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Abstract. We introduce the class of bounded distributive lattices with two operators, � and ∇, the
first between the lattice and the set of its ideals, and the second between the lattice and the set of
its filters. The results presented can be understood as a generalization of the results obtained by S.
Celani.

1. Introduction

In [8] Priestley found a topological duality for bounded distributive lattices. This
duality has been extended to diverse algebraic structures whose reducts are dis-
tributive lattices. As examples, we can cite the topological duality for distributive
lattices with operators (see [3, 5–7], etc.). In this context, it is well known that if in
a bounded distributive lattice A we consider its associated Priestley space

T̃X(A) = 〈X(A), ⊆, TX(A)〉
then A will be isomorphic to the lattice of the clopen increasing of the topology
TX(A) (i.e. A ∼= D(X(A))). If the structure being considered is a modal lattice
A = 〈A, ∨, ∧, �, �, 0, 1〉, i.e., a bounded distributive lattice with two unary modal
operators, � (preserving ∧ and 1) and � (preserving ∨ and 0), then the operator �
can be interpreted as a function

f : A → D(X(A))

such that f (a ∧ b) = f (a) ∩ f (b) and f (1) = X(A). The operator � can be
interpreted as a function

g: A → D(X(A))

such that g(a ∨ b) = g(a) ∪ g(b) and g(0) = ∅. In other words, the unary modal
operators can be understood as functions that assign to each element of the lattice
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a clopen increasing in the topology TX(A) and at the same time comply with the
expressed conditions. We can now ask a series of questions: for example, what type
of operators can be obtained if, for each a ∈ A, f (a) were only open and increasing
and g(a) closed and increasing in TX(A)? For the first case we will bear in mind that
in T̃X(A) the lattice of the ideals of A is isomorphic to the lattice of the increasing
open of TX(A). Thus, the new operator obtained will be of the form �: A → Id(A)

such that �(a ∧ b) = �a ∩ �b and �1 = A. If g(a) is closed and increasing
we will bear in mind the fact that in T̃X(A) the lattice of the filters of A is anti-
isomorphic to the lattice of the increasing closed of TX(A). Consequently, the new
operator obtained will be of the form ∇: A → Fi(A) such that ∇(a∨b) = ∇a∩∇b

and ∇0 = A. This gives rise to what we term as quasi-modal lattices, and their
study is the main purpose of the present paper. Some results of this paper are an
extension from the work done by S. Celani in [2]. We note that quasi-modal lattices
are not algebras according to the standard terminology of universal algebra. The
expression “quasi-modal” is due to the fact that the functions � and ∇ are not
modal unary operations like those usually defined in a modal lattice, but in some
way behave as such.

In Section 2 we basically review some notions of the Priestley duality and the
representation of the bounded distributive lattices (see [8–10]). In the following
section, we define the quasi-modal lattices and we show, among other things, that
the class of these new structures is a generalization of the modal lattices (see [5, 6]
and [7]). We also establish a notion of homomorphism between quasi-modal lat-
tices and give a representation theorem. Next we define the descriptive quasi-modal
spaces and prove that they are dually equivalent to quasi-modal lattices. The con-
cept of quasi-modal sublattices is introduced and characterized in Section 4. In
the last section, we define and characterize the congruences in the quasi-modal
lattices. Finally, as an application of the congruences, we introduce the notion of
simple and subdirectly irreducible quasi-modal lattices and give a characterization
in terms of the dual space. For this characterization we take into account the ideas
of A. Petrovich [7].

2. Preliminaries

A totally order-disconnected topological space is a triple 〈X, �, TX〉, where 〈X, �〉
is a poset, 〈X, TX〉 is a topological space and given x, y ∈ X such that x � y, there
is a clopen increasing set U such that x ∈ U and y /∈ U . A Priestley space is a
compact totally order-disconnected topological space. If 〈X, �, TX〉 is a Priestley
space the set of all clopen increasing sets of TX is denoted by D(X), and it is well
known that D(X) = 〈D(X), ∪, ∩, ∅, X〉 is a bounded distributive lattice.

If A = 〈A, ∨, ∧, 0, 1〉 is a bounded distributive lattice, we denote the set of
all prime filters of A by X(A) and the families of all ideals and filters of A by
Id(A) and Fi(A), respectively. Given a bounded distributive lattice A it is known
that 〈Pi(X(A)), ∪, ∩, ∅, X(A)〉, where Pi(X(A)) denotes the family of all ⊆-
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increasing subsets of X(A), is a bounded distributive lattice and that the function
β: A → Pi(X(A)) given by β(a) = {P ∈ X(A) : a ∈ A} is a one-to-one lattice
homomorphism, i.e. A ∼= β(A). Moreover, the structure 〈X(A), ⊆, TX(A)〉 where
the topology TX(A) has the set

β(A) ∪ {X(A) − β(a) : β(a) ∈ β(A)}
as a subbase is a Priestley space and A ∼= D(X(A)). Also, the map ϕ: Id(A) →
Oi(X(A)) given by

ϕ(I) = {P ∈ X(A) : P ∩ I 
= ∅},
where Oi(X(A)) denotes the set of all open increasing subsets of X(A), is a lattice
isomorphism. Similarly, the function ψ : Fi(A) → Ci(X(A)) given by

ψ(F) = {P ∈ X(A) : F ⊆ P },
where Ci(X(A)) denotes the set of all closed increasing subsets of X(A), is a
lattice anti-isomorphism. Such functions can be expressed in terms of β as follows:
ϕ(I) = ⋃

a∈I β(a) for each I ∈ Id(A) and ψ(F) = ⋂

a∈F β(a) for each F ∈
Fi(A).

In addition, if 〈X, �, TX〉 is a Priestley space then the map εX: X → X(D(X))

defined by εX(x) = {U ∈ D(X) : x ∈ U} is a homeomorphism and order-
isomorphism. Moreover, we will say that R ⊆ X × X is a lattice preorder if is
reflexive, transitive and verifies the following condition: ∀x, y ∈ X if (x, y) /∈ R,
∃U ∈ D(X) : y ∈ U , x /∈ U and R−1(U) ⊆ U .

Let A1 and A2 be bounded distributive lattices and let h: A1 → A2 be a
lattice homomorphism. Then the application F (h): X(A2) → X(A1) given by
F (h)(P ) = h−1(P ), for each P ∈ X(A2), is a continuous and monotonic func-
tion. Let 〈X, �, TX〉 and 〈Y, �, TY 〉 be two Priestley spaces. If f : X → Y is a
continuous and monotonic function, then the application A(f ): D(Y) → D(X)

given by A(f )(U) = f −1(U), for each U ∈ D(Y), is a lattice homomorphism.
Let 〈X, �〉 be a poset and let Y be a subset of X. The set of maximal (minimal)

elements of Y will be denoted by max Y (min Y ).
Let 〈X, �, TX〉 be a Priestley space and Y a closed subset of X. Then it is known

(see [10]) that for each x ∈ Y there is z ∈ max Y (min Y ) such that x � z (z � x).
In particular, if Y 
= ∅ then max Y 
= ∅ and min Y 
= ∅.

Given a topological space 〈X, TX〉 and Y ⊆ X, we will use the notation Cl(Y )

to express the closure of Y . Also, the set of all closed subset of X will be denoted
by C(X).

Let A be a bounded distributive lattice. The filter (ideal) generated by a subset
H ⊆ A will be denoted by [H) or F(H) ((H ] or I (H)). When H = {a} we
will write [a) or F(a) ((a] or I (a)) instead of [{a}) or F({a}) (({a}] or I ({a})),
respectively.

If X is an arbitrary set and R a binary relation defined on X, then for any x ∈ X,
R(x) will denote the image of x by R. More precisely, R(x) = {y ∈ X : (x, y)
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∈ R}. While dom(R) denotes the domain of R, i.e., dom(R) = {x ∈ X : ∃y ∈ X

such that (x, y) ∈ R}. The identity or diagonal relation iX on X is the set {(x, x) :
x ∈ X}.

Finally, if Y is a subset of a set X then Y c will denote the set-theoretical
complement of Y , i.e. Y c = X − Y .

3. Quasi-Modal Lattices

DEFINITION 1. A quasi-modal lattice, or qm-lattice for short, is a structure A =
〈A, ∧, ∨, �, ∇, 0, 1〉, where 〈A, ∧, ∨, 0, 1〉 is a bounded distributive lattice and
�, ∇ are two functions

�: A → Id(A); ∇: A → Fi(A)

that verify the following conditions:

(1) �(a ∧ b) = �a ∩ �b,
(2) �1 = A,
(3) ∇(a ∨ b) = ∇a ∩ ∇b,
(4) ∇0 = A.

The class of qm-lattices is denoted by QML.

EXAMPLE 1. Let A be a bounded distributive lattice and X a subset of A. If we
define the functions �: A → Id(A) and ∇: A → Fi(A) by

�a = I (X ∪ {a}) and ∇a = F(X ∪ {a})
for any a ∈ A, then the structure 〈A, ∧, ∨, �, ∇, 0, 1〉, is a quasi-modal lattice.

EXAMPLE 2. Let ω be the set of natural numbers. Next, we define the following
correspondences

�(X) �→
{ {Y ⊆ ω : Y ⊆ X and Y is finite} if X 
= ω,

P (ω) otherwise

and

∇(X) �→
{ {Y ⊆ ω : X ⊆ Y and Y is cofinite} if X 
= ∅,

P (ω) otherwise.

It is easy to check that �(X) is an ideal of P (ω) and that ∇(X) is a filter of P (ω),
for any X ⊆ ω. We can see that � and ∇ verify the conditions of Definition 1. So,
the structure

〈P (ω), ∪, ∩, �, ∇, ∅, ω〉
is a qm-lattice.
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The first example shows that it is always possible to define a qm-lattice from an
arbitrary bounded distributive lattice.

We see the relation between quasi-modal lattices and modal lattices.
Let A ∈ QML with the property that for each a ∈ A, �a is a principal ideal

and ∇a is a principal filter. If we define the functions, �: A → A and �: A → A

by

�a = the x such that �a = I (x) and �a = the z such that ∇a = F(z)

then the structure A = 〈A, ∨, ∧, �, �, 0, 1〉 is a modal lattice. In other words, the
following conditions hold:

M1 �(a ∧ b) = �a ∧ �b,
M2 �1 = 1,
M3 �(a ∨ b) = �a ∨ �b,
M4 �0 = 0.

Moreover, given a modal lattice A = 〈A, ∨, ∧, �, �, 0, 1〉, if for each a ∈ A

we define

�a = I (�a) and ∇a = F(�a)

then A = 〈A, ∨, ∧, �, ∇, 0, 1〉 is a qm-lattice.
Now, we define two operators which will be useful in the development of the

representation. Next, we show some properties that these operators satisfy.
Let A ∈ QML. For each P ∈ X(A) we define

�−1(P ) = {a ∈ A : �a ∩ P 
= ∅}.
Dually, we define

∇−1(P ) = {a ∈ A : ∇a ⊆ P }.
LEMMA 2. Let A be a qm-lattice. Then for each P ∈ X(A)

(1) �−1(P ) ∈ Fi(A),
(2) (∇−1(P ))c ∈ Id(A).

Proof. (1) Since �1 = A, �1 ∩ P 
= ∅, i.e. 1 ∈ �−1(P ). Let x, y be such that
x � y and x ∈ �−1(P ). Thus �x ⊆ �y and �x ∩ P 
= ∅. So, y ∈ �−1(P )

since �y ∩ P 
= ∅. To prove the other condition, we consider x, y ∈ �−1(P ).
So, �x ∩ P 
= ∅ and �y ∩ P 
= ∅. Then there are elements a, b ∈ A such that
a ∈ �x ∩ P and b ∈ �y ∩ P . Since �x, �y ∈ Id(A), we have that a ∧ b ∈
�x ∩ �y. As P is a filter, we have that a ∧ b ∈ P . Thus a ∧ b ∈ �x ∩ �y ∩ P .
Then �(x ∧ y) ∩ P 
= ∅. Therefore �−1(P ) ∈ Fi(A).

(2) Since ∇0 = A and P � A, ∇0 � P , i.e. 0 ∈ (∇−1(P ))c. Let x, y ∈
(∇−1(P ))c. Thus ∇x � P and ∇y � P , hence ∇x ∩ P c 
= ∅ and ∇y ∩ P c 
= ∅.
Then there are elements a, b ∈ A such that a ∈ ∇x ∩ P c and b ∈ ∇y ∩ P c.
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Suppose that a ∨ b /∈ P c, a ∨ b ∈ P . Since P is prime filter, a ∈ P or b ∈ P ,
which is a contradiction. Now suppose that a ∨ b /∈ ∇x ∩ ∇y, hence a ∨ b /∈ ∇x

or a ∨ b /∈ ∇y. As ∇x ∈ Fi(A) and a � a ∨ b, if a ∨ b /∈ ∇x, then a /∈ ∇x, which
is also a contradiction. Similarly we can prove that b /∈ ∇y, which is a contradic-
tion. Thus a ∨ b ∈ ∇x ∩ ∇y ∩ P c = ∇(x ∨ y) ∩ P c, hence ∇(x ∨ y) ∩ P c 
= ∅.
To prove the other condition, we consider x, y ∈ A such that x � y and y ∈
(∇−1(P ))c. It is easy to check that x ∈ (∇−1(P ))c. �

Moreover, it is easy to check that �−1 and ∇−1 are monotonous on X(A), i.e.
for any P, Q ∈ X(A) if P ⊆ Q then �−1(P ) ⊆ �−1(Q) and ∇−1(P ) ⊆ ∇−1(Q).

3.1. REPRESENTATION

In this subsection we show a representation theorem for quasi-modal lattices in
terms of quasi-modal lattices of sets, using the well-known representation theorem
for bounded distributive lattices.

DEFINITION 3. Let F = 〈X, �, R1, R2, D〉 be a relational structure, where
〈X, �〉 is a poset and R1, R2 are two binary relations defined on X. We say that F
is a quasi-modal space, or qm-space for short, if

(1) D is a distributive sublattice of 〈Pi(X), ∪, ∩, ∅, X〉 with ∅, X ∈ D,
(2) � ◦R1 ⊆ R1,
(3) �−1 ◦R2 ⊆ R2,
(4) In the topological space (X, TX) defined by taking the family

D ∪ {(X − U) : U ∈ D}
as a subbase, for each U ∈ D

�R1(U) = {x ∈ X : R1(x) ⊆ U} is open and �-increasing

and

∇R2(U) = {x ∈ X : R2(x) ∩ U 
= ∅} is closed and �-increasing.

Now, given a qm-space F = 〈X, �, R1, R2, D〉 we can see that for every
U ∈ D the set

�R1(U) = {V ∈ D : V ⊆ �R1(U)}
is an ideal of D, and the set

∇R2(U) = {V ∈ D : ∇R2(U) ⊆ V }
is a filter of D.
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LEMMA 4. Let F = 〈X, �, R1, R2, D〉 be a qm-space. Then

A(F ) = 〈D, ∪, ∩, �R1, ∇R2, ∅, X〉
is a qm-lattice.

Proof. Since for any U, V ∈ D, �R1(U) ∩ �R1(V ) = �R1(U ∩ V ) and
�R1(X) = X, we conclude that �R1(U ∩ V ) = �R1(U) ∩ �R1(V ) and
�R1(X) = D. Moreover, for any U, V ∈ D, ∇R2(U) ∪ ∇R2(V ) = ∇R2(U ∪ V )

and ∇R2(∅) = ∅. Therefore, we conclude that ∇R2(U ∪ V ) = ∇R2(U) ∪ ∇R2(V )

and ∇R2(∅) = D. �
Now, given A ∈ QML we consider the set X(A) of the prime filters of the

lattice reduct of A and define two binary relations R� and R∇ on X(A). We will
prove that F (A) = 〈X(A), ⊆, R�, R∇, β(A)〉 is a qm-space. In this case for each
a ∈ A

�R�
(β(a)) = {P ∈ X(A) : R�(P ) ⊆ β(a)}

and

∇R∇ (β(a)) = {P ∈ X(A) : R∇(P ) ∩ β(a) 
= ∅}.
Moreover, using the above lemma, we will have the qm-lattice A(F (A)) and will
say that F (A) and A(F (A)) are the qm-space associated with A, and the qm-
lattice associated with A respectively.

Let A ∈ QML. We define two binary relations, R� and R∇ on X(A) by,

(P, Q) ∈ R� ⇔ �−1(P ) ⊆ Q and (P, Q) ∈ R∇ ⇔ Q ⊆ ∇−1(P ).

LEMMA 5. Let A ∈ QML. Then

(1) ⊆ ◦R� ⊆ R�,
(2) ⊆−1 ◦R∇ ⊆ R∇ .

Proof. (1) Let (P, Q) ∈ ⊆ ◦R�, hence there is T ∈ X(A) such that P ⊆ T

and (T , Q) ∈ R�. Thus, we have that P ⊆ T and �−1(T ) ⊆ Q. Therefore
�−1(P ) ⊆ Q, since �−1(P ) ⊆ �−1(T ). Thus (P, Q) ∈ R�.

(2) Let (P, Q) ∈ ⊆−1 ◦R∇ , hence there is T ∈ X(A) such that T ⊆ P and Q ⊆
∇−1(T ). Then Q ⊆ ∇−1(P ), since ∇−1(T ) ⊆ ∇−1(P ). Thus (P, Q) ∈ R∇ . �

We give an auxiliary result.

LEMMA 6. Let A ∈ QML. Let a ∈ A and P ∈ X(A). Then

(1) a ∈ �−1(P ) ⇔ ∀Q ∈ X(A) (if �−1(P ) ⊆ Q then a ∈ Q),
(2) a ∈ ∇−1(P ) ⇔ ∃Q ∈ X(A) (Q ⊆ ∇−1(P ) and a ∈ Q).



114 JORGE CASTRO AND SERGIO CELANI

Proof. (1) The implication from left to right is immediate. Let us assume that
there is a ∈ A, such that a /∈ �−1(P ). Let (a] ⊆ A be the ideal generated by the
element a. Suppose that

(a] ∩ �−1(P ) 
= ∅.

Let x ∈ (a] ∩�−1(P ). Thus, x � a and �x ∩P 
= ∅. Since x ∧ a = x, �x ⊆ �a.
Thus, �a ∩P 
= ∅, i.e. a ∈ �−1(P ), which is a contradiction. So, (a]∩�−1(P ) =
∅. Since �−1(P ) is a filter and (a] is an ideal, by Birkhoff–Stone’s theorem, there
is Q ∈ X(A) such that �−1(P ) ⊆ Q and Q ∩ (a] = ∅. Then, there is Q ∈ X(A)

such that �−1(P ) ⊆ Q and a /∈ Q.
(2) Let a ∈ ∇−1(P ), i.e. a /∈ (∇−1(P ))c. Let [a) ⊆ A be the filter generated by

the element a. Suppose that

(∇−1(P ))c ∩ [a) 
= ∅.

Then, there is b ∈ (∇−1(P ))c ∩ [a). Thus, b /∈ ∇−1(P ) and a � b. It follows that
∇b � P and ∇b ⊆ ∇a. Then ∇a � P , which is a contradiction. So, (∇−1(P ))c ∩
[a) = ∅. Since (∇−1(P ))c is an ideal, then by Birkhoff–Stone’s theorem there is
Q ∈ X(A) such that [a) ⊆ Q and Q ∩ (∇−1(P ))c = ∅. So, Q ⊆ ∇−1(P ) and
a ∈ Q. In the other direction the proof is immediate. �

In order to see that �R�
(β(a)) is open and increasing, and that ∇R∇ (β(a)) is

closed and increasing, we will use the duality between ideals and open increasing
sets, and the duality between filters and closed increasing sets respectively, which
hold in Priestley spaces.

LEMMA 7. Let A ∈ QML. Then, for each a ∈ A

(1) �R�
(β(a)) = ϕ(�a),

(2) ∇R∇ (β(a)) = ψ(∇a).

Proof. (1) Let P ∈ �R�
(β(a)), then by definition we have R�(P ) ⊆ β(a).

Thus, if (P, Q) ∈ R�, then Q ∈ β(a), i.e. a ∈ Q. Using the definition of R�, we
can say that if Q ∈ X(A) is such that �−1(P ) ⊆ Q, then a ∈ Q. But by Lemma 6,
a ∈ �−1(P ), i.e. �a ∩ P 
= ∅. So, P ∈ ϕ(�a). Now, let P ∈ ϕ(�a). Then,
�a ∩ P 
= ∅, i.e. a ∈ �−1(P ). Let (P, Q) ∈ R�, then �−1(P ) ⊆ Q. Thus a ∈ Q,
i.e. Q ∈ β(a). So R�(P ) ⊆ β(a), i.e. P ∈ �R�

(β(a)).
(2) Let P ∈ ∇R∇ (β(a)). Then R∇(P ) ∩ β(a) 
= ∅, i.e. there is Q ∈ R∇(P ) ∩

β(a). Thus we have that Q ⊆ ∇−1(P ) and a ∈ Q. Using Lemma 6 we can see that
a ∈ ∇−1(P ), i.e. ∇a ⊆ P . So P ∈ ψ(∇a). Now, let P ∈ ψ(∇a), then ∇a ⊆ P ,
i.e. a ∈ ∇−1(P ). Suppose that R∇(P ) ∩ β(a) = ∅. Thus, if Q ∈ X(A) is such that
Q ⊆ ∇−1(P ), then Q /∈ β(a). So a /∈ Q, but by Lemma 6 this is a contradiction. �

The preceding result, in a way, allows us to identify the operators �RR
and ∇R∇

with � and ∇ respectively.
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LEMMA 8. Let A ∈ QML. Then F (A) = 〈X(A), ⊆, R�, R∇, β(A)〉 is a qm-
space.

Proof. It follows from Lemma 5, Lemma 7 and Definition 3. �
LEMMA 9. Let A ∈ QML. Then

A(F (A)) = 〈β(A), ∪, ∩, �R�
, ∇R∇ , ∅, X(A)〉

is a qm-lattice.
Proof. It follows from Lemma 4 and the above lemma. �
We introduce the notion of homomorphism between two qm-lattices.

DEFINITION 10. Let A1 and A2 be two qm-lattices. A function h: A1 → A2 is
a homomorphism of qm-lattices, or qm-homomorphism for short, if

(1) h is a homomorphism of lattices,
(2) for any a ∈ A1, I (h(�1a)) = �2(h(a)),
(3) for any a ∈ A1, F(h(∇1a)) = ∇2(h(a)).

If h is a lattice isomorphism then we say that h is a qm-isomorphism, and we
write A1

∼=q A2.

THEOREM 11 (of Representation). Let A ∈ QML. Then A and A(F (A)) are
qm-isomorphics.

Proof. By the representation theorem for bounded distributive lattices, we know
that β: A → β(A) is an isomorphism. Consequently I (β(�a) = β(�a) and
F(β(∇a)) = β(∇a). Therefore, we have only to prove that β(�a) = �R�

(β(a))

and that β(∇a) = ∇R∇ (β(a)). These equalities are obtained using Lemma 7. So,
A ∼=q A(F (A)). �

3.2. DUALITY

We will develop a duality for qm-lattices by means of Priestley spaces with two
binary relations to deal with � and ∇.

DEFINITION 12. A descriptive quasi-modal space, or descriptive qm-space for
short, is a quasi-modal space F = 〈X, �, R1, R2, D〉, such that

(1) 〈X, �, TX〉 is a Priestley space, where the set D ∪ {(X − U) : U ∈ D} is a
subbase for TX,

(2) R1(x) is closed and increasing, for any x ∈ X,
(3) R2(x) is closed and decreasing for any x ∈ X.
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LEMMA 13. Let A be a qm-lattice. Then

F (A) = 〈X(A), ⊆, R�, R∇, β(A)〉
is a descriptive qm-space.

Proof. We prove only (2) and (3) of the previous definition, since by Lemma 8
we already know that F (A) = 〈X(A), ⊆, R�, R∇, β(A)〉 is qm-space. Moreover it
is well known that 〈X(A), ⊆, TX(A)〉 is Priestley space, where the set β(A)∪β(A)c

is subbase for the topology TX(A).
(2) Let P ∈ X(A), hence R�(P ) = {Q ∈ X(A) : �−1P ⊆ Q} = ψ(�−1P).

So R�(P ) is closed and increasing.
(3) Let P ∈ X(A), hence R∇(P ) = {Q ∈ X(A) : Q ∩ (∇−1P)c = ∅}.

Thus R∇(P ) = (ϕ(∇−1P)c)c since (∇−1P)c is an ideal. So R∇(P ) is closed and
decreasing. �
LEMMA 14. Let F = 〈X, �, R1, R2, D〉 be a qm-space, such that the ordered
topological space 〈X, �, TX〉 defined by the subbase

D ∪ {(X − U) : U ∈ D}
is a Priestley space. Then the following conditions are equivalent:

(1) For all x ∈ X, R1(x) is a closed and increasing subset of X.
(2) For all x, y ∈ X, (x, y) ∈ R1 iff (ε(x), ε(y)) ∈ R�R1

.

Proof. (1) ⇒ (2) Let (x, y) ∈ R1. We consider U ∈ �
−1
R1

(ε(x)). Thus, using

the definition of �
−1
R1

we infer that there exists V ∈ D such that V ∈ �R1(U)

and x ∈ V . Hence V ⊆ �R1(U). Therefore R1(x) ⊆ U . So U ∈ ε(y). Now we
prove the other direction. Let (ε(x), ε(y)) ∈ R�R1

and suppose that y /∈ R1(x).
Since by hypothesis R1(x) is closed and increasing, and moreover 〈X, �, TX〉 is
a Priestley space, there is a family of clopen and increasing {Uj }j∈J such that
R1(x) = ⋂

j∈J Uj . This implies that there is Uk with k ∈ J such that R1(x) ⊆ Uk

and Uk /∈ ε(y). Under these conditions, it is easy to check that (ε(x), ε(y)) /∈ R�R1
,

which is a contradiction.
(2) ⇒ (1) Let x, y ∈ X be such that y ∈ Cl(R1(x)) and suppose that y /∈ R1(x).

Then (ε(x), ε(y)) /∈ R�R1
. Thus, we can say that there exists U ∈ D such that

�R1(U) ∩ ε(x) 
= ∅ and U /∈ ε(y). Equivalently, there are U, V ∈ D such that
V ⊆ �R1(U), x ∈ V and y /∈ U . Then, R1(x) ⊆ U and y /∈ U . So, y /∈
Cl(R1(x)) which is a contradiction. In order to show that R1(x) is increasing, we
consider y � z with y ∈ R1(x). As ε is an order isomorphism, we conclude that

ε(y) ⊆ ε(z). Moreover �
−1
R1

(ε(x)) ⊆ ε(y), since (x, y) ∈ R1. It follows that
(ε(x), ε(z)) ∈ R�R1

. So, z ∈ R1(x). �
The lemma below can be proved in a similar way.
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LEMMA 15. Let F = 〈X, �, R1, R2, D〉 be a qm-space, such that the ordered
topological space 〈X, �, TX〉 defined by the subbase

D ∪ {(X − U) : U ∈ D}
is a Priestley space. Then the following conditions are equivalent:

(1) For all x ∈ X, R2(x) is a closed and decreasing subset of X.
(2) For all x, y ∈ X, (x, y) ∈ R2 iff (ε(x), ε(y)) ∈ R∇R2

.

In order to obtain a full duality between quasi-modal lattices and quasi-modal
spaces we need to define the notion of morphism between two qm-spaces.

DEFINITION 16. Let F1 = 〈X1, �1, R1, S1, D1〉 and F2 = 〈X2, �2, R2, S2, D2〉
be two qm-spaces. A function f : X1 → X2 is a quasi-modal morphism, or qm-
morphism for short, provided the following implications hold:

(1) if (x, y) ∈ R1, then (f (x), f (y)) ∈ R2,
(2) if (x, y) ∈ S1, then (f (x), f (y)) ∈ S2,
(3) if (f (x), y) ∈ R2, then there is z ∈ X1 such that (x, z) ∈ R1 and f (z) �2 y,
(4) if (f (x), y) ∈ S2, then there is z ∈ X1 such that (x, z) ∈ S1 and y �2 f (z),
(5) for any U ∈ D2, f −1(U) ∈ D1.

THEOREM 17. Let A1 and A2 be two qm-lattices. A lattice homomorphism
h: A1 → A2 is a qm-homomorphism if and only if the map F (h): X(A2) →
X(A1) defined by F (h)(P ) = h−1(P ) for each P ∈ X(A2), is a qm-morphism.

Proof. (⇒) (1) Let P, Q ∈ X(A2) be such that (P, Q) ∈ R�2 . Thus
�−1

2 (P ) ⊆ Q. Let a ∈ �−1
1 (h−1(P )), hence �1a ∩ h−1(P ) 
= ∅. This implies that

I (h(�1a))∩ P 
= ∅. Since h is a qm-homomorphism, we have that �2h(a)∩ P 
=
∅. Thus, h(a) ∈ �−1

2 (P ). So, a ∈ h−1(Q).
(2) Let P, Q ∈ X(A2) be such that (P, Q) ∈ R∇2 . Thus, Q ⊆ ∇−1

2 (P ). Let
a ∈ h−1(Q), hence h(a) ∈ ∇−1

2 (P ). Thus, ∇2h(a) ⊆ P and since h is a qm-
homomorphism we have that F(h(∇1a)) ⊆ P . It follows that h(∇1a) ⊆ P , i.e.,
∇1a ⊆ h−1(P ). So, a ∈ ∇−1

1 (h−1(P )).
(3) Let P ∈ X(A2) and Q ∈ X(A1) be, such that �−1

1 (h−1(P )) ⊆ Q. We
prove that �−1

2 (P ) ∩ h(Qc) = ∅. Suppose the opposite. Then there is an element
x such that x � h(q) for some q /∈ Q and �2x ∩ P 
= ∅. By the monotony
of �2, we conclude that �2x ⊆ �2h(q). Thus �2h(q) ∩ P 
= ∅. As h is a qm-
homomorphism, I (h(�1q)) ∩ P 
= ∅. Let y ∈ I (h(�1q)) ∩ P . Then there are
y1, . . . , yn ∈ h(�1q) such that y � y1 ∨ · · · ∨ yn. As P is prime filter, there is
yi ∈ h(�1q for some 1 � i � n, such that yi ∈ P . So, h(�1q) ∩ P 
= ∅. This
implies that �1q ∩ h−1(P ) 
= ∅. Thus q ∈ �−1

1 (h−1(P )). So q ∈ Q, which is a
contradiction. Thus, by Birkhoff–Stone’s theorem there is a prime filter Z ∈ X(A2)

such that, �−1
2 (P ) ⊆ Z and Z ∩ h(Qc) = ∅. So, (P, Z) ∈ R�2 and h−1(Z) ⊆ Q.

(4) Let P ∈ X(A2) and Q ∈ X(A1) be such that Q ⊆ ∇−1
1 (h−1(P )). We show

that h(Q) ∩ (∇−1
2 (P ))c = ∅. Suppose the opposite. So, there is q ∈ Q such that
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h(q) /∈ ∇−1
2 (P ), i.e. ∇2h(q) � P . As h is a qm-homomorphism, F(h(∇1q)) � P .

Thus, there is x ∈ F(h(∇1q)) and x /∈ P . Consequently, there are y1, . . . , yn ∈
∇1q, such that h(y1)∧ · · · ∧h(yn) � x. Also, since h is a homomorphism and ∇1q

is filter, there is y ∈ ∇1q such that h(y) � x, where y = y1∧· · ·∧yn. Since P is �-
increasing, we obtain that h(y) /∈ P . Moreover, ∇−1

1 (h−1(P )) = {t ∈ X1 : ∇1t ⊆
h−1(P )}, and by hypothesis Q is included in the above set. So, for any q ∈ Q it
follows that y /∈ ∇1q, which is a contradiction. Thus, by Birkhoff–Stone’s theorem
there is a prime filter Z ∈ X(A) such that h(Q) ⊆ Z and Z ∩ (∇−1

2 (P ))c = ∅. So,
Q ⊆ h−1(Z) and Z ⊆ ∇−1

2 (P ). �
We give two lemmas that will be needed in some of the proofs below. The first

one corresponds to Lemma 13 in [2] and its proof is analogous. The second can be
considered as its dual.

LEMMA 18. Let F1 = 〈X1, �1, R1, S1, D1〉 and F2 = 〈X2, �2, R2, S2, D2〉 be
two descriptive qm-spaces. Let f : X1 → X2 be a function such that for each
U ∈ D2, f −1(U) ∈ D1. The following conditions are equivalent, for any U ∈ D2.

(1) I (f −1(�R2U)) = �R1(f
−1(U)),

(2) �R1(f
−1(U)) = f −1(�R2(U)).

LEMMA 19. Let F1 = 〈X1, �1, R1, S1, D1〉 and F2 = 〈X2, �2, R2, S2, D2〉 be
two descriptive qm-spaces. Let f : X1 → X2 be a function such that, for each
U ∈ D2, f −1(U) ∈ D1. The following conditions are equivalent, for any U ∈ D2.

(1) F (f −1(∇S2U)) = ∇S1(f
−1(U)),

(2) ∇S1(f
−1(U)) = f −1(∇S2(U)).

Proof. (1) ⇒ (2) We show that f −1(∇S2(U)) ⊆ ∇S1(f
−1(U)). Suppose the

opposite. Thus, there is x such that f (x) ∈ ∇S2(U) and x /∈ ∇S1(f
−1(U)). Since

∇S1(f
−1(U)) is a closed and �1-increasing set and 〈X1, �1, TX1〉 is a Priestley

space, hence there is a family of clopen and �1-increasing subsets G ={Vi ∈ D1 :
i ∈ I } such that

∇S1(f
−1(U)) =

⋂

i∈I

Vi.

Therefore, there is Vj ∈ G such that ∇S1(f
−1(U)) ⊆ Vj and x /∈ Vj . Using

the definition of ∇S1 and hypothesis 1, Vj ∈ F(f −1(∇S2U)). So, there is Z ∈
f −1(∇S2U) such that Z ⊆ Vj . As f −1(∇S2(U)) = {f −1(W) : W ∈ ∇S2(U)},
Z = f −1(W) for some W ∈ D2 such that ∇S2(U) ⊆ W . Since x /∈ Vj , f (x) /∈ W .
Hence f (x) /∈ ∇S2(U), which is a contradiction.

(2) ⇒ (1) We show that F(f −1(∇S2U)) ⊆ ∇S1(f
−1(U)). Assume that V ∈

F(f −1(∇S2(U))). Then there is Z ∈ D1 such that Z ⊆ V and Z ∈ f −1(∇S2U).
Thus, there is W ∈ D2 such that Z = f −1(W) and ∇S2(U) ⊆ W . Then,
f −1(∇S2(U)) ⊆ f −1(W). Using hypothesis (2), ∇S1(f

−1(U)) ⊆ f −1(W). So,
∇S1(f

−1(U)) ⊆ V and consequently V ∈ ∇S1(f
−1(U)). �
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THEOREM 20. Let F1 = 〈X1, �1, R1, S1, D1〉 and F2 = 〈X2, �2, R2, S2, D2〉
be two descriptive qm-spaces. Then f : X1 → X2 is a qm-morphism if only if the
function A(f ): D2 → D1 given by A(f )(U) = f −1(U) for each U ∈ D2 is a
qm-homomorphism.

Proof. Let us assume that f is a qm-morphism and prove that A(f ) is
qm-homomorphism. Let U ∈ D2. According to Definition 10 and using the
two above lemmas, it is sufficient to show that �R1(f

−1(U)) = f −1(�R2(U)) and
∇S1(f

−1(U)) = f −1(∇S2(U)). We prove only the second equality, since the other
is contained in Theorem 14 of [2]. Let x ∈ ∇S1(f

−1(U)), hence S1(x)∩f −1(U) 
=
∅. Thus, there is z ∈ X1 such that (x, z) ∈ S1 and f (z) ∈ U . Since, by hypothesis,
f is a qm-morphism we have that (f (x), f (z)) ∈ S2. Hence S2(f (x))∩U 
= ∅, i.e.
f (x) ∈ ∇S2(U). So ∇S1(f

−1(U)) ⊆ f −1(∇S2(U)). We prove the other inclusion.
Let f (x) ∈ ∇S2(U). Hence S2(f (x)) ∩ U 
= ∅. Thus there is y ∈ X2 such that
(f (x), y) ∈ S2 and y ∈ U . Since f is a qm-morphism, there is z ∈ X1 such
that (x, z) ∈ S1 and y � f (z). As U is �-increasing, we have z ∈ f −1(U). So,
S1(x) ∩ f −1(U) 
= ∅, i.e. x ∈ ∇S1(f

−1(U)).
To prove the other implication, assume that A(f ) is a qm-homomorphism. Let

x, y ∈ X1 such that (x, y) ∈ S1. Suppose that (f (x), f (y)) /∈ S2. Since S2(f (x))

is closed and decreasing and X2 is a Priestley space, there is a clopen decreasing set
V such that S2(f (x)) ⊆ V and y /∈ f −1(V ). Let U = V c be, thus U belong to D2.
Hence S1(x) ∩ f −1(U) 
= ∅, because y ∈ f −1(U) and by hypothesis y ∈ S1(x).
It follows that x ∈ ∇S1(f

−1(U)) hence, using Lemma 19, f (x) ∈ ∇2(U). So
S2(f (x)) ∩ U 
= ∅, which is a contradiction.

(4) Let (f (x), y) ∈ S2, and suppose that for any z ∈ S1(x), y � f (z). As
〈X1, �, D1〉 is a Priestley space, then for each z ∈ S1(x) there is Uz ∈ D1 such that
y ∈ Uz and z ∈ f −1(Uc

z ). Let Vz = Uc
z for each z ∈ S1(x), hence Vz is a clopen

decreasing set. Thus

S1(x) ⊆
⋃

z∈S1(x)

f −1(Vz).

Moreover S1(x) is compact, since S1(x) is closed and X1 is compact. Therefore we
have that there are Vz1, . . . , Vzn

with zi ∈ S1(x) and 1 � i � n, such that

S1(x) ⊆ f −1(Vz1 ∪ · · · ∪ Vzn
).

Let V = Vz1 ∪ · · · ∪ Vzn
. It is easy to check that V is clopen decreasing. Consider

U = V c, hence U ∈ D2. We conclude that S1(x) ∩ f −1(U) = ∅. It follows that
x /∈ ∇1(f

−1(U)). Consequently, by Lemma 19 we can see that f (x) /∈ ∇S2(U).
Thus S2(f (x)) ∩ U = ∅. So y /∈ U , i.e., y ∈ V which is a contradiction. �

By the above results and the Priestley duality for bounded distributive lattices
we have a duality between the class of quasi-modal lattices with qm-homomor-
phisms and the descriptive qm-spaces with qm-morphisms.
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4. Quasi-Modal Sublattices

In this section we define and characterize the quasi-modal sublattices. In the char-
acterization we use the known lattice preorder relation associated to the Priestley
space X(A) (see [4]).

Throughout this section, we will frequently work with sublattices of a given
lattice. In order to avoid any confusion, if A and B are two qm-lattices then we use
the symbols �A and ∇A to denote the corresponding operations of A; similarly, we
use �B and ∇B . Also, the ideal generated in A (filter generated) by some X ⊆ A,
will be denoted by IA(X), (FA(X)). If A is a bounded distributive lattice and B is
a bounded sublattice of A then we will assume that the maximum and minimum of
A and B are the same (0 and 1).

DEFINITION 21. Let A and B be two qm-lattices. We shall say that the structure
B = 〈B, ∨, ∧, �B, ∇B, 0, 1〉 is a quasi-modal sublattice of A, or qm-sublattice for
short, if B is a bounded sublattice of A, and for any a ∈ B,

IA(�B(a)) = �A(a) and FA(∇B(a)) = ∇A(a).

PROPOSITION 22. Let A be a bounded distributive lattice and let B be a bounded
sublattice of A. Let H be an ideal of B and let J be an ideal of A. Let F be a filter
of B and let G be a filter of A. Then

(1) if J = IA(H) then H = J ∩ B,
(2) if G = FA(F ) then F = G ∩ B.

Proof. (2) In order to prove that F = G∩B we need to show that FA(G∩B) =
FA(F ), which is easy to check. Let x ∈ G ∩ B. Then x ∈ FA(G ∩ B) = FA(F ).
Therefore, there is f ∈ F such that f � x. So x ∈ F . The proof of (1) is similar. �
LEMMA 23. Let A be a qm-lattice. Let B be a bounded sublattice of A. Then the
following conditions are equivalent

(1) There are two quasi-modal operators, �B : B → Id(B) and ∇B : B → Fi(B),
such that B = 〈B, ∨, ∧, �B, ∇B, 0, 1〉 is a qm-sublattice of A.

(2) For any a ∈ B

IA(�A(a) ∩ B) = �A(a) and FA(∇A(a) ∩ B) = ∇A(a).

Proof. Suppose that (1) holds. Thus FA(∇B(a)) = ∇A(a), for any a ∈ B.
Using Proposition 22, we have that ∇B(a) = ∇A(a) ∩ B. So FA(∇A(a) ∩ B) =
FA(∇B(a)) = ∇A(a).

Assume (2). We define ∇B(a) = ∇A(a) ∩ B, for each a ∈ B. We can see that
∇B(a) is a filter of B. So FA(∇B(a)) = FA(∇A(a) ∩ B) = ∇A(a). �
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Now we present a characterization for the quasi-modal sublattices. For this
development, given a quasi-modal lattice A we consider the relation SB defined
by

SB = {(P, Q) ∈ X(A) × X(A) : Q ∩ B ⊆ P },
where B is a subset of A. It is well known that SB is a lattice preorder in the
Priestley space 〈X(A), ⊆, TX(A)〉 (see [4]).

THEOREM 24. Let A ∈ QML and B be a bounded sublattice of A. The following
conditions are equivalent

(1) B is a qm-sublattice,
(2) S−1

B ◦ R�A
⊆ R�A

◦ S−1
B and SB ◦ R∇A

⊆ R∇A
◦ SB .

Proof. (1) ⇒ (2) We show that S−1
B ◦ R�A

⊆ R�A
◦ S−1

B . Let P, D, Q ∈ X(A)

such that P ∩ B ⊆ D and �−1
A (D) ⊆ Q. We see that

�−1
A (P ) ∩ (Qc ∩ B] = ∅.

Suppose the opposite. Hence there is p ∈ �−1
A (P ) such that p � q, for some

q ∈ Qc ∩B. Therefore �A(p)∩P 
= ∅, �A(p) ⊆ �A(q) and by the above lemma
�A(q) = IA(�A(q) ∩ B). Thus IA(�A(q) ∩ B) ∩ P 
= ∅. Consequently there is
x ∈ P and x ∈ �A(q) ∩ B. So x ∈ P ∩ B ⊆ D. Moreover x ∈ �A(q) ∩ D,
which implies that �A(q) ∩ D 
= ∅, i.e., q ∈ �−1

A (D). Using the hypothesis we
conclude that q ∈ Q, which is a contradiction. Next, there is Z ∈ X(A) such that
�−1

A (P ) ⊆ Z and Z ∩ B ⊆ Q. In other words, (P, Q) ∈ R�A
◦ S−1

B .
Now we check that SB ◦ R∇A

⊆ R∇A
◦ SB . Let P, D, Q ∈ X(A) be such that

D ∩ B ⊆ P and Q ⊆ ∇−1
A (D). We prove that

F(Q ∩ B) ∩ (∇−1
A (P ))c = ∅.

Suppose the opposite. Then there is p /∈ ∇−1
A (P ) such that q � p with q ∈ Q∩B.

Therefore ∇A(p) ⊆ ∇A(q), ∇A(p) � P and ∇A(q) ⊆ D. Hence ∇A(q) � P .
Since q ∈ B we have that F(∇A(q) ∩ B) = ∇A(q). Consequently F(∇A(q) ∩
B) � P . Thus there is x ∈ ∇A(q) ∩ B and x /∈ P , which is a contradiction since
∇A(q) ⊆ D and D ∩ B ⊆ P . So, there is Z ∈ X(A) such that Z ⊆ ∇−1

A (P ) and
Q ∩ B ⊆ Z.

(2) ⇒ (1) First we show that

IA(�A(a) ∩ B) = �A(a),

for any a ∈ B. Suppose that �A(a) � I (�A(a) ∩ B), for some a ∈ B. Thus there
is x ∈ �A(a) such that x � y for every y ∈ �A(a) ∩ B. It is easy to check that
[[x) ∩ B) ∩ �A(a) = ∅. Then there is D ∈ X(A) such that [x) ∩ B ⊆ D and
a /∈ �−1

A (D). Thus, there exists Q ∈ X(A) such that (D, Q) ∈ R�A
and a /∈ Q.

Now we see that

[x) ∩ (B ∩ Dc] = ∅.
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If this is not the case, there is p ∈ B ∩ Dc such that x � p. So p ∈ [x) ∩ B ⊆ D,
which is a contradiction. Consequently there is P ∈ X(A) such that x ∈ P and
B ∩ P ⊆ D. We can conclude that (P, Q) ∈ S−1

B ◦ R�A
. Therefore, by hypothesis

there is Z ∈ X(A) such that �−1
A (P ) ⊆ Z and Z ∩ B ⊆ Q. It is clear that

�A(a)∩P 
= ∅, because x belong to both sets. So a ∈ Z ∩B, and this implies that
a ∈ Q, which is a contradiction. The other inclusion is immediate.

Now we check that

FA(∇A(a) ∩ B) = ∇A(a),

for any a ∈ B. Suppose that ∇A(a) � F(∇A(a) ∩ B), for some a ∈ B. Thus,
there is x ∈ ∇A(a) such that y � x for every y ∈ ∇A(a) ∩ B. We can see that
((x] ∩ B] ∩ ∇A(a) = ∅. If we suppose the opposite, there exists y ∈ ∇A(a) such
that y � x and y ∈ B. So, y � x and y ∈ ∇A(a) ∩ B which is a contradiction.
Therefore, there is D ∈ X(A) such that ∇A(a) ⊆ D and ((x] ∩ B] ∩ D = ∅. So,
a ∈ ∇−1

A (D). Using Lemma 6 we can ensure that there is Q ∈ X(A) such that
(D, Q) ∈ R∇A

and a ∈ Q. It is easy to prove that

(x] ∩ F(B ∩ D) = ∅.

Then, there is P ∈ X(A) such that x /∈ P and B ∩ D ⊆ P . Next, we have that
(P, Q) ∈ SB ◦R∇A

. Thus, by hypothesis there is Z ∈ X(A) such that Z ⊆ ∇−1
A (P )

and Q∩B ⊆ Z. Since a ∈ Q∩B, a ∈ ∇−1
A (P ). So ∇A(a) ⊆ P , and consequently

x /∈ ∇A(a) since x /∈ P , which is a contradiction. �

5. Quasi-Modal Congruences

In this section we introduce the concept of quasi-modal congruence, or qm-con-
gruence for short, in a qm-lattice. Given a qm-lattice A and θ ⊆ A × A a lattice
congruence, our main goal will be to establish a compatibility property for �

and ∇.
In the study of the qm-congruences we will take into account that, if A is a

bounded distributive lattice and θ ⊆ A × A is a lattice congruence then θ can be
expressed in terms of closed subsets of the topology TX(A). More precisely, every
lattice congruence θ ⊆ A × A has associated a closed subset Y of X(A) such that
θ = θ(Y ), where θ(Y ) is defined by:

(a, b) ∈ θ(Y ) ⇔ β(a) ∩ Y = β(b) ∩ Y.

DEFINITION 25. Let A be a qm-lattice, and θ ⊆ A × A a lattice congruence.
Let a, b ∈ A. We shall say that 〈�a, �b〉∈ θ if the following conditions hold:

(1) ∀x ∈ �a ∃y ∈ �b : (x, y) ∈ θ ,
(2) ∀y ∈ �b ∃x ∈ �a : (x, y) ∈ θ .
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DEFINITION 26. Let A be a qm-lattice, and θ ⊆ A × A a lattice congruence.
Let a, b ∈ A. We shall say that 〈∇a, ∇b〉 ∈ θ if the following conditions hold:

(1) ∀x ∈ ∇a ∃y ∈ ∇b : (x, y) ∈ θ ,
(2) ∀y ∈ ∇b ∃x ∈ ∇a : (x, y) ∈ θ .

We will say that a lattice congruence θ is a qm-congruence if for every
(a, b) ∈ θ , it holds that 〈�a, �b〉, 〈∇a, ∇b〉 ∈ θ .

LEMMA 27. Let 〈A, ∧, ∨, �, ∇, 0, 1〉 be a qm-lattice. Let Y be a closed subset
of X(A) such that (a, b) ∈ θ(Y ). Then ϕ(�a) ∩ Y = ϕ(�b) ∩ Y iff the following
conditions hold

(1) ∀x ∈ �a ∃y ∈ �b : (x, y) ∈ θ(Y ),
(2) ∀y ∈ �b ∃x ∈ �a : (x, y) ∈ θ(Y ).

Proof. Suppose that ϕ(�a) ∩ Y = ϕ(�b) ∩ Y . We prove (1). Let x ∈ �a. Thus

β(x) ∩ Y ⊆
⋃

x∈�a

(β(x) ∩ Y ) = ϕ(�a) ∩ Y

= ϕ(�b) ∩ Y =
⋃

y∈�b

(β(y) ∩ Y ) ⊆
⋃

y∈�b

β(y).

Since β(x) ∩ Y is a closed subset of X(A), then by compactness there are y1, . . . ,

yn ∈ �b such that β(x) ∩ Y ⊆ β(y1) ∪ · · · ∪ β(yn). So β(x) ∩ Y ⊆ β(z) ∩ Y ,
where z = y1 ∨ · · · ∨ yn. Hence β(x) ∩ Y ∩ β(z) = β(x ∧ z) ∩ Y = β(x) ∩ Y .
Let y = x ∧ z. Then y ∈ �b, because y � z and z ∈ �b which is an ideal. In
other words, there is y ∈ �b such that β(x) ∩ Y = β(y) ∩ Y . We can prove (2) in
a similar manner.

Now suppose that (1) and (2) hold. Let P ∈ ϕ(�a) ∩ Y , i.e., �a ∩ P 
= ∅ and
P ∈ Y . Let x ∈ �a ∩ P . By (1), there is y ∈ �b such that (x, y) ∈ θ(Y ). Hence
β(x)∩Y = β(y)∩Y and since x ∈ P , we have that P ∈ β(y)∩Y . So �b∩P 
= ∅;
thus P ∈ ϕ(�b) ∩ Y . We can prove the other inclusion analogously. �
LEMMA 28. Let 〈A, ∧, ∨, �, ∇, 0, 1〉 be a qm-lattice. Let Y be a closed subset
of X(A) such that 〈a, b〉 ∈ θ(Y ). Then ψ(∇a) ∩ Y = ψ(∇b) ∩ Y iff the following
conditions hold

(1) ∀x ∈ ∇a ∃y ∈ ∇b : (x, y) ∈ θ(Y ),
(2) ∀y ∈ ∇b ∃x ∈ ∇a : (x, y) ∈ θ(Y ).

Proof. Suppose that ψ(∇a)∩Y = ψ(∇b)∩Y . We prove (1). Let x ∈ ∇a. Hence
⋂

x∈∇a β(x)∩Y ⊆ β(x)∩Y . So by hypothesis
⋂

y∈∇b β(y)∩Y ⊆ β(x)∩Y . Thus
we have that

β(x)c ⊆ (β(x) ∩ Y )c ⊆
(

⋂

y∈∇b

β(y) ∩ Y

)c

=
⋃

y∈∇b

(β(y) ∩ Y )c.
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By compactness there are y1, . . . , yn ∈ ∇b such that β(x)c ⊆ β(y1)
c ∪ · · · ∪

β(yn)
c ∪Y c. Hence β(x)c ⊆ (β(z)∩Y )c where z = y1 ∧· · ·∧yn. This implies that

β(z) ∩ Y ⊆ β(x) ∩ Y . As in previous lemma, we can conclude that β(x) ∩ Y =
β(y) ∩ Y with y = z ∨ x. As z ∈ ∇b and z � y it follows that y ∈ ∇b, because
∇b is filter. (2) can be proved analogously.

Now suppose that (1) and (2) hold. Let P ∈ψ(∇a) ∩ Y , i.e., ∇a ⊆ P and
P ∈Y . Suppose that ∇b � P . Hence there is y ∈ ∇b such that y /∈ P . So y /∈ ∇a.
By hypothesis (2), there is x ∈ ∇a such that (x, y) ∈ θ(Y ), i.e., β(x) ∩ Y =
β(y) ∩ Y . We can see that P /∈ β(y). Hence x /∈ P , which is a contradiction since
x ∈ ∇a ⊆ P . We can show the other inclusion analogously. �
THEOREM 29. Let A be a qm-lattice, Y a closed subset of X(A) and let θ(Y )

be its associated lattice congruence. Then, θ(Y ) is a qm-congruence iff for every
(a, b) ∈ θ(Y ) the following conditions hold

(1) ϕ(�a) ∩ Y = ϕ(�b) ∩ Y ,
(2) ψ(∇a) ∩ Y = ψ(∇b) ∩ Y .

Proof. It follows from the two previous lemmas. �
Given a lattice A and a lattice congruence θ ⊆ A × A, it is well known that the

quotient algebra

A/θ = 〈A/θ, ∨, ∧, 0θ , 1θ 〉
is a bounded distributive lattice, where A/θ = {xθ : x ∈ A} and xθ denotes the
equivalence class of x, and also that the function q: A → A/θ given by q(a) = aθ ,
is a lattice homomorphism. If A ∈ QML and θ ⊆ A × A is a qm-congruence and
for each a ∈ A we consider the sets

�θaθ = I ({xθ : x ∈ �a}) and ∇θaθ = F({xθ : x ∈ ∇a}),
then it is easy to see that A/θ = 〈A/θ, ∨, ∧, �θ, ∇θ , 0θ , 1θ 〉 is a qm-lattice and q

is a qm-homomorphism.
Moreover, given a lattice A, it is known that the structure

Con A = 〈Con A, ∨, ∩, iA, A × A〉
is a lattice, where Con A denotes the family of all lattice congruences on A. Now,
if A ∈ QML then

Conq A = 〈Conq A, ∨, ∩, iA, A × A〉
is a sublattice of Con A, where Conq A denotes the set of all qm-congruences on A.

We will give a characterization of the qm-congruences in terms of certain sub-
sets of the Priestley space 〈X(A), ⊆, TX(A)〉.
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DEFINITION 30. Let 〈X, �, R1, R2, D〉 a qm-space. A subset Y ⊆ X is called

(1) R1-saturated, if min R1(x) ⊆ Y for each x ∈ Y ,
(2) R2-saturated, if max R2(x) ⊆ Y for each x ∈ Y .

The subsets that are at the same time R1-saturated and R2-saturated of X will be
called R1,2-saturated, and their family will be denoted by SR1,2(X). In accordance
with the above definition, it is easy to check that the intersection and union of
any subfamily of SR1,2(X) is a R1,2-saturated set. Moreover, since X and ∅ are
R1,2-saturated sets, the family SR1,2(X) is a complete sublattice of P (X). Also,
the structure CR1,2(X) = 〈CR1,2(X), ∪, ∩, ∅, X〉 forms a complete sublattice of
C(X) = 〈C(X), ∪, ∩, ∅, X〉, where CR1,2(X) = C(X) ∩ SR1,2(X) (the family of
the R1,2-saturated and closed subsets).

LEMMA 31. Let A be a qm-lattice and θ ⊆ A × A a lattice congruence. Let Y ⊆
X(A) be the closed set associated with θ . The following conditions are equivalent

(1) 〈�a, �b〉 ∈ θ(Y ), for each (a, b) ∈ θ(Y ),
(2) Y is R�-saturated.

Proof. (1) ⇒ (2) Let P ∈ Y and Q ∈ min R�(P ). Suppose that Q /∈ Y . As Y

is closed, there are a, b ∈ A such that Y ⊆ β(a)c ∪ β(b) and Q /∈ β(a)c ∪ β(b).
This implies that (a, a ∧ b) ∈ θ(Y ), a ∈ Q and b /∈ Q. We prove that

�−1(P ) ∩ I (Qc ∪ {a}) 
= ∅.

Suppose the opposite. Hence there is D ∈ X(A) such that �−1(P ) ⊆ D, D ⊆ Q

and a /∈ D. Thus D = Q since D ∈ R�(P ) and Q is minimal. So a /∈ Q, which is
a contradiction. Therefore there is p ∈ �−1(P ) such that p � a ∨ q, with q /∈ Q.
Consequently �p ⊆ �(a ∨ q) and �(a ∨ q) ∩ P 
= ∅. Since (a, a ∧ b) ∈ θ(Y )

and θ(Y ) is congruence,

(a ∨ q, (a ∧ b) ∨ q) ∈ θ(Y ).

Using hypothesis (1), we have that

β(a ∨ q) ∩ Y = β((a ∧ b) ∨ q) ∩ Y.

Considering this equality, and also that P ∈ Y and �(a ∨ q) ∩ P 
= ∅, we can
conclude that �((a ∧ b) ∨ q) ∩ P 
= ∅. Thus (a ∧ b) ∨ q ∈ �−1(P ), and since
(P, Q) ∈ R� we have (a ∧ b) ∨ q ∈ Q. So a ∧ b ∈ Q, because Q ∈ X(A) and
q /∈ Q. Therefore b ∈ Q, which is a contradiction.

(2) ⇒ (1) Let (a, b) ∈ θ(Y ). We show only that ϕ(�a) ∩ Y ⊆ ϕ(�b) ∩ Y .
Suppose the opposite, i.e., there is P ∈ X(A) such that �a ∩ P 
= ∅, P ∈ Y and
�b∩P = ∅. Thus b /∈ �−1(P ). Therefore there is Q ∈ X(A) such that �−1(P ) ⊆
Q and b /∈ Q. Thus Q ∈ R�(P ) and as R�(P ) is closed, min R�(P ) 
= ∅. Hence
there is D ∈ X(A) such that D ∈ R�(P ) and D ⊆ Q. So b /∈ D. As Y is
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R�-saturated by hypothesis, we have that D ∈ Y . Moreover a ∈ �−1(P ) since
�a ∩ P 
= ∅, and as D ∈ R�(P ) we conclude that a ∈ D. Thus D ∈ β(a) ∩ Y =
β(b) ∩ Y . So b ∈ D, which is a contradiction. �
LEMMA 32. Let A be a qm-lattice and θ ⊆ A × A a lattice congruence. Let Y ⊆
X(A) be the closed set associated with θ . The following conditions are equivalent

(1) 〈∇a, ∇b〉 ∈ θ(Y ), for each (a, b) ∈ θ(Y ),
(2) Y is R∇-saturated.

Proof. (1) ⇒ (2) Let P ∈ Y and Q ∈ max R∇(P ). Suppose that Q /∈ Y . As in
the proof of the implication (1) ⇒ (2) of the above lemma, we can conclude that
there are a, b ∈ A such that (a, a ∧ b) ∈ θ(Y ), a ∈ Q and b /∈ Q. It is also easy to
see that [Q ∪ {b}) ∩ (∇−1(P ))c 
= ∅. Thus there is q ∈ Q such that q ∧ b � x and
x ∈ (∇−1(P ))c. Hence q ∧b /∈ ∇−1(P ) since (∇−1(P ))c is ideal. This implies that
∇(q ∧ b) � P . It is clear that (a ∧ q, (a ∧ b) ∧ q) ∈ θ(Y ). Using the hypothesis
we have that

ψ(∇(a ∧ q)) ∩ Y = ψ(∇((a ∧ b) ∧ q)) ∩ Y.

Moreover ∇(a ∧ q) ⊆ P , since a, q ∈ Q ⊆ ∇−1(P ). Therefore P ∈
ψ(∇(a ∧ q)) ∩ Y and consequently ∇((a ∧ b) ∧ q) ⊆ P . Moreover, ∇(q ∧ b) ⊆
∇((a ∧ b) ∧ q) because (a ∧ b) ∧ q � b ∧ q. So ∇(q ∧ b) ⊆ P which is a
contradiction.

(2) ⇒ (1) Let (a, b) ∈ θ(Y ). We show that ψ(∇a)∩Y ⊆ ψ(∇b)∩Y . Suppose
the opposite, i.e., there is P ∈ X(A) such that ∇a ⊆ P , P ∈ Y and ∇b � P . So
b /∈ ∇−1(P ). It is easy to check that (∇−1(P ))c ∩ [a) = ∅. Thus there exists Q ∈
X(A) such that Q ⊆ ∇−1(P ) and a ∈ Q. Since R∇(P ) is closed and Q ∈ R∇(P ),
max R∇(P ) 
= ∅. Therefore there is D ∈ X(A) such that D ∈ R∇(P ) and Q ⊆ D.
So a ∈ D, and since Y is R∇-saturated D ∈ Y . Consequently D ∈ β(a) ∩ Y =
β(b) ∩ Y . Hence b ∈ D ⊆ ∇−1(P ), which is a contradiction. We can prove the
other inclusion in a similar manner. �
COROLLARY 33. Let A be a qm-lattice and θ ⊆ A × A a lattice congruence.
Let Y ⊆ X(A) be the closed associated with θ . Then θ(Y ) is a qm-congruence iff
Y is R�,∇-saturated.

Proof. It follows immediately from the two lemmas above. �
COROLLARY 34. Let A be a qm-lattice. Then the correspondence Y �→ θ(Y )

establishes an anti-isomorphism between C�,∇(X(A)) and Conq A.

5.1. SIMPLE AND SUBDIRECTLY IRREDUCIBLE QM-LATTICES

In this subsection, we introduce the concepts of Simple and Subdirectly Irreducible
quasi-modal lattices. For its characterization, we rely on the characterization of the
simple and subdirectly irreducible algebras given by A. Petrovich in [7].
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DEFINITION 35. Let A ∈ QML. We will say that

(1) A is simple if and only if the lattice of the qm-congruences has only two
elements.

(2) A is subdirectly irreducible if and only if there exists a minimum nontrivial
qm-congruence θ in A.

According to the above definition and Corollary 34 we can ensure that a qm-
lattice A is simple iff C�,∇(X(A)) = {∅, X(A)}.

Let 〈X, �, R1, R2, D〉 be a qm-space. The set

TR1,2 = {X − Y : Y ∈ CR1,2(X)}
defines a topology on X, whose closed sets are the elements of CR1,2(X). Let S ∈
P (X), we denote with ClR1,2(S) the closure of S with respect to the topology TR1,2 .
In addition, a set S is called R1,2-closed (R1,2-dense) if it is closed (dense) with
respect to the topology TR1,2 .

THEOREM 36. Let A ∈ QML. Then

(1) A is simple iff either dom(R� ∪ R∇) = X(A), min R�(P ) ∪ max R∇(P ) is
R�,∇-dense in X(A) for each P ∈ X(A), or dom(R� ∪ R∇) = ∅ and X(A)

is a singleton.
(2) A is subdirectly irreducible but not simple iff only one of the following condi-

tions holds:

(i) The set

{P ∈ X(A) : min R�(P ) ∪ max R∇(P ) is R�,∇-dense in X(A)}
is a non-empty open subset of X(A) different from X(A).

(ii) There is P /∈ ClR�,∇ (min R�(P ) ∪ max R∇(P )) such that

{P } ∪ ClR�,∇ (min R�(P ) ∪ max R∇(P )) = X(A)

and P ∈ dom(R� ∪ R∇).

Proof. (1) (⇒) Let A be a simple qm-lattice. Suppose that dom(R� ∪ R∇) =
X(A). Let P ∈ X(A). Therefore R�(P ) 
= ∅ or R∇(P ) 
= ∅. This implies that
min R�(P ) 
= ∅ or max R∇(P ) 
= ∅. So

ClR�,∇ (min R�(P ) ∪ max R∇(P )) = X(A),

because A is simple. Now we suppose that P ∈ X(A) − dom(R� ∪ R∇). Thus
R�(P ) = ∅ and R∇(P ) = ∅. Then {P } is R�∇-closed. Since A is simple, we have
{P } = X(A) and consequently dom(R� ∪ R∇) = ∅.

We prove the other implication. Let us assume that dom(R� ∪R∇) = X(A) and
min R�(P ) ∪ max R∇(P ) is R�,∇-dense in X(A) for every P ∈ X(A). Let Y be a
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non-empty R�∇-closed subset of X(A). Then, for every P ∈ Y , min R�(P ) ⊆ Y

and max R∇(P ) ⊆ Y . Thus, since Y is R�,∇-closed,

ClR�,∇ (min R�(P ) ∪ max R∇(P )) ⊆ Y.

Therefore, Y = X(A). If dom(R� ∪ R∇) = ∅ and X(A) is a singleton it is clear
that the sets ∅ and X(A) are the only R�∇-closed sets.

(2) We can see that conditions (i) and (ii) are incompatible. Suppose the oppo-
site. Then, there are P, Z in X(A) such that min R�(P )∪max R∇(P ) is R�∇-dense
in X(A),

Z /∈ ClR�,∇ (min R�(Z) ∪ max R∇(Z))

and

{Z} ∪ ClR�,∇ (min R�(Z) ∪ max R∇(Z)) = X(A).

It is clear that P 
= Z, and that P ∈ ClR�,∇ (min R�(Z) ∪ max R∇(Z)). As the set
ClR�,∇ (min R�(Z) ∪ max R∇(Z)) is R�,∇-saturated we have that

min R�(P ) ∪ max R∇(P ) ⊆ ClR�,∇ (min R�(Z) ∪ max R∇(Z)),

which is a contradiction since by hypothesis min R�(P ) ∪ max R∇(P ) is R�,∇-
dense and besides ClR�,∇ (min R�(Z) ∪ max R∇(Z)) 
= X(A).

Suppose that A is subdirectly irreducible but not simple. Let Y be the greatest
element of CR�,∇ (X(A)) − {X(A)}. We define the set

T = {P ∈ X(A) : min R�(P ) ∪ max R∇(P ) is not R�,∇-dense in X(A)}.
Since Y is R�,∇-closed and different from X(A) we have Y ⊆ T . Suppose that
Y = T . Clearly X(A) − Y is a non-empty open subset of X(A), and in accordance
with the definition of T we obtain (i). Now, suppose that Y � T . Let P ∈ T − Y .
Then ClR�,∇ (min R�(P ) ∪ max R∇(P )) is a R�,∇-saturated subset of X(A), and
different from X(A). Thus

ClR�,∇ (min R�(P ) ∪ max R∇(P )) ⊆ Y.

It is clear that the set

{P } ∪ ClR�,∇ (min R�(P ) ∪ max R∇(P ))

is a closed subset of X(A) and R�,∇-saturated. Since P /∈ Y we may conclude
that {P } ∪ ClR�,∇ (min R�(P ) ∪ max R∇(P )) = X(A), and thus Y = ClR�,∇
(min R�(P ) ∪ max R∇(P )). So, we obtain (ii).

Let us prove the reciprocal. Suppose (i). Let T be the set defined previously.
We can see that T is different from X(A), because otherwise {P ∈ X(A) :
min R�(P ) ∪ max R∇(P ) is R�,∇-dense in X(A)} would be empty, against the
hypothesis (i). Also it is clear that A is not simple, and T is closed.
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We show that T is R�,∇-saturated. Let P ∈ T and suppose Z ∈ min R�(P ) ∪
max R∇(P ). So Z ∈ ClR�,∇ (min R�(P ) ∪ max R∇(P )) and consequently
min R�(Z) ∪ max R∇(Z) is not R�,∇-dense. Therefore T ∈ CR�,∇ (X(A)). We see
now that T is the greatest element of CR�,∇ (X(A))−{X(A)}. Let Y ∈ CR�,∇ (X(A))

− {X(A)}. Let P ∈ Y . Then min R�(P ) ∪ max R∇(P ) ⊆ Y and thus

ClR�,∇ (min R�(P ) ∪ max R∇(P )) ⊆ Y.

Since Y 
= X(A) we have that P ∈ T , i.e. Y ⊆ T . Now suppose (ii). It is clear that
A is not simple. We consider the set

Z = ClR�,∇ (min R�(P ) ∪ max R∇(P )).

So, Z is a R�,∇-closed set different from X(A), since P is the element considered
in (ii). Let Y ∈ CR�,∇ (X(A)) − {X(A)} and let Q ∈ Y . We assume that Q = P ,
therefore since Y ∈ CR�,∇ (X(A)) we have X(A) = {P } ∪ ClR�,∇ (min R�(P ) ∪
max R∇(P )) ⊆ Y , which is a contradiction. So, Y ⊆ Z. �
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