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Let I be a separable Banach ideal in the space of bounded operators acting in a Hilbert
space H and I the set of partial isometries in H. Fix v ∈ I . In this paper we study metric
properties of the I-Stiefel manifold associated to v , namely

StI(v) = {
v0 ∈ I : v − v0 ∈ I, j

(
v∗

0 v0, v∗v
) = 0

}
,

where j(,) is the Fredholm index of a pair of projections. Let UI(H) be the Banach–Lie
group of unitary operators which are perturbations of the identity by elements in I. Then
StI(v) coincides with the orbit of v under the action of UI(H) × UI(H) on I given by
(u, w) · v0 = uv0 w∗, u, w ∈ UI(H) and v0 ∈ StI(v). We endow StI(v) with a quotient
Finsler metric by means of the Banach quotient norm of the Lie algebra of UI(H)× UI(H)

by the Lie algebra of the isotropy group. We give a characterization of the rectifiable
distance induced by this metric. In fact, we show that the rectifiable distance coincides
with the quotient distance of UI(H) × UI(H) by the isotropy group. Hence this metric
defines the quotient topology in StI(v).
The other results concern with minimal curves in I-Stiefel manifolds when the ideal I

is fixed as the compact operators in H. The initial value problem is solved when the
partial isometry v has finite rank. In addition, we use a length-reducing map into the
Grassmannian to find some special partial isometries that can be joined with a curve of
minimal length.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

In this paper we study the rectifiable distance and minimal curves in infinite dimensional Stiefel manifolds endowed
with a quotient metric. Let H be an infinite dimensional separable Hilbert space and B(H) the space of bounded linear
operators acting in H. We will denote by ‖.‖ the spectral norm of operators. By a Banach ideal we mean a two-sided ideal
I of B(H) equipped with a norm ‖.‖I satisfying ‖x‖ � ‖x‖I = ‖x∗‖I and ‖axb‖I � ‖a‖‖x‖I‖b‖ whenever a,b ∈ B(H). In
the sequel, I stands for a separable Banach ideal.

Let I denote the set of partial isometries. Fix v ∈ I . The I-Stiefel manifold associated with v is defined by

StI(v) = {
v0 ∈ I : v − v0 ∈ I, j

(
v∗

0 v0, v∗v
) = 0

}
,

where j(,) is the index of a pair of orthogonal projections. The index of a pair of orthogonal projections (p,q) is the
Fredholm index of qp : p(H) −→ q(H), when this operator is Fredholm (see for instance [5]). In a former article [7] the
author has established the geometric facts of the I-Stiefel manifolds mentioned below.
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Denote by U (H) the group of unitary operators in H, and UI(H) the group of unitaries which are perturbations of the
identity by an operator in I, i.e.

UI(H) = {
u ∈ U (H): u − 1 ∈ I

}
.

It is a real Banach–Lie group with the topology defined by the metric (u1, u2) �→ ‖u1 − u2‖I (see [6]). We point out that
UI(H) × UI(H) acts transitively on StI(v). The action is giving by moving the initial and final subspace of the isometries,
(u, w) · v0 = uv0 w∗ , where u, w ∈ UI(H), v0 ∈ StI(v). Also recall that the map

πv0 : UI(H) × UI(H) −→ StI(v), πv0

(
(u, w)

) = uv0 w∗

is a real analytic submersion. Moreover, StI(v) is a real analytic submanifold of v + I and a homogeneous reductive space
of UI(H) × UI(H) (see [13]). Therefore the tangent space (T StI(v))v0 at v0 ∈ StI(v) can be identified with(

T StI(v)
)

v0
= {xv0 − v0 y: x, y ∈ Iah},

where Iah is the Lie algebra of UI(H) giving by the skew-adjoint elements of I. The isotropy group at v0 ∈ StI(v) of the
above action can be computed

G v0 = {
(u, w) ∈ UI(H) × UI(H): uv0 = v0 w

}
.

The Lie algebra of G v0 is

Gv0 = {
(a,b) ∈ Iah × Iah: av0 = v0b

}
.

By means of the quotient Banach norm of (Iah ×Iah)/Gv one can define a Finsler metric on StI(v). Indeed, for xv0 − v0 y ∈
(T StI(v))v0 ,

‖xv0 − v0 y‖v0 = inf
{∥∥(x + a, y + b)

∥∥: (a,b) ∈ Gv0

}
. (1.1)

Here the norm of a pair is ‖(x + a, y + b)‖ = Φ(‖x + a‖I,‖y + b‖I), where Φ is any symmetric norming function. A
standard computation shows that this metric is invariant under the action. We can define the rectifiable distance induced
by this metric in the usual fashion, i.e.

d(v0, v1) = inf

{ 1∫
0

∥∥γ̇ (t)
∥∥
γ (t) dt: γ ⊂ StI(v), γ (0) = v0, γ (1) = v1

}
, (1.2)

where the curves γ considered are piecewise smooth.
Metric geometry in homogeneous spaces in the setting of operator theory is an area of current research. The met-

ric (1.1) was introduced in the remarkable work [9] of C. Durán, L. Mata Lorenzo and L. Recht, where they studied
minimal curves with the quotient metric induced by the operator norm homogeneous spaces of the unitary group
of C∗-algebras. When the quotient metric is induced by the p-norms, several interesting metric properties of abstract
homogeneous spaces of the p-Schatten unitary groups were proved in [3]. On the other hand, we can cite the ar-
ticles [4,11,14] and the references therein concerning geometrical and topological properties of partial isometries. In
addition, we mention that background information on Finsler structures on Banach manifolds can be found in the
book [18].

The contents of the paper are the following. In Section 2 we show that the rectifiable distance metricates the quotient
topology of groups in (UI(H) × UI(H))/G v ∼= StI(v). This fact is proved by giving an alternative description of the rectifi-
able distance in terms of the metric distance of the quotient of groups. In Section 3 we fix the ideal K(H) of the compact
operators. We focus on the study of minimal curves in the K(H)-Stiefel manifold which we denote by Stc(v). The initial
value problem is solved when v is a partial isometry of finite rank. This means that for v0 ∈ Stc(v) and a tangent vec-
tor xv0 − v0 y given, there exists a curve δ in Stc(v) satisfying δ(0) = v0, δ̇(0) = xv0 − v0 y and being of minimal length
up to a critical value of t . Then we prove that Stc(v) can be mapped into a product of Grassmannians with a length-
reducing map. As a corollary of this simple fact some specials isometries in Stc(v) can be joined by curves of minimal
length.

2. The rectifiable distance in StI(v)

In this section we give a characterization of the rectifiable distance in StI(v) as a quotient distance of groups. First
we need to set some definitions and notations about UI(H) × UI(H). We endow UI(H) with the ambient Finsler metric
which is defined by ‖(x, y)‖ = Φ(‖x‖I,‖y‖I) for (x, y) ∈ u1Iah × u2Iah = (T (UI(H) × UI(H)))(u1,u2) . The function Φ is a
symmetric norming function in R

2. This means that it is invariant under permutations, only depends on the absolute values
of the coordinates and satisfies Φ(1,0) = 1. We measure the length of a piecewise C1 curve Γ (t) = (Γ1(t),Γ2(t)), t ∈ [0,1],
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as follows

LI(Γ ) =
1∫

0

∥∥(Γ̇1, Γ̇2)
∥∥dt.

Therefore UI(H) × UI(H) has a rectifiable distance defined by

dI

(
(u0, w0), (u1, w1)

) = inf
{

LI(Γ ): Γ ⊂ UI(H) × UI(H), Γ (0) = (u0, w0), Γ (1) = (u1, w1)
}
.

On the other hand, the length of a C1 curve γ (t), t ∈ [0,1], in StI(v) with the metric (1.1) is denoted by

L(γ ) =
1∫

0

∥∥γ̇ (t)
∥∥
γ (t) dt.

The rectifiable distance d is defined accordingly as Eq. (1.2) shows. Actually this provides a pseudo distance in general.
However it is easy to show that this is in fact a distance in StI(v) (see [7]). Also dI is a distance in UI(H)× UI(H) by the
estimates of Lemma 2.4.

The following result proved that the rectifiable metric in StI(v) can be approximated by lifting curves to the product
group UI(H) × UI(H). It is adapted from [2] with the difference that we use any Banach norm and the assumption that
the quotient metric is attained is dropped here.

Lemma 2.1. Let v0, v1 ∈ StI(v). Then

d(v0, v1) = inf
{

LI(Γ ): Γ ⊂ UI(H) × UI(H), πv0

(
Γ (0)

) = v0, πv0

(
Γ (1)

) = v1
}
,

where the curves Γ considered are continuous and piecewise C1 .

Proof. Consider any piecewise C1 curve Γ in UI(H) × UI(H) satisfying πv0 (Γ (0)) = v0 and πv0 (Γ (1)) = v1. Let us point
out that since the map

πv0 : UI(H) × UI(H) −→ StI(v), πv0

(
(u, w)

) = uv0 w∗

is a real analytic submersion there exists such kind of curves. Then, note that the above map reduces length of curves with
the previously defined metrics on each space. Since the action is isometric, it suffices to check that the differential map at
the identity

δv0 : Iah × Iah −→ (
T StI(v)

)
v0

, δv0

(
(x, y)

) = xv0 − v0 y

is contractive. But this follows trivially by the definition of the quotient metric in StI(v). Hence we have d(v0, v1) �
L(πv0 (Γ )) � LI(Γ ).

To finish, we must prove that given γ in StI(v) one can approximate L(γ ) with lengths of curves in UI(H) × UI(H)

joining the fibres of v0 and v1. Fix ε > 0. Let 0 = t0 < t1 < · · · < tn = 1 be a uniform partition of [0,1] (Δti = ti − ti−1 = 1/n)
such that the following hold:

1. ‖γ̇ (s) − γ̇ (s′)‖I < ε/4 if s, s′ lie in the same interval [ti−1, ti].
2. |L(γ ) − ∑n−1

i=0 ‖γ̇ (ti)‖γ (ti)Δti | < ε/2.

On the other hand, for each i = 0, . . . ,n − 1, there exist xi, yi ∈ Iah such that δγ (ti)((xi, yi)) = γ̇ (ti) and ‖(xi, yi)‖ �
‖γ̇ (ti)‖γ (ti) + ε/2.

Consider the following curve Γ in UI(H) × UI(H):

Γ (t) =

⎧⎪⎪⎨
⎪⎪⎩

(etx0 , ety0), t ∈ [0, t1),

(e(t−t1)x1 et1x0 , e(t−t1)y1 et1 y0), t ∈ [t1, t2),
...

...

(e(t−tn−1)xn−1 . . . e(t2−t1)x1 et1x0 , e(t−tn−1)yn−1 . . . e(t2−t1)y1 et1 y0), t ∈ [tn−1,1].
Then Γ is continuous and piecewise smooth, Γ (0) = (1,1) and

LI(Γ ) =
n−1∑∥∥(xi, yi)

∥∥Δti �
n−1∑∥∥γ̇ (ti)

∥∥
γ (ti)

Δti + ε/2 � L(γ ) + ε.
i=0 i=0
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We claim that πv0 (Γ (1)) lies close to v0. Note that if we denote by α(t) = πv0 (etx0 , ety0) − γ (t), then α(0) = 0, and using
the mean value theorem in Banach spaces,∥∥πv0

(
et1x0 , et1 y0

) − γ (t1)
∥∥

I
= ∥∥α(t1) − α(0)

∥∥
I

�
∥∥α̇(s1)

∥∥
I
Δt1,

for some s1 ∈ [0, t1]. Explicitly,∥∥πv0

(
et1x0 , et1 y0

) − γ (t1)
∥∥

I
�

∥∥es1x0δv0

(
(x0, y0)

)
e−s1 y0 − γ̇ (s1)

∥∥
I
Δt1.

Note that δv0 ((x0, y0)) = γ̇ (0), and that∥∥es1x0 γ̇ (0)e−s1 y0 − γ̇ (s1)
∥∥

I
�

∥∥es1x0 γ̇ (0)e−s1 y0 − γ̇ (0)
∥∥

I
+ ∥∥γ̇ (0) − γ̇ (s1)

∥∥
I
.

The second summand is bounded by ε/4. The first summand can be bounded as follows∥∥es1x0 γ̇ (0)e−s1 y0 − γ̇ (0)
∥∥

I
= ∥∥(

es1x0 − 1
)
γ̇ (0) − γ̇ (0)

(
e−s1 y0 − 1

)∥∥
I

�
∥∥γ̇ (0)

∥∥
I

∥∥(
es1x0 − 1, e−s1 y0 − 1

)∥∥ � MΔt1,

where M := maxt∈[0,1] ‖γ̇ (t)‖I . Thus,∥∥πv0

(
et1x0 , et1 y0

) − γ (t1)
∥∥

I
� (MΔt1 + ε/4)Δt1.

Next we estimate ‖πv0 ((e(t2−t1)x1 et1x0 , e(t2−t1)y1 et1 y0 )) − γ (t2)‖I which is less or equal than∥∥e(t2−t1)x1 et1x0 v0e−t1 y0 e−(t2−t1)y1 − e(t2−t1)x1γ (t1)e−(t2−t1)y1
∥∥

I
+ ∥∥e(t2−t1)x1γ (t1)e−(t2−t1)y1 − γ (t2)

∥∥
I
.

The first summand can be bounded by∥∥e(t2−t1)x1
(
et1x0 v0e−t1 y0 − γ (t1)

)
e−(t2−t1)y1

∥∥
I

= ∥∥et1x0 v0e−t1 y0 − γ (t1)
∥∥

I
� (MΔt1 + ε/4)Δt1.

The second difference can be treated analogously as the first difference above,∥∥e(t2−t1)x1γ (t1)e−(t2−t1)y1 − γ (t2)
∥∥

I
� (MΔt2 + ε/4)Δt2 = (M/n + ε/4)/n.

Hence we obtain∥∥πv0

(
Γ (t2)

) − γ (t2)
∥∥

I
� 2(M/n + ε/4)/n.

Then by induction we have that∥∥πv0

(
Γ (tn−1)

) − v1
∥∥

I
� M/n + ε/4 < ε/2,

choosing n big enough. The proof follows since the map πv0 has local continuous cross sections, then one can connect
Γ (tn−1) with the fibre of v1 by a curve of arbitrary small length. �

We shall need the following result about metric groups from Takesaki’s book [17, p. 109].

Lemma 2.2. Let H be a metrizable topological group, and G be a closed subgroup. If d is a complete distance function on H inducing
the topology of H, and if d is invariant under right translation by G, i.e. d(xg, yg) = d(x, y) for any x, y ∈ H and g ∈ G, then the left
coset space H/G = {xG: x ∈ H} is a complete metric space under the metric ḋ given by

ḋ(xG, yG) = inf
{

d(xg1, yg2): g1, g2 ∈ G
}
.

Actually, the distance ḋ metricates the quotient topology of groups. Let us observe how Lemma 2.2 applies to our situa-
tion. We shall take G = G v , H = Uc(H) × Uc(H), and dI the rectifiable distance in Uc(H) × Uc(H).

Remark 2.3. Te exponential map exp : Iah −→ UI(H), exp(z) = ez is surjective. Moreover, we have that

exp
({

z ∈ Iah: ‖z‖ � π
}) = UI(H).

Briefly we include an argument to prove our affirmation. Let u ∈ UI(H), then there is a well-known fact that using the
Borel functional calculus is possible to find x = x∗ such that ‖x‖ � π and eix = u. Any two-sided ideal is contained in the

ideal K(H) of compact operators, then eix = 1 + a, a ∈ I ⊂ K(H). Note that x ∈ K(H) because ix = log(1 + a) = ∑∞
j=1

a j

j , so
x is the norm limit of compact operators. Therefore the spectrum of x consists of countable many nonzero eigenvalues of
finite multiplicity and zero.
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On the other hand, we have the elementary estimate,

(
1 − π2

12

)1/2

|t| � ∣∣eit − 1
∣∣, (2.1)

for t ∈ [−π,π ]. Since the functional calculus is positive, we have

(
1 − π2

12

)1/2

|x| � ∣∣eix − 1
∣∣.

Therefore, if s j(.) denotes the singular values of an operator, we obtain the corresponding inequality for the singular values

(1 − π2

12 )1/2s j(x) � s j(eix − 1), for j ∈ N. By the dominance property (see [10, p. 82]), and the fact that eix − 1 ∈ I, we can
conclude x ∈ I.

Lemma 2.4. Let u0, u1, w0, w1 ∈ UI(H), then

(
1 − π2

12

)1/2

dI

(
(u0, u1), (w0, w1)

)
� Φ

(‖u0 − w0‖I,‖u1 − w1‖I

)
� dI

(
(u0, u1), (w0, w1)

)
.

In particular, (UI(H) × UI(H),dI) is a complete metric space and G v is a dI-closed subgroup.

Proof. We can suppose that u0 = u1 = 1 since multiplication is isometric for each metric. Given ε > 0, there exists Γ =
(Γ0,Γ1) ⊂ UI(H) × UI(H) such that Γ (0) = (1,1) and Γ (1) = (w0, w1) and

LI(Γ ) < dI

(
(1,1), (w0, w1)

) + ε.

Then, since straight are shortest curves in any vectorial space, we have

Φ
(‖1 − w0‖I,‖1 − w1‖I

)
�

1∫
0

Φ
(‖Γ̇0‖I,‖Γ̇1‖I

)
dt = LI(Γ ) < dI

(
(1,1), (w0, w1)

) + ε.

The inequality follows since ε is arbitrary. In order to prove the reversed inequality, consider x0, x1 ∈ Iah with ‖x j‖ � π
satisfying ex0 = w0 and ex1 = w1. Note that this is possible by Remark 2.3. The curve Γ (t) = (etx0 , etx1 ), t ∈ [0,1], joins
(1,1) and (w0, w1). Then,

dI

(
(1,1), (w0, w1)

)
� LI(Γ ) = Φ

(‖x0‖I,‖x1‖I

)
.

Now applying the estimate in (2.1), and passing to the corresponding inequality of the singular values we have

dI

(
(1,1), (w0, w1)

)
� Φ

(‖x0‖I,‖x1‖I

)
�

(
1 − π2

12

)−1/2

Φ
(‖1 − w0‖I,‖1 − w1‖I

)
,

which gives the desired inequality.
The completeness of (UI(H) × UI(H),dI) follows easy from the estimates. In fact, if (un, wn)n is a Cauchy sequence

with the distance dI , it is also a Cauchy sequence with Φ(‖.‖I,‖.‖I). Since UI(H) is complete with the norm ‖.‖I , then
there exist u0, w0 ∈ UI(H) such that ‖un − u0‖I → 0 and ‖wn − w0‖I → 0. It is apparent from the estimates above that
(u0, w0) is the limit of (un, wn)n with the distance dI .

Finally, the fact that the isotropy group G v is dI-closed follows from the estimates and from G v being a closed subgroup
in the ideal norm. �

We give the main result of this section. Recall that the completeness of the metric space (StI(v),d) was proved in [7]
by different methods. Also it is worthwhile noting that a similar statement was proved in [1] for homogeneous spaces in
finite von Neumann algebras with the p-norm induced by the trace.

Theorem 2.5. Let v be a partial isometry, u0, w0, u1, w1 ∈ UI(H), and let

ḋI

(
u0 v w∗

0,u1 v w∗
1

) = inf
{

dI

(
(u0, w0), (u1u, w1 w)

)
: (u, w) ∈ G v

}
.

Then ḋI = d, where d is the rectifiable distance in StI(v). In particular, (StI(v),d) is a complete metric space and d metricates the
quotient topology.
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Proof. The quotient distance ḋI is well defined because G v is dI-closed in UI(H) × UI(H). Moreover, since multiplying by
unitaries is isometric, it can be computed as

ḋI

(
u0 v w∗

0, u1 v w∗
1

) = inf
{

dI

(
(u0, w0), (u1u, w1 w)

)
: (u, w) ∈ G v

}
.

In order to prove the equality between the distances fix ε > 0. By Lemma 2.1 there exists a curve Γ in Uc(H) × Uc(H)

satisfying

1. Γ (0) = (u0, w0), Γ (1) = (u1u, w1 w), with (u, w) ∈ G v .
2. LI(Γ ) < d(u0 v w∗

0, u1 v w∗
1) + ε .

Therefore,

ḋI

(
u0 v w∗

0, u1 v w∗
1

)
� dI

(
(u0, w0), (u1u, w1 w)

)
� LI(Γ ) < d

(
u0 v w∗

0, u1 v w∗
1

) + ε.

Since ε > 0 is arbitrary, we have one inequality.
To prove the reversed inequality note that for any ε > 0, there exists (u, w) ∈ G v satisfying dI((u0, w0), (u1u, w1 w)) <

ḋI(u0 v w∗
0, u1 v w∗

1) + ε . Then there is a curve Γ ⊂ UI(H) × UI(H) such that Γ (0) = (u0, w0), Γ (1) = (u1u, w1 w) and
LI(Γ ) < dI((u0, w0), (u1u, w1 w)) + ε . Therefore we have

d
(
u0 v w∗

0, u1 v w∗
1

)
� LI(Γ ) < dI

(
(u0, w0), (u1u, w1 w)

) + ε < ḋ∞
(
u0 v w∗

0, u1 v w∗
1

) + 2ε.

Hence the equality ḋI = d holds. The completeness of (StI(v),d) and the fact that d metricates the quotient topology are
consequences of Lemma 2.2. �
3. Minimal curves in the K(H)-Stiefel manifold

The problem of finding minimal curves in the I-Stiefel manifold clearly depends on the norm of the ideal I. The initial
value problem was solved in [3] in the general setting of homogeneous spaces of the p-Schatten (p even integer) unitary
groups. Since the Stiefel manifolds associated to the p-Schatten unitary groups fit in the context of those homogeneous
spaces, we have that the initial value problem is already understood. Among of all the possible problems concerning minimal
curves with the different available norms that remain unsolved, in this section we are interested in minimal curves in the
K(H)-Stiefel manifold, where K(H) is the ideal of compact operators. We denote the K(H)-Stiefel manifold associated to
a partial isometry v by Stc(v). Recall from the Introduction that

Stc(v) = {
v0 ∈ I : v − v0 ∈ K(H), j

(
v∗

0 v0, v∗v
) = 0

}
.

The isotropy group at v0 ∈ Stc(v) and its Lie algebra Gv0 are computed in the Introduction for any Banach ideal, in particular
for the ideal of compact operators. The quotient Finsler metric of a tangent vector xv0 − v0 y ∈ (T Stc(v))v0 is given by

‖xv0 − v0 y‖v0 = inf
{∥∥(x + a, y + b)

∥∥: av0 = v0b, a,b ∈ K(H)ah
}
.

Here we take as product norm ‖(x, y)‖ = max{‖x‖,‖y‖}, where ‖.‖ is the operator norm. Recall that Stc(v) is a real analytic
submanifold of v + K(H) and a homogeneous space of the product of the unitary Fredholm group, which is denoted by

Uc(H) = {
u ∈ U (H): u − 1 ∈ K(H)

}
.

We refer the reader to [2] for the metric properties of this group. The length of a curve Γ (t), t ∈ [0,1], in Uc(H) is measured
with the Finsler metric given by the operator norm as follows

L∞(Γ ) =
1∫

0

∥∥Γ̇ (t)
∥∥dt.

The curves Γ (t) = uetz , where u ∈ Uc(H) and z ∈ K(H)ah such that ‖z‖ � π are geodesics of minimal length along their
paths. We put in Uc(H) × Uc(H) the product metric induced by the product operator norm: ‖(x0, x1)‖ = max{‖x0‖,‖x1‖},
for (x0, x1) ∈ u0 K(H)ah × u1 K(H)ah . The length functional in Uc(H) × Uc(H) of a curve Γ = (Γ1,Γ2) is also denoted by
L∞(Γ ) since by the context no confusion will arise with the length functional defined in Uc(H). Then we note that if Γ1,
Γ2 are minimal geodesics in Uc(H), it is apparent that Γ = (Γ1,Γ2) is a geodesic of minimal length in Uc(H) × Uc(H),
when one measures lengths with the product metric. The corresponding rectifiable distances in Uc(H) and Uc(H) × Uc(H)

are both denoted by d∞ .
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3.1. The initial value problem

In [9] the initial value problem for homogeneous spaces of the unitary group with the quotient metric is solved in the
category of unital von Neumann algebras. In our case, we cannot apply the same techniques since Gv does not consist in
general of skew-adjoint operators of a unital von Neumann algebra. The set of compact pairs (a,b) such that av = vb is
neither self-adjoint nor closed in the weak operator topology. However, we can adapt the convexity argument given in [2]
to find minimal curves when the partial isometry v has finite rank.

Let v be a partial isometry and v0 ∈ Stc(v). Any pair (x1, y1) ∈ K(H)ah × K(H)ah , such that ‖(x1, y1)‖ = ‖xv0 − v0 y‖v0

is called a minimal lifting for the tangent vector xv0 − v0 y. We will show that minimal liftings are relevant because they
give minimal curves. The next result proves the existence of minimal liftings when v has finite rank.

Proposition 3.1. Let v0 ∈ Stc(v) with v a partial isometry of finite rank. Let x, y ∈ K(H)ah, then there exists (a,b) ∈ Gv0 satisfying
‖xv0 − v0 y‖v0 = ‖(x + a, y + b)‖.

Proof. Since the action of Uc(H)× Uc(H) is isometric we can assume that v = v0. We can argue as in Theorem 6.1 in [9] to
find a sequence ((an,bn))n in Gv such that (an,bn) → (a,b) in the weak operator topology and ‖(x+a, y +b)‖ = ‖xv − v y‖v .
Note that a,b ∈ B(H)ah and av = vb, but a,b may fail to be compact operators.

We denote the final projection of v by p = v v∗ and q = v∗v the initial projection of v . In order to obtain compact
operators attaining the quotient norm, note that av = vb if and only if ap = pa, bq = qb and qbq = v∗av . Therefore the pair
(a,b) can be written as follows

a =
(

a11 0
0 a22

)
p
, b =

(
v∗a11 v 0

0 b22

)
q
.

Here the subscripts p = v v∗ and q = v∗v indicate that the matrices are regarded with respect to these projections and will
be omitted from now on.

Recall Krein’s solution to the extension problem for a self-adjoint operator (see [12]): Given an incomplete 2 × 2 self-
adjoint block operator matrix of the form(

X Y
Y ∗ ?

)
find a self-adjoint operator Z in order that the complete matrix has minimal norm. Krein proved that there is always a
solution, and that it may not be unique. More recently, Davis, Kahan and Weinberger [8] gave explicit formulas for Z . In
particular, they showed that if the incomplete matrix has compact blocks, then there exists a compact solution Z .

Since v has finite rank, the operator a11 also has finite rank. Therefore, according to the extension problem, we can add
a compact antihermitic operator a′

22 : p(H)⊥ −→ p(H)⊥ such that∥∥∥∥
(

x11 + a11 x12
−x∗

12 x22 + a′
22

)∥∥∥∥ �
∥∥∥∥
(

x11 + a11 x12
−x∗

12 x22 + a22

)∥∥∥∥.

We repeat this argument to find a compact antihermitic operator b′
22 : q(H)⊥ −→ q(H)⊥ satisfying∥∥∥∥

(
y11 + v∗a11 v y12

−y∗
12 y22 + b′

22

)∥∥∥∥ �
∥∥∥∥
(

y11 + v∗a11 v y12
−y∗

12 y22 + b22

)∥∥∥∥.

Let us set

a′ =
(

a11 0
0 a′

22

)
, b′ =

(
v∗a11 v 0

0 b′
22

)
.

Then it follows that∥∥(
x + a′, y + b′)∥∥ �

∥∥(x + a, y + b)
∥∥ = ‖xv − v y‖v .

Hence, we finally obtain ‖(x + a′, y + b′)‖ = ‖xv − v y‖v , with (a′,b′) ∈ Gv . �
Our solution to the initial value problem relies on the following result about the convexity of the rectifiable distance in

Uc(H).

Lemma 3.2. (Theorem 2.7 in [2].) Let u ∈ Uc(H), β : [0,1] −→ Uc(H) a geodesic such that d∞(u, β) < π/2. Then g(s) =
d∞(u, β(s)), s ∈ [0,1] is a convex function.

We shall use it with a minor change. We need to state a version for Uc(H) × Uc(H).
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Lemma 3.3. Let u, w ∈ Uc(H), β : [0,1] −→ Uc(H) × Uc(H) a geodesic with d∞((u, w), β) < π/2. Then g(s) = d∞((u, w), β(s)),
s ∈ [0,1] is a convex function.

Proof. We know the minimal curves of Uc(H), then we can construct β = (β1, β2) a geodesic of minimal length in Uc(H)×
Uc(H). It also has minimal length in Uc(H ⊕ H), namely the unitary Fredholm group of B(H ⊕ H). Therefore given (ui, wi) ∈
Uc(H)× Uc(H), i = 1,2, we have that the rectifiable distance d∞((u1, w1), (u2, w2)) in Uc(H)× Uc(H) equals the rectifiable
distance d∞((u1, w1), (u2, w2)) in Uc(H ⊕ H). Hence our lemma follows applying Lemma 3.2 to Uc(H ⊕ H). �

Now we state the main result of this section.

Theorem 3.4. Let v be a partial isometry with finite rank, v0 ∈ Stc(v) and xv0 − v0 y ∈ (T Stc(v))v0 such that ‖xv0 − v0 y‖v0 � π/2.
If (z1, z2) is a minimal lifting of xv0 − v0 y, then the curve δ(t) = etz1 ve−tz2 has minimal length up to |t| � 1.

Proof. Clearly we may assume v0 = v . By Lemma 2.1 it suffices to compare the lengths of Δ(t) = (etz1 , etz2) and Γ , where
Γ is a piecewise smooth curve in Uc(H) × Uc(H) joining (1,1) and a unitary in the fibre δ(1). Observe that Δ lifts δ and
satisfies

L∞(Γ ) = L(δ) = ∥∥(z1, z2)
∥∥ < π/2.

If L∞(Γ ) � π/2 there is nothing to prove. Otherwise, we have Γ (1) = (ea1 , ea2), with a1,a2 ∈ K(H)ah and ‖(a1,a2)‖ < π/2.
Note that Γ and Δ may have different endpoints, however they satisfy

ea1 ve−a2 = ez1 ve−z2 .

Therefore, we obtain eai = ezi ebi , i = 1,2, where (b1,b2) ∈ Gv . Since we suppose ‖(a1,a2)‖ < π/2 and ‖(z1, z2)‖ < π/2, it is
apparent that ‖(b1,b2)‖ � π . Hence the curve β(t) = (ez1 etb1 , ez2 etb2) is a geodesic of minimal length joining (ez1 , ez2) and
(ea1 , ea2). Consider the following function

f (t) = d∞
(
(1,1),β(t)

) = ∥∥(
log

(
ez1 etb1

)
, log

(
ez2 etb2

))∥∥, t ∈ [−1,1].

Claim. f has a minimum at t = 0.

Since we now that f is convex by Lemma 3.3, it suffices to analyze the lateral derivatives at this point. We may sup-
pose ‖(z1, z2)‖ = ‖z1‖. By continuity we have ‖ log(ez1 etb1)‖ � ‖ log(ez2 etb2)‖ for t small. Therefore to compute the right
derivative ∂+ f (0) of f at t = 0 it suffices to consider

lim
t→0+

1

t

{∥∥log
(
ez1 etb1

)∥∥ − ‖z1‖
}
.

By the Baker–Campbell–Hausdorff formula we have the following linear approximation

log
(
ez1 etb1

) = z1 + tb1 + R(z1, tb1),

where limt→0
‖R(z1,tb1)‖

t = 0. Then,

‖zi + tbi‖ − ∥∥Ri(zi, tbi)
∥∥ �

∥∥log
(
ezi etbi

)∥∥ � ‖zi + tbi‖ + ∥∥Ri(zi, tbi)
∥∥.

For t > 0, we have

1

t

{‖z1 + tb1‖ − ‖z1‖
} − 1

t

∥∥R(z1, tb1)
∥∥ � 1

t

{∥∥log
(
ez1 etb1

)∥∥ − ‖z1‖
}

� 1

t

{‖z1 + tb1‖ − ‖z1‖
} + 1

t

∥∥R(z1, tb1)
∥∥.

If we take limit t → 0+ , we obtain

∂+ f (0) = lim
t→0+

1

t

{‖z1 + tb1‖ − ‖z1‖
}
.

Note that the above right derivative exists due to the convexity of the norm (see [15] for instance). Since (z1, z2) is a
minimal lifting, it follows ‖z1 + tb1‖ � ‖z1‖, for t small enough, then ∂+ f (0) � 0. Analogously one proves the corresponding
statement for the left derivative, i.e. ∂− f (0) � 0. Hence our claim follows.

Thus f (0) � f (t), for all t ∈ [0,1]. In particular,

L(Δ) = ∥∥(z1, z2)
∥∥ = f (0) � f (1) = ∥∥(a1,a2)

∥∥ � L∞(Γ ). �
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Remark 3.5. The proof only uses the assumption on the range of v to guarantee the existence of minimal liftings. We do
not know if there exist minimal liftings when the partial isometry has no restrictions on its range. A positive answer to this
problem would lead to a general solution of the initial value problem.

Remark 3.6. Let v be an isometry. The orbit given by left multiplication by unitaries of B(H), i.e. {uv: u ∈ U (H)} is a
homogeneous space of U (H). In [4] the initial value problem was solved without restrictions on the range of v using
different techniques. Recall that in the paper [7] the structure of homogeneous space of {uv: u ∈ Uc(H)} was studied. The
tangent space at uv is {xv: x ∈ K(H)ah}. The quotient metric takes the form

‖xv‖v = inf
{‖x + a‖: av = 0, a ∈ K(H)ah

}
.

Note that xv = 0 if and only if xv v∗ = 0. As we mention in the proof of Proposition 3.1 Davis et al. in [8] proved that
the operator x : v v∗(H) −→ H has a compact extension z satisfying ‖zv‖ = ‖z‖. Hence the existence of minimal liftings is
guaranteed in this case. Then the initial value problem of {uv: u ∈ Uc(H)} can be solved with the same techniques that we
use for Stc(v) and without restrictions on the range of v .

3.2. Some special tangent directions

Throughout this section no assumption on the rank of v is required. We shall give particular curves in Stc(v) that
remain of minimal length along their paths. We need some facts about the orbit O p of a projection p by the natural action
of Uc(H) on the set of projections, i.e.

O p = {
upu∗: u ∈ Uc(H)

}
.

The tangent space at p0 ∈ O p is given by

(T O p)p0 = {
xp0 − p0x: x ∈ K(H)ah

}
.

It is a real analytic submanifold of p + K(H) and a homogeneous space of Uc(H). The Lie algebra of the isotropy group at
p0 ∈ O p is

G p0 = {
x ∈ K(H)ah: xp0 = p0x

}
.

One can define a quotient metric ‖.‖p0 using the Banach quotient norm of K(H)ah/G p0 ,

‖xp0 − p0x‖p0 = inf
{‖x + a‖: a ∈ G p0

}
.

In this homogeneous space, the quotient metric can be computed. Given a projection p a 2 × 2 operator matrix x is co-
diagonal if pxp = (1 − p)x(1 − p) = 0. It is a well-know fact that a co-diagonal matrix with respect to a projection has
minimal operator norm. Thus the quotient norm equals the operator norm of each tangent vector, i.e. ‖xp0 − p0x‖p0 =
‖xp0 − p0x‖. Then one measures the length of a piecewise smooth curve γ in O p by

L(γ ) =
1∫

0

∥∥γ̇ (t)
∥∥dt.

It was proved in the article [16] that the curves δ(t) = etx p0e−tx , ‖x‖ � π/2 and x co-diagonal with respect to p0 are
geodesics of minimal length joining their endpoints in the unitary orbit of a projection in an arbitrary C∗-algebra. Since
O p0 is contained in the unitary orbit of p0 in B(H), the curves δ(t) = etx p0e−tx , ‖x‖ � π/2, x compact and x co-diagonal
with respect to p0 have minimal length in O p0 .

Given fixed projections p, q, we can consider the product manifold O p × Oq . It is a homogeneous space of the group
Uc(H)× Uc(H) and a real analytic submanifold of (p,q)+ K(H)× K(H). We endow it with the product metric (or quotient
metric) given by∥∥(xp0 − p0x,q0 y − yq0)

∥∥ = max
{‖xp0 − p0x‖,‖yq0 − q0 y‖},

where p0 ∈ O p , q0 ∈ Oq and x, y ∈ K(H)ah . Since it will be clear by the context we shall use the same notation L(γ ) for
the length of a curve γ in O p × Oq . The following result is now apparent.

Lemma 3.7. Let x, y ∈ K(H)ah such that ‖(x, y)‖ � π/2. Suppose that x is co-diagonal with respect to p0 ∈ O p and y is co-diagonal
with respect to q0 ∈ Oq. Then δ(t) = (etx p0e−tx, etyq0e−ty) has minimal length among all piecewise smooth curves in O p × Oq

joining the same endpoints.
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We denote p = v v∗ and q = v∗v as in Section 3.1. Consider the following map

ϕ : Stc(v) −→ O p × Oq, ϕ
(
uv w∗) = (

upu∗, wqw∗).
It is easy to check that ϕ is well defined and smooth. The differential of ϕ at v0 ∈ Stc(v) is given by

(dϕ)v0 : (T Stc(v)
)

v0
−→ (T O)p0 × (T O)q0 , (dϕ)v0(xv0 − v0 y) = (xp0 − p0x, yq0 − q0 y).

In the next lemma we prove that this map reduces lengths when one endows StI(v) with the quotient metric and O p × Oq

with product metric given by the spectral norm.

Lemma 3.8. Let v0 ∈ Stc(v) and x, y ∈ K(H)ah. Then∥∥(dϕ)v0(xv0 − v0 y)
∥∥ � ‖xv0 − v0 y‖v0 .

In particular, if γ is a curve in Stc(v), then L(ϕγ ) � L(γ ).

Proof. Note that ϕ is equivariant for the corresponding actions of Uc(H)× Uc(H) over StI(v) and O p × Oq . Moreover, both
actions are isometric with respect to the metrics. Therefore it suffices to prove our statement for v0 = v , p0 = p and q0 = q.

Recall that av = vb if and only if ap = pa, bq = qb and qbq = v∗av . Then, we have∥∥(dϕ)v0(xv0 − v0 y)
∥∥ = ∥∥(xp − px,qy − yq)

∥∥
= inf

{∥∥(x + a, y + b)
∥∥: ap = pa, qb = bq and a,b ∈ K(H)ah

}
� inf

{∥∥(x + a, y + b)
∥∥: av = vb, a,b ∈ K(H)ah

} = ‖xv − v y‖v ,

so our result is proved. The assertion about the curves now follows easily. �
Remark 3.9. The above inequality is sharp. If x, y ∈ K(H)ah such that x is co-diagonal with respect to p and y is co-diagonal
with respect to q, then it is plain that both quotient metrics attain the infimum at (a,b) = (0,0). Then,∥∥(xp − px,qy − yq)

∥∥ = ‖xv − v y‖v .

In particular, this implies that the curve δ(t) = etx ve−ty satisfies L(δ) = L(ϕδ).

Proposition 3.10. Let v0 ∈ Stc(v) and x, y ∈ K(H)ah such that ‖(x, y)‖ � π/2. Suppose that x is co-diagonal with respect to p0 =
v0 v∗

0 and y is co-diagonal with respect to q0 = v∗
0 v0 . Then the curve δ(t) = etx v0e−ty , t ∈ [0,1], has minimal length among all

piecewise smooth curves in Stc(v) joining the same endpoints.

Proof. Let γ be a curve in Stc(v) joining v0 and ex v0e−y . Observe that the curves ϕγ and ϕδ join the same points in
O p × Oq . Hence by Lemma 3.7 we have L(ϕγ ) � L(γ ). Then, by Lemma 3.8 and Remark 3.9 we obtain

L(δ) = L(ϕδ) � L(ϕγ ) � L(γ ),

and our statement holds. �
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