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In this work, we consider standard components of the Auslander–
Reiten quiver with trivial valuation. We give a characterization of
when there are n irreducible morphisms between modules in such
a component with non-zero composite belonging to the n + 1-th
power of the radical. We prove that a necessary condition for
their existence is that it has to be a non-zero cycle or a non-zero
bypass in the component. For directed algebras, we prove that the
composite of n irreducible morphisms between indecomposable
modules belongs to a greater power of the radical, greater than n,
if and only if it is zero.
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The notions of irreducible morphisms and almost split sequences, introduced by Auslander and
Reiten, play a fundamental role in the representation theory of algebras. There is an important
connection between an irreducible morphism between indecomposable modules and the radical of
the category modA, and it is given by the fact that a morphism between indecomposable modules
f : X → Y is irreducible if and only if it belongs to the radical �(X, Y ) and not to its square �2(X, Y ).
The study of the radical of the category modA gives a better understanding of the module category.

The purpose of this work is to study the composite of n irreducible morphisms between indecom-
posable modules. It is well known that such a composite belongs to �n. It is not always true that it
is not in �n+1 (see, the examples in [8] and [9]).

In particular, we are interested in giving necessary and sufficient conditions for the composite
of n irreducible morphisms between indecomposable modules to be a non-zero morphism in �n+1.
This problem has been solved for two irreducible morphisms over artin algebras (see [8]) and for n
irreducible morphisms belonging to a special path, called left or right almost sectional paths over
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artin algebras (see [9]). Moreover, it has been also solved for three irreducible morphisms in the case
of finite dimensional algebras over an algebraically closed field (see [10]).

In this work, we are going to consider A to be a finite dimensional algebra over an algebraically
closed field k. In [6], the composite of n irreducible morphisms between modules over standard alge-
bras has been studied, applying covering techniques in order to give a full solution to the problem.
Here, we will present a generalization of those results for the composite of n irreducible morphisms
between indecomposable modules belonging to a standard component of the Auslander–Reiten quiver
ΓA of mod A, with trivial valuation.

We generalize some useful results proven in [11] to translation quivers with length. The idea of
the main proof in this paper is to use the fact that Γ admits a simply connected universal covering
and therefore it is a component with length. Then we will use the universal covering functor to obtain
our results.

Concerning the problem of the composite of n irreducible morphisms, we will prove the following
result:

Theorem. Let Γ be a standard component of ΓA with trivial valuation and Xi ∈ Γ, for 1 � i � n + 1. Then
the following conditions are equivalent:

(a) There are irreducible morphisms hi : Xi → Xi+1 such that hn . . .h1 �= 0 and hn . . .h1 ∈ �n+1(X1, Xn+1).
(b) There are n irreducible morphisms fi : Xi → Xi+1 with zero composite and a morphism ϕ = εn . . . ε1 �= 0,

where εi = f i or εi ∈ �2(Xi, Xi+1).

In the particular case of a directed algebra, we will prove that the composite of n irreducible mor-
phisms between indecomposable modules belongs to a greater power of the radical, greater than n, if
and only if it is zero.

This paper is organized as follows. In Section 1, we recall some notions and give notations needed
throughout the paper. In Section 2, we discuss necessary and sufficient conditions for the existence
of n irreducible morphisms between indecomposable modules in a standard component with trivial
valuation, such that their composite is non-zero in �n+1.

The authors would like to thank Ibrahim Assem for very useful discussions. They also would like
to express their special gratitude to María Inés Platzeck and Patrick Le Meur for their careful reading
and useful comments. The authors gratefully acknowledge partial support from CONICET, Argentina.
The second author is a researcher from CONICET.

1. Preliminaries

Throughout this section, we will give some notations, definitions and preliminaries notions for
which we suggest the reader to see the general textbooks like [2,3,18]; for a detail account on cover-
ings techniques we refer the reader to [4,5,13,16,17].

1.1. A quiver Γ is given by two sets Γ0 and Γ1 together with two maps s, e : Γ1 → Γ0. The elements
of Γ0 are called vertices and the elements of Γ1 are called arrows.

A quiver Γ is said to be locally finite if each vertex of Γ0 is the starting and the ending point of at
most finitely many arrows in Γ .

A pair (Γ, τ ) is said to be a translation quiver provided Γ is a quiver without loops, no mul-
tiple arrows, and locally finite; and τ : Γ ′

0 → Γ ′′
0 is a bijection whose domain Γ ′

0 and codomain
Γ ′′

0 are both subsets of Γ0, and if for every x ∈ Γ0 such that τ x exists and for every y ∈ x− =
{y ∈ Γ0 | there exists an arrow y → x}, the number of arrows from y to x is equal to the number
of arrows from τ x to y.

1.2. A k-category A over an algebraically closed field is a category where for each pair of objects x, y
in A, the set of morphisms A(x, y) is a k-vector space and the composite of morphisms is k-bilinear.

Let (Q , I) be a connected locally finite bound quiver, in the sense of [4]. For each x, y ∈ Q let
I(x, y) = ex(kQ )e y ∩ I . A relation ρ = ∑m

i=1 λi wi ∈ I(x, y), (where λi ∈ k∗ and each wi is a path
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from x to y) is minimal if m � 2 and for any non-empty proper subset J ⊂ {1,2, . . . ,m}, we have∑
j∈ J λi wi /∈ I(x, y). A walk in Q from x to y, is a sequence formed by arrows in Q and the formal

inverses α−1 of the arrows α ∈ Q . That is, it is a formal product α
ε1
1 α

ε2
2 . . . αεt

t where αi are arrows
in Q with s(αi+1) = e(αi) or e(αi+1) = e(αi) or s(αi+1) = s(αi) or e(αi+1) = s(αi), and εi ∈ {1,−1}
for all i, with source x and target y. We denote by ex the trivial path at x.

On the set of walks of (Q , I) we define a homotopy relation as the smallest equivalence relation
satisfying the following conditions:

(a) If α : X → Y is an arrow, then α−1α ∼ ex and αα−1 ∼ e y .
(b) If ρ = ∑m

i=1 λi wi is a minimal relation, then wi ∼ w j for all i, j.
(c) If u ∼ v , then wuw ′ ∼ w v w ′ whenever these compositions make sense.

1.3. Given a translation quiver (Γ, τ ), the points of Γ0 where τ (or τ−) is not defined are called
projective vertices (or injective vertices, respectively).

Consider a locally finite translation quiver Γ . The full subquiver of Γ given by a non-projective
vertex x, the non-injective vertex τ x and by the set (τ x)+ = x− is called the mesh starting at τ x and
ending at x. For each arrow α : y → x with x non-projective, we denote by σα the arrow τ x → y.
The mesh ideal is the ideal I of the category kΓ , generated by the elements

μx = Σαα(σα) ∈ kΓ (τ x, x),

where x is not projective and α are the arrows of Γ ending at x. The mesh category of Γ is the
quotient category k(Γ ) = kΓ/I .

We observe that it is possible to define an equivalence relation over the paths of a translation
quiver Γ , in the same way as we stated in (1.2) of this paper, setting Q = Γ and setting I equal
to the mesh ideal of kΓ . We call this equivalence relation homotopy, and it coincides with the one
defined in [4, (1.2)].

Let x ∈ Γ0 be arbitrary. The set π1(Γ, x) of equivalences classes u of closed paths u starting and
ending at x has a group structure defined by the operation u.v = u.v . Since Γ is connected then this
group does not depend on the choice of x. We denote it π1(Γ, x) and call it the fundamental group
of (Γ, x).

A translation quiver Γ is called simply connected if it is connected and π1(Γ, x) = 1 for some
x ∈ Γ0.

We refer the reader to [4,16,17] for a detailed account on covering theory.

1.4. Throughout this paper A denotes a finite dimensional algebra over an algebraically closed field k.
We denote by modA the category of all finitely generated left A-modules, and by indA the full
subcategory of modA consisting of one representative of each isomorphism class of indecomposable
A-module. We denote by ΓA the Auslander–Reiten quiver of modA, and by τ and τ− the Auslander–
Reiten translations DTr and TrD, respectively (see [3]).

1.5. The Auslander–Reiten quiver ΓA , is a translation quiver with vertices the classes of isomorphisms
of indecomposable A-modules. Denoting the vertex corresponding to an indecomposable module M
by [M], there is an arrow [M] → [N] between two vertices if and only if there is an irreducible
morphism from M to N . For finite dimensional algebras over an algebraically closed field, it is known
that an arrow [M] → [N] of ΓA has valuation (a,a), that is, there is a minimal right almost split
morphism aM ⊕ X → N where M, N are indecomposable and M it is not a summand of X , and there
is a minimal left almost split morphism M → aN ⊕ Y where M, N are indecomposable and N is not
a summand of Y . We say that the arrow has trivial valuation if a = 1.

A component Γ of ΓA is said to be a component with length if parallel paths in Γ have the same
length. In [11], we extended this notion to translation quivers. Observe that a component with length
has no oriented cycles.

We say that a component Γ of ΓA is standard if the full subcategory of modA generated by the
modules of Γ is equivalent to the mesh category k(Γ ) of Γ (see [18]). This means, there is an
isomorphism ϕ : k(Γ ) → indΓ such that
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(a) ϕ([M]) = M, for each object [M] ∈ k(Γ ).
(b) For each arrow α ∈ k(Γ ) ϕ(α) = f where f is an irreducible morphism in ind Γ , and
(c) If we consider the mesh ending at [M]

[x1]
[τ M]

↗
↘

...
↘
↗ [M]

[xn]

then ϕ(mesh) is an almost split sequence ending at M in indΓ.

Well-known examples of infinite standard components are the preprojective and preinjective com-
ponents of a finite dimensional algebra over an algebraically closed field and the connecting compo-
nents of tilted algebras. By [11], we know that if A is an algebra of finite representation type and ΓA

is with length, then ΓA is standard.
From now on, we do not distinguish between the indecomposable A-modules and the correspond-

ing vertices of ΓA .

1.6. The category of translation quivers has as objects the translation quivers (Γ, τ ), and as morphisms
F : (Γ ′, τ ′) → (Γ, τ ) the quiver-morphisms F : Γ ′ → Γ such that Fτ ′ = τ F .

A morphism of translations quivers F : (Γ ′, τ ′) → (Γ, τ ) is a covering functor if:

(i) for each point x ∈ Γ ′
0 the induced applications x− → (F (x))− and x+ → (F (x))+ are bijective; and

(ii) for each point x ∈ Γ ′
0, τ x and τ−1x are defined if τ F (x) and τ−1 F (x) are respectively defined.

We fix a translation quiver (Γ, τ ). The category of coverings of the translation quiver (Γ, τ ) has as
objects the pairs ((Γ ′, τ ′), F ) such that F : (Γ ′, τ ′) → (Γ, τ ) is a covering functor. A morphism ϕ :
((Γ ′, τ ′), F ) → ((Γ ′′, τ ′′), G) is a translation quiver morphism ϕ : (Γ ′, τ ′) → (Γ ′′, τ ′′) such that Gϕ =
F . It is well known that this category has a universal object called universal covering of the translation
quiver (Γ, τ ) (see [4]).

Let Γ be a translation quiver and G a subgroup of the group of automorphisms Aut(Γ ). The action
of the group G in Γ is said to be admissible if none of the orbits of G in Γ0 intersects a subquiver of
the form {x} ∪ x+ or {x} ∪ x− in more than one vertex.

By [4, 1.5], it is known that the fundamental group of Γ acts admissibly on the universal covering
Γ̃ of Γ , in such a way that Γ turns to be the orbit space of Γ̃ under the action of the fundamental
group, that is, there is a covering for Γ :

π : Γ̃ → (
Γ̃ /π1(Γ )

) � Γ

We observe that Γ̃ is simply connected. We refer to [4] and [13] for a detailed account on coverings.

1.7. Let Γ̃ be the universal cover of Γ , defined as in [4, (1.2)]. Let k(Γ̃ ) be the mesh category of Γ̃ ,
and ind Γ the full subcategory of indA whose objects are the indecomposable modules belonging
to Γ .

Lemma 1.1. There is a covering functor F : k(Γ̃ ) → indΓ with fundamental group Π = Π1(Γ, M) for an
arbitrary M ∈ Γ .

Proof. Let π : Γ̃ → Γ be the universal cover of Γ. Consider the induced functor F = k(π):
k(Γ̃ ) → k(Γ ), where k(Γ̃ ) and k(Γ ) are the mesh category of Γ̃ and Γ , respectively. By [17, Proposi-
tion 2.2], F is a covering functor. �
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1.8. For X, Y ∈ indA, denote by �A(X, Y ) the set of the morphisms f : X → Y which are not isomor-
phisms and by �∞

A (X, Y ) the intersection of all powers �i
A(X, Y ), i � 1, of �A(X, Y ).

We are also going to consider the radical of a k-category. We refer the reader to [14, p. 25], for a
detailed account on this theory.

1.9. A component Γ of ΓA is said to be a generalized standard component if �∞(X, Y ) = 0, for each
X, Y ∈ Γ .

1.10. Let Γ be a standard component of ΓA and Γ̃ the universal covering of Γ . Then the functor
F : k(Γ̃ ) → indΓ , preserves irreducible morphisms (see [4, p. 337]), since it maps arrows into irre-
ducible morphisms. Moreover, it was observed in [5, p. 27], that F also preserves the powers of the
radical, that is, induces an isomorphism:⊔

F (Z)=F (Y )

�n(X, Z)/�n+1(X, Z) � �n(F (X), F (Y )
)
/�n+1(F (X), F (Y )

)

for X, Y ∈ k(Γ̃ ), where F (Z) = F (Y ) ∈ k(Γ ) (see [7]).

2. On the composite of irreducible morphisms

2.1. The aim of this section, is to look for necessary and sufficient conditions for the existence of n
irreducible morphisms between indecomposable modules over standard components, such that their
composite is a non-zero morphism in �n+1. We will reduce the study of the component Γ to the
study of a k-category, k(Γ̃ ), passing from Γ to its universal cover Γ̃ . Moreover, since Γ̃ is simply
connected then by [4] it is a component with length, and we will get our results from those proven
in [11], for translations quivers with length.

K. Bongartz and P. Gabriel considered the homotopy given by the mesh relations and defined
simply connected translation quivers. They had implicitly proven that any component of a simply
connected translation quiver is a component with length [4, proof of Proposition 1.6].

The notion of radical of modA can be extended to k-categories and one can as well define the
powers of the radical (see [4, p. 337]. Given a k-category, an irreducible morphism between objects
in the k-category is a morphism f such that f ∈ �\�2.

We observe that Proposition 3.1 and Corollary 3.3 given in [11], can be stated in a more general
context as follows:

Proposition 2.1. Let Γ be a translation quiver with length and X, Y ∈ k(Γ ) such that �(X, Y ) = n with n � 1.
Then:

(a) �n+1(X, Y ) = 0.

(b) If g : X → Y is a non-zero morphism in k(Γ ), then g ∈ �n(X, Y ) \ �n+1(X, Y ).

(c) � j(X, Y ) = �n(X, Y ), for each j = 1, . . . ,n − 1.

Proof. (a) Assume that there is a morphism g �= 0 such that g ∈ �n+1(X, Y ), with X, Y ∈ k(Γ ). We
observe that Proposition 7.4 stated in [3] can be generalized to the mesh category of translation
quivers. By [3, Proposition 7.4], there exist an integer s � 1, objects B1, B2, . . . , Bs in k(Γ ), mor-
phisms f i ∈ �(X, Bi) and gi : Bi → Y with each gi a sum of composites of n irreducible morphism
between objects such that g = Σ s

i=1 gi f i with gi f i �= 0. Moreover, each f i : X → Bi can be written
as f i = Σ

ri
k=1μik , where μik is a composite of irreducible morphisms, for k = 1, . . . , ri . So the paths

giμik : X → Y have length greater than n, contradicting that Γ is a component with length. Thus
�n+1(X, Y ) = 0.

(b) If g is a non-zero morphism in k(Γ ) and �(X, Y ) = n, then g = Σ s
i=1λiui , where each ui is

a path of length n from X to Y and ui is the corresponding morphism in k(Γ ). Then, g ∈ �n(X, Y ).
Moreover, since g is a non-zero morphism, then by (a) we infer that g /∈ �n+1(X, Y ).

(c) Follows immediately from the fact that Γ is a component with length and �(X, Y ) = n. �
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As an immediate application of the above result we get the following consequence:

Corollary 2.2. Let Γ be a translation quiver with length and fi : Xi → Xi+1 irreducible morphisms with
Xi ∈ k(Γ ), for i = 1, . . . ,n. Then fn . . . f1 ∈ �n+1 if and only if fn . . . f1 = 0.

2.2. Next, we will show an example of an algebra of finite representation type, having four irreducible
morphisms with non-zero composite lying in �13.

Example 2.3. Let A be the algebra of finite representation type over an algebraically closed field given
by the quiver:

1
α

5

δ

4 2

β

3

with the relations βα = 0 and βδ = 0. The Auslander–Reiten quiver is the following:

P4

1
22
3

15
2
43

1
2
3

4

↗ ↘ ↗ ↘
f4↗ ↘ ↗ ↘ ↗

3 → P2
f1→

1
22
43

t9→
1
2
43

t10→
115
222
433

→
15
22
3

→
115
22
433

→ 1
43 →

1
2
43

t6→ 2

↘ t8↗
f2↘

f3↗ ↘ ↗ ↘ t5↗ ↘
P1

15
22
433

11
22
433

15
22
43

1

t7↗ ↘ ↗ t1↘ ↗ ↘ t4↗ ↘ ↗
2

15
2
3

1
2
433

1
22
43

15
2

↘ ↗ ↘ ↗ t2↘ t3↗ ↘ ↗ ↘
5
2

1
3

2
43

1
2 5

identifying the two vertices associated with the simple module S2.
Consider μ = t10t9 . . . t2t1. Then μ ∈ �10. Consider the irreducible morphisms h3 = f3 + μ and

hi = f i for i = 1,2,4. Observe that f4 f3 f2 f1 = 0 and that h4h3h2h1 = f4μ f2 f1 �= 0. Moreover,
h4h3h2h1 ∈ �13. Hence we have found four irreducible morphisms such that their composite is non-
zero and belongs to �13.

2.3. For the convenience of the reader we state the following result, proven in [9, Lemma 3.4].

Lemma. (See [9].) Let A be a finite dimensional algebra over an algebraically closed field k. Let Γ be a compo-
nent of ΓA with trivial valuation and Xi ∈ Γ for i = 1, . . . ,n +1. Then the following conditions are equivalent:

(a) There exist irreducible morphisms fi : Xi → Xi+1 with fn · · · f1 /∈ �n+1(X1, Xn+1).
(b) If hi : Xi → Xi+1 , 1 � i � n, are irreducible morphisms, then hn . . .h1 /∈ �n+1(X1, Xn+1).

It is proven in [15] that, if A is a finite dimensional algebra over an algebraically closed field,
then any standard component of ΓA is generalized standard. This fact is going to be essential for our
results.

The next result will be fundamental in our further considerations.
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Proposition 2.4. Let A be a finite dimensional algebra over an algebraically closed field k. Let Γ be a standard
component of ΓA with trivial valuation and Xi ∈ Γ, for i = 1, . . . ,n + 1. Then the following conditions are
equivalent:

(a) There exist irreducible morphisms fi : Xi → Xi+1 , with fn . . . f1 ∈ �n(X1, Xn+1)\�n+1(X1, Xn+1).
(b) For each set of irreducible morphisms hi : Xi → Xi+1, with i = 1, . . . ,n, we have that hn . . .h1 �= 0.

Proof. Assume that (a) holds, and let hi : Xi → Xi+1 be irreducible morphisms for i = 1, . . . ,n. Then,
by Lemma [9] hn . . .h1 /∈ �n+1(X1, Xn+1). Hence hn . . .h1 �= 0.

(b) ⇒ (a) The idea of this proof is to use that Γ has a simply connected universal covering Γ̃ .
Since such a covering is with length, we can apply Proposition 2.1 to conclude that a non-zero com-
posite of n irreducible morphisms in k(Γ̃ ) does not belong to �n+1. Then, using the Galois covering
k(π) : k(Γ̃ ) → indΓ together with 1.10, we obtain the result.

Let

X1
f1−→ X2

f2−→ X3 → ·· · → Xn
fn−→ Xn+1

be a path of irreducible morphisms in indΓ . For each i ∈ {1, . . . ,n}, there is a unique arrow αi : Xi →
Xi+1 in Γ such that f i = λiαi + ri where αi is the irreducible morphism associated with the arrow
αi , ri ∈ �2(Xi, Xi+1), and λi ∈ k∗ .

Let

X̃1
β1−→ X̃2

β2−→ X̃3 → ·· · → X̃n
βn−→ X̃n+1

be a path in Γ̃ lifting the path αn . . . α1 respect to π : Γ̃ → Γ . If we denote by β i the irreducible
morphism in k(Γ̃ ) corresponding to each arrow βi in Γ̃ then

F (βn . . . β1) = F (βn . . . β1) = αn . . . α1 �= 0

by hypothesis and therefore βn . . . β1 �= 0.
On the other hand, by 2.1 we have that βn . . . β1 /∈ �n+1( X̃1, X̃n+1), so that αn . . . α1 /∈

�n+1(X1, Xn+1) because of 1.10. Therefore, fn . . . f1 = λn . . . λ1αn . . . α1 + μ with μ ∈ �n+1( X̃1, X̃n+1).

Then fn . . . f1 does not lie in �n+1(X1, Xn+1), proving the result. �
Note that the above result does not hold for artin algebras as we show in our next example.

Example 2.5. Consider the representation finite dimensional R-algebra

A =
(

C 0
C R

)

where R is the field of real numbers and C the field of complex numbers. Let P1 = Ae11 and P2 =
Ae22 be the indecomposable projective A-modules. The almost split sequence starting at S2 can be
written as

0 → S2
f−→ P1

g−→ P1/S2 → 0

where f is the irreducible morphism f : S2 → P1 defined as

f

(
0 0
0 a

)
=

(
0 0
a 0

)

with a ∈ R and g : P1 → P1/S2 the canonical projection. Then g f = 0.
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Now, if we consider the irreducible monomorphism f ′ : S2 → P1 given by

f ′
(

0 0
0 a

)
=

(
0 0
ai 0

)

then the composite g f ′ is different from zero. The Auslander–Reiten quiver of modA:

P1 τ−1 P1
(2,1) ↗ ↘(1,2) (2,1) ↗
S2 P1/S2

shows that ΓA is a component with length. Then

g f ′ ∈ �2(S2, P1/S2)\�3(S2, P1/S2)

proving that the above result does not hold in this case.

As an application of the above result, we get this useful corollary.

Corollary 2.6. Let Γ be a standard component of ΓA with trivial valuation. The composite of n irreducible
epimorphisms between modules in Γ belongs to �n\�n+1.

Proof. Assume that there are n irreducible epimorphisms between modules in Γ such that their
composite is in �n+1(X1, Xn+1). We observe that if f : X → Y is an irreducible epimorphism, then any
other irreducible morphism from X to Y is also an epimorphism. By Proposition 2.4 and Lemma [9],
there are irreducible epimorphisms f i : Xi → Xi+1 such that fn . . . f1 = 0. Since f1 is an epimorphism
then fn . . . f2 = 0. Iterating this argument we get that fn = 0, a contradiction to the fact that fn is
an irreducible morphism. Then we prove that the composite of n irreducible epimorphisms between
modules in Γ belongs to �n(X1, Xn+1)\�n+1(X1, Xn+1), where n � 2. �

A dual statement holds for the composite of irreducible monomorphisms.
Now we are in the position to state and prove our main result.

Theorem 2.7. Let A be a finite dimensional algebra over an algebraically closed field k. Let Γ be a standard
component of ΓA with trivial valuation and Xi ∈ Γ, for i = 1, . . . ,n + 1. Then the following conditions are
equivalent:

(a) There exist irreducible morphisms hi : Xi → Xi+1 with hn . . .h1 �= 0 and hn . . .h1 ∈ �n+1(X1, Xn+1).

(b) There are a path X1
f1−→ X2

f2−→ X3 → ·· · → Xn
fn−→ Xn+1 of irreducible morphisms with zero composite

and a morphism ϕ = εn . . . ε1 �= 0 where εi = f i or εi ∈ �2(Xi, Xi+1).

Proof. Consider irreducible morphisms hi : Xi → Xi+1 as in (a). By Lemma [9] and Proposition 2.4,
there are irreducible morphisms f i : Xi → Xi+1 such that fn . . . f1 = 0.

On the other hand, since Γ has trivial valuation then each irreducible morphism hi is of the form
hi = αi f i + μi with αi ∈ k∗ and μi ∈ �2(Xi, Xi+1).

We claim that μi �= 0 for some i. In fact, if μi = 0 for each i, then hn . . .h1 = α fn . . . f1 = 0 with
α ∈ k, contradicting the hypothesis. Therefore, �2(Xi, Xi+1) �= 0 for some i.

Now, we are going to prove that for each i = 1, . . . ,n there exists a morphism ϕi = εi . . . ε1 ∈
�i(X1, Xi+1), where εi ∈ �2(Xi, Xi+1) or εi = f i, such that hn . . .hi+1ϕi �= 0 and hn . . .hi+1ϕi ∈
�n+1(X1, Xn+1).

We will prove the result by induction on i. If i = 1, then

hn . . .h1 = hn . . .h2(α1 f1 + μ1) = α1hn . . .h2 f1 + hn . . .h2μ1 �= 0
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Therefore at least one summand is non-zero. If α1hn . . .h2 f1 �= 0, then considering ϕ1 = f1 we get the
result. Otherwise, ϕ1 = μ1 ∈ �2(X1, X2) satisfies the result.

Assume that the result holds for i = m, that is, there exist a morphism ϕm = εm . . . ε1, where
εi ∈ �2(Xi, Xi+1) or εi = f i for i = 1, . . . ,m satisfying that hn . . .hm+1ϕm is a non-zero morphism in
�n+1(X1, Xn+1). Since hm+1 = αm+1 fm+1 + μm+1 with αm+1 ∈ k∗ and μm+1 ∈ �2(Xm+1, Xm+2) then

hn . . . (αm+1 fm+1 + μm+1)ϕm = αm+1hn . . . fm+1ϕm + hn . . .μm+1ϕm �= 0.

By the inductive hypothesis we know that ϕm is of the form ϕm = εm . . . ε1 where εi ∈ �2(Xi, Xi+1)

or εi = f i .
If hn . . . fm+1ϕm is non-zero, then ϕm+1 = fm+1ϕm satisfies the statement. If otherwise,

hn . . .μm+1ϕm �= 0, we define ϕm+1 = μm+1ϕm . Then μm+1ϕm belongs to �m+3(X1, Xm+2). Then we
proved that there is a morphism ϕ = εn . . . ε1 �= 0, where εi = f i or εi ∈ �2(Xi, Xi+1). Observe that
for some j = 1, . . . ,n it follows that ε j ∈ �2(X j, X j+1), since otherwise ϕ = 0 a contradiction.

Suppose that (b) holds. We know that there is a non-zero morphism ϕ = εn . . . ε1, where εi = f i
or εi ∈ �2(Xi, Xi+1). We may assume that the number m of indices is such that εi ∈ �2(Xi, Xi+1) is
minimum. We will prove (a), by induction on m.

If m = 1, let j be the unique index such that ε j ∈ �2(X j, X j+1). Consider the irreducible mor-
phisms hi = f i and h j = f j + ε j . Then, since fn . . . f1 = 0 we have hn . . .h1 = fn . . . f j+1ε j f j−1 . . . f1

and then 0 �= hn . . .h1 ∈ �n+1(X1, Xn+1). So the result holds in this case.
If m = 2, assume that ε j ∈ �2(X j, X j+1) and εm ∈ �2(Xm, Xm+1) with m �= j and 1 � j,m � n.

Consider the irreducible morphisms hi = f i if i �= j, i �= m and hi = f i +εi for i = j,m. Then, hn . . .h1 =
fn . . . f j+1ε j f j−1 . . . fm+1εm f j−1 f1 is a non-zero morphism that belongs to �n+1(X1, Xn+1), since by
the inductive hypothesis fn . . . f1, fn . . . f j+1ε j f j−1 . . . f1 = 0 and fn . . . fm+1εm fm−1 . . . f1 = 0.

This argument can be iterated and considering a morphism ϕ with the minimum factors εi in
�2(Xi, Xi+1) such that ϕ �= 0, we prove inductively the result for arbitrary m > 1, finding n irreducible
morphisms with non-zero composite in �n+1(X1, Xn+1). �

In [12], Crawley-Boevey, Happel and Ringel, introduced the concept of bypass of an arrow for
translations quivers. The notion of bypass below generalizes the one given by them.

2.4. Let f : X → Y be an irreducible morphism, where X and Y are indecomposable. A bypass of f is

a path X
t1−→ Y1

t2−→ Y2 → ·· · → Yn
tn+1−−−→ Y in indA of length n � 2 where t1 and tn+1 are irreducible

morphisms, X �� Yn and Y �� Y1. If all the morphisms ti ’s are irreducible, then we say that the bypass
belongs to ΓA .

The following result holds for generalized standard components of ΓA .

Lemma 2.8. Let Γ be a generalized standard component of ΓA and �(X, Y ) \ �2(X, Y ) �= 0 for X, Y ∈ Γ . If
μ �= 0 in �2(X, Y ), then there is a bypass of an irreducible morphism from X to Y , a cycle from X to X, or a
cycle from Y to Y in modA.

Proof. Consider a non-zero morphism μ ∈ �2(X, Y ). Since Γ is a generalized standard component,
then μ = Σ t

i=1ui where each ui is a non-zero composite of at least two irreducible morphisms be-
tween indecomposable modules. Without loss of generality we can consider the non-zero path u1 and
we write u1 = fr · · · f1 with r � 2 and

u1 : X
f1−→ A1

f2−→ A2 → ·· · → Ar
fr−→ Y .

If A1 � Y or Ar � X, then there is a cycle from Y to Y in Γ , or a cycle from X to X in Γ ,
respectively. Otherwise, if A1 �� Y and Ar �� X then there is a bypass of an arrow from X to Y in Γ ,
proving the result. �

As an immediate consequence of the above lemma we have the following corollary.



C. Chaio, S. Trepode / Journal of Algebra 323 (2010) 1000–1011 1009
Corollary 2.9. Let Γ be a standard component of ΓA . If there are irreducible morphisms hi : Xi → Xi+1 with
Xi ∈ Γ , for i = 1, . . . ,n + 1 with 0 �= hn . . .h1 ∈ �n+1(X1, Xn+1), then there exist a bypass or a cycle in ΓA

passing through some Xi , for i = 1, . . . ,n + 1.

Proof. The result follows from Theorem 2.7 and the fact that Γ is a generalized standard component
of ΓA . �

Observe that in general the converse of Corollary 2.9 does not hold as we show in our next exam-
ple (see [12, p. 527]).

Example 2.10. Consider the non-triangular algebra of finite representation type given by the quiver:

aα
β

b

with the relation α2 = 0. The Auslander–Reiten quiver is the following, denoting the indecomposable
modules by their Loewy series:

a
a

↘
... a . . .

a
b

↗ ↘ ↗
a
b

. . .
a

ab

...

↘ ↗ ↘
a
ab
b

· · · a
a

↗ ↘ ↗

b · · ·
a
a
b

identifying the two vertices associated with
a
a

and the two associated with
a
b

. Observe that there

is a sectional cycle in ΓA :

a
ab
b

−→ a
ab

−→ a
b

−→
a
ab
b

and a non-sectional bypass in ΓA :

a
ab
b

−→
a
a
b

−→ a
a

−→ a −→ a
ab
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of the arrow

a
ab
b

−→ a
ab

.

Then ΓA is a component without length, with bypasses and cycles. Observe that any possible
composition of irreducible morphisms belongs to a greater power of the radical if and only if it is
zero.

Now, we are going to prove that if A is a directed algebra, then the composite of n irreducible
morphisms belongs to �n+1 if and only if it is zero. First, we will recall the definition of standard
algebra given by Bongartz and Gabriel in [4] and the definition of a directed algebra given by C.
Ringel in [18].

2.5. A finite dimensional algebra of finite representation type over an algebraically closed field k is a
standard algebra if the category indA is equivalent to the mesh category k(ΓA) of ΓA .

2.6. A finite dimensional algebra over an algebraically closed field k is a directed algebra if each inde-
composable A-module is directed, that is, it does not belong to any cycle in mod A. In [18, Corollary 9′
p. 76], Ringel proved that a directed algebra is of finite representation type.

We observe that if A is a triangular algebra of finite representation type then, A is a standard
algebra (see [5, p. 3]). In particular, a directed algebra is standard.

Crawley-Boevey, Happel, and Ringel and independently José Antonio de la Peña proved that there
are no bypasses in the Auslander–Reiten quiver of a directed algebra (see [12,19]). In [1], a new proof
of this fact is given.

As a consequence of the above results we have the following corollary:

Corollary 2.11. Let A be a directed algebra. Let h1 : X1 → X2, . . . ,hn : Xn → Xn+1 be irreducible morphisms
with Xi ∈ ΓA for i = 1, . . . ,n + 1. Then hn . . .h1 ∈ �n+1(X1, Xn+1) if and only if hn . . .h1 = 0.

Proof. Assume that there exist n irreducible morphisms between indecomposable modules hi:
Xi → Xi+1 such that hn . . .h1 �= 0 in �n+1(X1, Xn+1). By [19], we know that there are no by-
passes in a directed algebra. Then by Corollary 2.9 there exists a cycle passing through some Xi ,
for i = 1, . . . ,n + 1. This contradicts that ΓA is directed. Then, hn . . .h1 = 0.

The converse is trivial. �
Remark 2.12. If Γ is a connecting component of a tilted algebra of type Z� with trivial valuation,
where � has no bypass, then hn . . .h1 ∈ �n+1(X1, Xn+1) if and only if hn . . .h1 = 0 (see [1]).
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