of
Ethics of the World Medical Association (Declaration of Helsinki).

Informed Consent Statement: Informed consent was obtained from all subjects involved in the study.

Data Availability Statement: The open-access databases are publicly available at https://zenodo.
org/record/3275625 and https://doi.org/10.13026/2hsy-t491 accessed on 13 August 2023.

Conflicts of Interest: The authors declare no conflict of interest. The founders had no role in
the design of the study, in the collection, analysis, or interpretation of data, in the writing of the
manuscript, or in the decision to publish the results.

https://zenodo.org/record/3275625
https://zenodo.org/record/3275625
https://doi.org/10.13026/2hsy-t491


Appl. Sci. 2023, 1, 0 20 of 22

Appendix A

Table A1. Mean and Standard Deviation (µ ± σ) of Frequency Features extracted from BAPW. HD:
Harmonic Distortion. C1-4: Amplitude proportions from first to fourth harmonic. CVn: Coefficient
of Variation. P1-4: Phase angle form first to fourth harmonic. MeanF: Mean frequency of the power
spectrum. MedF: Median frequency of the power spectrum. AP: Average band power. OB: Occupied
bandwith at 99%. HB: Half-power bandwidth at 3 dB.

Features In Silico In Vivo Local Clinical In
Vivo

HD 0.0125 ± 0.0092 0.0085 ± 0.0062 0.0064 ± 0.0038
C1 8.9406 ± 3.3690 6.4252 ± 2.4496 6.0745 ± 1.9122
C2 4.8496 ± 1.1591 4.2977 ± 1.6108 3.6030 ± 1.2904
C3 2.4463 ± 0.5358 2.8972 ± 1.0317 2.1129 ± 0.7930
C4 1.3607 ± 0.4178 1.9138 ± 0.6500 0.9865 ± 0.3579

CVn 199.9370 ± 10.2238 192.8814 ± 13.3849 205.2885 ± 7.2419
P1 −1.7456 ± 0.0898 −1.6587 ± 0.2392 −1.8273 ± 0.2379
P2 −2.2090 ± 0.1594 −2.0939 ± 0.4191 −1.8497 ± 1.3427
P3 −2.4469 ± 1.3432 −0.7413 ± 1.9343 1.7717 ± 1.1535
P4 −2.1248 ± 1.9724 0.9538 ± 1.7368 1.8119 ± 0.7840

MeanF 1.5940 ± 0.3115 6.9438 ± 34.9307 2.1984 ± 0.8949
MedF 0.6343 ± 0.0486 1.3241 ± 0.1601 0.6320 ± 0.0101

AP 81.9902 ± 86.2468 54.0059 ± 126.3425 60.8117 ± 39.8665
OB 12.8854 ± 4.1582 35.0194 ± 125.4401 15.4258 ± 8.0706
HB 1.2651 ± 0.1549 1.7726 ± 8.8819 1.5386 ± 0.5147

Figure A1. Cont.
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Figure A1. Overlapped values of remaining Frequency Features from each dataset.
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