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Abstract 

In the establishment of a highly productive pepper crop, obtaining quality 

seedlings is a decisive step. An alternative to boost rapid plant growth has been 

the use of plant growth promoting rhizobacteria (PGPR). The study of PGPR 

and its effect on different plant species has made it possible to establish, among 

other physiological parameters, a direct correlation between total phenolic 

compounds and a positive systemic response induced in plants, which could act 

as growth regulators. The evaluation of the phenolic compound profile and its 

change in relation to PGPR-pepper seedlings interaction, using liquid 

chromatography, has scarcely been reported. The aim of the present study was 

to evaluate changes in the morphology, nitrogen (N) accumulation and the 

phenolic compounds profile produced by the inoculation of four native PGPR 

strains: Pseudomonas 42P4, Cellulosimicrobium 60I, Enterobacter 64S1, and 

Ochrobactrum 53F during the growth of Calahorra pepper seedlings (cv. 

Calafyuco INTA). Our results showed that all the PGPR tested can promote 

growth in pepper seedlings. However, Pseudomonas 42P4 and 

Cellulosimicrobium 60I1 were more effective in increasing N uptake, and 

improving the morphological, biochemical, and physiological parameters in 

pepper seedlings. Flavonoids, such as naringenin, naringin, and catechin, could 

favor growth in plants inoculated with Pseudomonas 42P4, whereas only 

catechin in Cellulosimicrobium 60I1. The combined effect of gallic acid, 

hydroxytyrosol, tyrosol, phloridzin, and the exacerbated production of (-)-

epigallocatechin gallate may contribute synergistically to limiting the growth of 

Control seedlings. Finally, PGPR applied in this study could be used as 
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biofertilizers, thereby reducing the use of nitrogen fertilizers, cutting down on 

production time and cost, and improving the quality of seedlings for 

horticulturists and nurseries. 

Keywords: PGPR, Capsicum annuum, Pseudomonas, Cellulosimicrobium, 

phenolic compound profiles 
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1. Introduction 1 

Pepper (Capsicum annuum.), family Solanaceae is considered one of the most 2 

important horticultural crops in the world. It is estimated that the annual world 3 

production of peppers is around 42.3 million tons, in a cultivated area of 3.7 million 4 

ha (Mori et al., 2022). In the province of Mendoza, Argentina, it is estimated that 5 

around 1246 ha of peppers are grown for the packaging industry (FAOSTAT, 6 

2021). The intensive production of pepper seedlings is an important factor to 7 

satisfy the high demand from horticulturists. Nevertheless, in the production of 8 

peppers, the use of agrochemicals that deteriorate the environment and affect 9 

human health is frequent (Xiao et al., 2020). 10 

Bioinoculants are an alternative for increasing production while reducing adverse 11 

effects on the environment. Some bioinoculants are composed of plant growth 12 

promoting rhizobacteria (PGPR), which are characterized by fixing atmospheric N 13 

in the soil, producing siderophores to improve Fe uptake, and solubilizing insoluble 14 

phosphates which makes them available to plants. In addition, PGPR can produce 15 

a considerable number of plant growth regulators (Cohen et al., 2008; Glick, 2012; 16 

Mehmood et al., 2018). 17 

Previously, we isolated and characterized different native PGPR strains from 18 

Mendoza province. These strains promoted growth of tomato seedlings cultivated 19 

in the growth chamber (Pérez-Rodriguez et al., 2020a). Pseudomonas 42P4 and 20 

Enterobacter 64S1 strains alleviated the deleterious effects of salt stress by NaCl 21 

in tomato plants grown in a greenhouse (Pérez-Rodriguez et al., 2022). In addition, 22 

Pseudomonas 42P4, Cellulosimicrobium 60I, Ochrobactrum 53F and Enterobacter 23 
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64S1 reduced the time of germination and increased the percentage of 24 

germination, vigor index, length, and diameter of roots of pepper seeds. 25 

Furthermore, Pseudomonas 42P4 and Cellulosimicrobium 60I modified the profile 26 

of phenolic compounds and increased the phenolic acid in inoculated pepper seed 27 

suggesting an elicitation of phenylpropanoid pathways related to induced systemic 28 

response (IRS) (Lobato-Ureche et al., 2021; Lobato-Ureche et al., 2023). 29 

Phenolic compounds are secondary metabolites of plants and they are synthesized 30 

through the shikimic acid and phenylpropanoid pathways (Alara et al., 2021). Some 31 

authors have suggested that phenolic compounds may have a role as plant growth 32 

regulators (Dare et al., 2013a). The synthesis of phenolic compounds in plants can 33 

occur in response to several biotic and abiotic factors (Riviere et al., 2012). Studies 34 

based on colorimetric techniques reported a positive correlation between improved 35 

growth and increased content of total phenolic compounds in plants inoculated with 36 

PGPR (Chiappero et al., 2019; Khanna et al., 2019). However, the use of 37 

separative analytical techniques, such as liquid chromatography (LC), can be 38 

important to observe changes in the profiles and elucidate the role of some 39 

phenolic compounds in plants inoculated with PGPR. 40 

The aim of the present study was to evaluate the changes on morphology, nitrogen 41 

accumulation, photosynthetic, and photoprotective pigments observed in Calahorra 42 

pepper seedlings (cv. Calafyuco INTA) inoculated with four native PGPR strains: 43 

Pseudomonas 42P4, Cellulosimicrobium 60I, Ochrobactrum 53F, and Enterobacter 44 

64S1. In addition, the phenolic compounds profile and the quantification of different 45 

families of them were studied. 46 
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2. Material and methods 47 

2.1. Plant materials 48 

Seeds of Capsicum annuum cv. Calafyuco INTA were kindly supplied by Dr. C. 49 

Galmarini (National Institute of Agricultural Technology, INTA-EEA, La Consulta, 50 

Mendoza, Argentina).  51 

2.2. Bacterial cultures 52 

The strains used were Pseudomonas 42P4 (42P4), Cellulosimicrobium 60I1 (60I1), 53 

Enterobacter 64S1 (64S1), and Ochrobactrum 53F (53F). These strains belong to 54 

the Plant Physiology and Microbiology Lab (IBAM-FCA, CONICET-UNCuyo, 55 

Mendoza, Argentina) and the partial sequences amplified of 16S ribosomal RNA 56 

gene have been deposited in the GenBank: MT045993.1, MT047266.1, 57 

MT047267.1, and MT047264.1, respectively. These strains were isolated from the 58 

rhizosphere and roots of tomato plants from a productive farm in Mendoza, 59 

Argentina. They were characterized as PGPR considering their effectiveness of 60 

fixing nitrogen, solubilizing phosphate, producing siderophores, and indole acetic 61 

acid (Pérez-Rodriguez et al., 2020a). 62 

The pre-inoculum was prepared by growing strains 42P4, 60I1, 64S1, and 53F on 63 

a volume of 10 mL of rich medium of LB (Luria Broth, Sigma Chem. Co.) 24 h at 64 

28°C and 120 rpm until reaching an OD530 = 1.2. Then, to prepare the inoculum, 65 

500 μL of pre-inoculum were grown in an erlenmeyer flask with 50 mL of LB for 24 66 

h at 28°C and 120 rpm until reaching 108 CFU mL-1. This concentration was 67 

previously selected as adequate to increase pepper growth (Lobato Ureche et al., 68 
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2023). The seedlings were inoculated with 1000 μL of each culture as detailed 69 

below. 70 

2.3. Seed germination 71 

Seeds were surface disinfected with 20% sodium hypochlorite for 1 min and then 72 

washed three times with sterile distilled water. The seeds were sown in sterile trays 73 

containing the sterilized Kekkilä DSM 1 W growth medium (Kekkilä professional). 74 

The medium contained 70% brown and 30% dark Sphagnum fuscum dominant 75 

peat (N-P2O5-K2O 15-12-29 and microelements 0.6 kg m-3, pH 5.9, electrical 76 

conductivity 0.2 dS m-1). A completely randomized design of six treatments was 77 

established, with three replicates of 10 seeds each. Thirty days after sowing, the 78 

seedlings with two fully expanded leaves were inoculated with 1000 μL of PGPR 79 

containing 108 CFU mL–1 of the corresponding bacterial culture. Thus, the 80 

treatments were seedlings treated with: 1) Hakaphos® 18-18-18 (N-P-K), Fertilized 81 

treatment ; 2) inoculated with 42P4 strain; 3) inoculated with 60I1 strain; 4) 82 

inoculated with 64S1 strain; 5) inoculated with 53F strain; 6) inoculated with LB 83 

medium, Control. Then, the seedlings were located in a growth chamber at 24±1°C 84 

with a 12/12 h photoperiod (100 μmol m-2 s-1) and a relative humidity ∼50%. 85 

Finally, all growth parameters were measured at the end of the assay (after 55 86 

days) and data was collected to evaluate the morphological aspects including: leaf 87 

area (measured using the Micrometrics SE premium software), and the aerial and 88 

root dry weights were determined after drying the samples for 7 days in the stove 89 

at 60ºC. The workflow is presented in Fig. 1. 90 
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 91 

Figure 1. Experimental design and timeline of parameters studied. 92 

2.4. Nitrogen determination 93 

Leaves of 55-day-old plants were dried at 60°C on the stove. Later, they were 94 

ground and the nitrogen content was determined by the Micro-Kjeldahl method as 95 

described by Guebel et al. (1991). 96 

2.5. Photosynthetic and photoprotective pigments 97 

Determinations were performed spectrophotometrically as described by Chapelle 98 

et al. (1992), with modifications of Cohen et al. (2015), using leaf samples. 99 

Chlorophyll a, b, and total (Chl a, Chl b and total = Chl a + Chl b), carotenoid and 100 

anthocyanin levels were measured from 1 cm2 diameter disc samples and 101 

expressed in mg-1 of leaves. 102 

2.6. Extraction of phenolic compounds 103 

The phenolic compounds were isolated by using a solid-liquid extraction according 104 

to a previously reported procedure (Moussi et al., 2015), which can be briefly 105 

described as follows: a portion of 0.5 g of lyophilized material (leaves) was 106 

weighed in a conical centrifuge tube and mixed with 5 mL of ethanol. Then, the 107 
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tube was left in an ultrasonic bath for 10 min and the supernatant obtained by 108 

centrifugation (2500 g for 10 min) was evaporated to dryness using a rotary 109 

evaporator at 40°C. The residue was redissolved in 1 mL of 0.1% (v/v) formic acid. 110 

2.7. Phenolic compound analysis 111 

For phenolic compound quantification, high-performance liquid chromatography 112 

coupled with diode array and fluorescence detectors (LC-DAD-FLD) Dionex 113 

UltiMate 3000 HPLC system (California, USA) was used. Chromatographic 114 

separations were carried out in a reversed-phase Kinetex C18 column (3.0 mm × 115 

100 mm, 2.6 μm) Phenomenex (Torrance, CA, USA) at 35°C. The mobile phases 116 

were ultrapure water with 0.1% (v/v) formic acid (phase A) and acetonitrile (phase 117 

B). Separation of the analytes was performed using the following gradient: 0–1.7 118 

min, 5% B; 1.7–10 min, 30% B; 10–13.5 min, 95% B; 13.5–15 min, 95% B; 15–16 119 

min, 5% B; 16–19, 5% B. The flow rate was set constant at 0.8 mL min- 1 during the 120 

whole process, and the injection volume was 5 μL as was described by Ferreyra et 121 

al., (2021). 122 

The identification and quantification of the target phenolic compounds in the 123 

extracts was based on the comparison of the retention times and maximum 124 

absorbance value of detected peaks in samples of interest with those obtained by 125 

the injection of pure standards. The working wavelengths for the different families 126 

of analytes for DAD were 254 nm, 280 nm, 320 nm, and 370 nm, while an 127 

excitation wavelength (Ex) of 290 nm and monitored emission (Em) responses of 128 

315 and 400 nm were used depending on the targeted analytes for FLD, as was 129 

described by Ferreyra et al. (2021). The Chromeleon 7.1 software was used to 130 
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control all the acquisition parameters of the LC-DAD-FLD system and also to 131 

process the obtained data. 132 

2.8 Statistical analysis 133 

Data were processed by analysis of variance followed by a Duncan test to 134 

discriminate between the means by the least difference with a significance level of 135 

P-value ≤ 0.0001. The InfoStat statistical software (InfoStat version 2020v. Grupo 136 

InfoStat, Argentina) was used (Di Rienzo et al., 2020). 137 

3. Results 138 

3.1. Effects of inoculation on the growth of pepper seedlings 139 

Inoculation with all rhizobacteria significantly improved the aerial and root dry 140 

weight of the pepper seedlings with respect to the Control treatment (Fig. 2).  141 

 142 

Figure 2. Pepper seedlings after 25 days after treatment with: Fertilized (a), 143 

Pseudomonas 42P4 (b), Cellulosimicrobium 60I1 (c), Enterobacter 64S1 (d), 144 

Ochrobactrum 53F (e), and, Control (without bacteria) (f). 145 
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 146 

The Fertilized, 42P4, and 60I1 treatments increased the aerial biomass (59%, 55% 147 

and 52%, respectively), with respect to the Control (Fig. 3A). 64S1 and 53F strains 148 

produced a minor stimulation of the aerial part of the seedlings with respect to the 149 

Fertilized treatment. However, they differed from the Control treatment. 150 

The treatments of inoculations with 42P4 and 60I1 increased root dry weight (62% 151 

and 59%, respectively), with respect to the Control and these values were similar 152 

to the Fertilized treatment (64%) (Fig. 3B). Similar behavior was observed between 153 

the 64S1 and 53F strains, increasing root dry weight by more than 30% with 154 

respect to the Control. 155 

  156 
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 157 

Figure 3. Morphological parameters studied on pepper seedlings, aerial dry weight 158 

(A), root dry weight (B), and relation aerial and root dry weight (C) treated with Fert: 159 

Fertilized; 42P4: Pseudomonas 42P4; 60I1: Cellulosimicrobium 60I1; 64S1: 160 

Enterobacter 64S1; 53F: Ochrobactrum 53F, and Control (without bacteria). 161 
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The Inoculated and Fertilized treatments had a similar ratio between aerial and root 162 

dry weight, and they were different from the Control (Fig. 3C). The leaf area 163 

increased in the treatments inoculated with the bacterial strains with respect to the 164 

Control. The 60I1 and 42P4 strains were the most effective, increasing the leaf 165 

area, (28% and 27%, respectively) over the Control without inoculation (Fig. 4A). 166 

The inoculated and Fertilized treatments had greater nitrogen (N) content with 167 

respect to the Control (Fig. 4B). 60I1 and 42P4 inoculations increased the N 168 

content (74% and 73%, respectively), with respect to the Control. Similar behavior 169 

was observed between the 64S1 and 53F strains, increasing the N content by 170 

more than 38% with respect to the Control. 171 
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 172 

Figure 4. Leaf area (A) and nitrogen content in leaves (B) of pepper seedlings 173 

treated with: Fert: Fertilized; 42P4: Pseudomonas 42P4; 60I1: Cellulosimicrobium 174 

60I1; 64S1: Enterobacter 64S1; 53F: Ochrobactrum 53F and Control (without 175 

bacteria). 176 

 177 

3.2. Effect of inoculation on the accumulation of photosynthetic and photoprotective 178 

pigments 179 
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The effects of inoculation with PGPR on photosynthetic content and 180 

photoprotective pigments are shown in Table 1. PGPR inoculation increased the 181 

chlorophyll content (a, b, and total) similar to the Fertilized treatment, except for the 182 

53F strain that did not differ from the Control. 64S1 and 42P4 inoculation increased 183 

total chlorophyll (25% and 25%, respectively) with respect to the Control. No 184 

significant differences in carotenoids and anthocyanin content were observed.  185 

3.3. Effect of inoculation on the profile of phenolic compounds in leaves of 186 

Calafyuco pepper seedlings 187 

The profiles of the phenolic compounds in the non-inoculated pepper seedlings 188 

(Control), inoculated with 42P4 and 60I1 strains, and Fertilized seedlings are 189 

shown in Table 2. A total of 24 phenolic compounds were identified and quantified, 190 

which are grouped into four families based on their chemical structure: phenolic 191 

alcohols, flavonoids, phenolic acids and stilbenoids. This study revealed that the 192 

sum of the phenolic compounds was higher in the Fertilized treatment, followed by 193 

the treatments inoculated with 42P4 strain, Control, and finally inoculated with 60I1 194 

strain. 195 

As phenolic alcohols, we identified hydroxytyrosol and tyrosol. The concentration of 196 

both compounds was highest in the Control treatment compared to the inoculated 197 

and Fertilized treatments, which were similar. The Control and 60I1 treatments had 198 

a similar concentration of hydroxytyrosol (1.37 and 1.11 mg g-1, respectively), 199 

whereas in seedlings inoculated with 42P4 and Fertilized the levels were a third 200 

part or less (0.27 and 0.41 mg g-1, respectively). The Control had the highest 201 
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concentration of tyrosol (0.55 mg g-1) followed by 42P4 (0.41 mg g-1), Fertilized 202 

treatment (0.38 mg g-1) and 60I1 (0.30 mg g-1). 203 

According to the flavonoid family, the following compounds were identified and 204 

quantified: (+)-catechin, (+)-epicatechin, rutin, (-)-gallocatechin gallate, (-)-205 

epigallocatechin, (-)-epigallocatechin gallate, quercetin, astilbin, naringin, 206 

naringenin, myricetin, phloridzin and procyanidin B1. The 42P4 showed the highest 207 

concentration of total free flavonoids (76.90 mg g-1) followed by the Fertilized 208 

treatment (72.61 mg g-1), Control (30.05 mg g-1), and 60I1 (29.49 mg g-1). The 209 

42P4 showed the highest concentration of naringin (25.65 mg g-1) followed by 210 

Fertilized (18.92 mg g-1) and Control (2.01 mg g-1). However, it was not detected in 211 

60I1. 212 

The concentration of (+)-catechin was highest in the 42P4 treatment (0.47 mg g-1) 213 

followed by the Fertilized and 60I1 treatments (0.31 and 0.26 mg g-1, respectively), 214 

whereas it was the lowest in the Control treatment (0.10 mg g-1). With respect to (-215 

)-epigallocatechin gallate, the Control treatment had the highest concentrations 216 

(8.12 mg g-1) followed by 60I1, Fertilized and 42P4 treatments (4.15, 2.95 and 2.64 217 

mg g-1, respectively). 218 

The Control presented the highest concentration of (-)-epigallocatechin (3.71 mg g-219 

1), followed by 42P4 and Fertilized treatments which showed similar levels (2.55 220 

and 2.51 mg g-1, respectively). However, the (-)-gallocatechin gallate was inverse, 221 

in the Control was the lowest concentration (7.89 mg g-1), and the inoculated (42P4 222 

and 60I1) and Fertilized treatments had triple that concentration (23.71, 21.41 and 223 

23.30 mg g-1, respectively).  224 
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In the phenolic acids group, the Control had the highest total level (71.82 mg g-1), 225 

followed by Fertilized (35.94 mg g-1) and 42P4 treatment (22.03 mg g-1) without any 226 

significant differences between them, whereas the lowest concentration was found 227 

in the 60I1 treatment (6.12 mg g-1). The Control had the highest concentration of 228 

gallic acid (48.87 mg g-1), followed by Fertilized, in which less was found (4.98 mg 229 

g-1). However, in the inoculated treatments it was not detected. The cinnamic acid 230 

was the most abundant compound in the Fertilized and inoculated treatments, 231 

while it was in lower concentrations in the Control treatment. 232 

The stilbenoid group, consisting of polydatin, trans-resveratrol, ε-viniferin, and 233 

pterostilbene, were quantified. The Control had the highest total concentration of 234 

stilbenoid (25.93 mg g-1), followed by the Fertilized treatment (13.41 mg g-1), 235 

whereas the 60I1 and 42P4 treatments had similar concentrations (4.23 and 3.85 236 

mg g-1, respectively). 237 

The concentration of polydatin was highest in the Control treatment (21.02 mg g-1), 238 

but in the Fertilized and Inoculated treatments (42P4 and 60I1), it did not exceed 239 

22% in respect to the Control. The abundance of polydatin in the Control contrasts 240 

with the low concentration of trans-resveratrol (3.10 mg g-1). 241 

4. Discussion 242 

In our study the inoculated seedlings showed similar behavior to the Fertilized 243 

treatment exhibiting a high root dry weight with respect to the Control seedlings. 244 

The Control plant distributed more matter to the aerial part than the roots. 245 

However, the inoculated and Fertilized plants distributed more matter to the roots. 246 
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These changes in the root system increase the capacity to absorb nutrients and 247 

water, increasing the growth rate of the seedlings. This favors greater exploration 248 

of the soil and increases the area of influence of root exudates that mediate the 249 

interaction with beneficial microorganisms in the rhizosphere. The production of 250 

quality seedlings in less time reduces the time of occupation in the greenhouse and 251 

gives an advantage to nursery horticulture by decreasing the cost of seedling 252 

production. The greater radical volume improves the anchorage of the transplants 253 

in the field, mitigating the incidence of the overturning of seedlings. It is known that 254 

inoculation with various PGPR has increased root dry weight and nutrient content 255 

of seedlings of Cucumis sativus, and Solanum licopersicum (Li et al., 2020; Pérez-256 

Rodriguez et al., 2020a, 2020b). 257 

We found that the positive effect on the growth of the inoculated seedlings is 258 

correlated with greater nitrogen absorption, which increases the production of 259 

chlorophyll, improves the photosynthetic rate, and consequently increases the 260 

production of photoassimilates. Similar results have been reported in other plant 261 

species inoculated with PGPR (Bal et al., 2013; Abbasi et al., 2013; Ding et al., 262 

2019; Khan et al., 2018). 263 

Despite evidence associated with increased total phenolic compounds in different 264 

plant species inoculated with different PGPR, at present, there is no information on 265 

the profile of phenolic compounds in pepper plants treated with rhizobacteria. 266 

Taking account of that context, the modifications in the profile of phenolic 267 

compounds by LC-DAD-FLD in the physiology and growth of pepper seedlings 268 
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inoculated with the most effective native PGPR strains (Pseudomonas 42P4 and 269 

Cellulosimicrobium 60I1) in promoting growth were explored. 270 

In this study, the Control treatment had the highest concentrations of phenolic 271 

alcohols (hydroxytyrosol and tyrosol). Date et al. (2021) demonstrated that the 272 

presence of hydroxytyrosol could act as a root growth inhibitor in several species of 273 

agricultural interest. While tyrosol can act as a powerful antioxidant, protecting the 274 

seeds and, consequently, increasing the germination percentage (Macedo et al., 275 

2018). However, when it was added in high doses, this compound can restrict the 276 

growth of seedlings (Silva et al., 2021).  277 

We found that the higher concentration of endogenous hydroxytyrosol and tyrosol 278 

in the Control treatment could have limited the radical growth of the pepper 279 

seedlings. The lower growth of roots in the Control treatment could limit the 280 

nitrogen absorption, causing a decrease in the chlorophyll content in leaves, 281 

restricting the photosynthesis process and thus the production of photoassimilates, 282 

which decreased the growth of the aerial part. 283 

The 42P4 and Fertilized treatments had similar levels of flavonoids, while the same 284 

behavior was observed between the Control and 60I1 treatments. Naringenin is 285 

considered an important precursor to other flavonoids (Liu, et al., 2021), and in this 286 

study, it was only detected and quantified in the 42P4 and Fertilized treatments. 287 

For this reason, the 42P4 strain may promote naringenin production, thereby 288 

increasing the synthesis of other flavonoids in growing seedlings. This hypothesis 289 

is confirmed by the fact that naringin concentrations were also higher in the 42P4 290 

treatment. 291 
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The seedlings inoculated with 42P4, 60I1 and Fertilized had the highest 292 

concentrations of (+)-catechin. The role of (+)-catechin in plants remains 293 

controversial, the response is different between the plant species (Bais et al., 294 

2010). Different authors have demonstrated that application of catechins increased 295 

biomass accumulation, leaf area, leaf thickness, net photosynthetic rate, stomatal 296 

conductance, and indole acetic acid (IAA) concentration in Arabidopsis thaliana 297 

plants (Rani et al., 2011), and also alleviated oxidative stress (Yiu et al., 2011) and 298 

cold acclimatization (Ding et al., 2019). 299 

The data obtained in the present study suggest that the inoculated treatments 300 

behave similarly to the Fertilized treatment, stimulating the production of (+)-301 

catechin, which might induce a positive response in growth and in the 302 

accumulation of photosynthetic pigments. Similar results were observed in tea 303 

plants inoculated with Bacillus megaterium that increased the concentration of 304 

catechins and other compounds, such as peroxidase, chitinase, β-1,3-glucanase 305 

and phenylalanine ammonia-lyase (Chakraborty et al., 2015). 306 

Another flavonoid that had interesting behavior was (-)-epigallocatechin gallate. We 307 

observed that the Control treatment doubled its concentration compared to the 308 

other treatments. This compound has a high antioxidant capacity, and it has been 309 

reported that, applied in some concentrations, could reduce seed germination rate 310 

and biomass accumulation in seedlings because it modifies the antioxidant activity 311 

and gibberellins/abscisic acid ratio (Ahammed et al., 2020). Therefore, we suggest 312 

that the high concentrations of (-)-epigallocatechin gallate in the Control treatment 313 

could have limited seedling growth. Nevertheless, applications of lower doses of (-314 
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)-epigallocatechin gallate increased seed germination and growth of stressed 315 

tomato seedlings (Ahammed et al., 2020; Li et al., 2019). Therefore, we can 316 

suggest that the Pseudomonas 42P4 strain may act by modifying or modulating the 317 

levels of (-)-epigallocatechin gallate, favoring the accumulation of biomass and 318 

increasing the contents of photosynthetic pigments as in the Fertilized treatment. 319 

Phloridzin was only detected in the Control treatment. It is known that this 320 

compound stimulates the action of indole acetic acid (IAA) oxidases involved in the 321 

degradation of auxins (Dare et al., 2013b). Furthermore, phloridzin is easily 322 

degraded by soil microorganisms (Stanišić et al., 2019). Recent studies 323 

demonstrated that Ochrobactrum haematophilum produces IAA and degrades 324 

phloridzin in apple rhizosphere soil (Jiang et al., 2022). This could help to explain 325 

why phloridzin was not detected in the inoculated treatments, since it could be 326 

degraded by bacteria that are known to produce IAA which would promote the 327 

growth of seedlings (Pérez-Rodriguez et al., 2020a). 328 

In this current study, the most abundant phenolic compound was gallic acid, 329 

quantified in the Control treatment. Gallic acid has shown a potent capacity to 330 

inhibit seed germination, radicle and hypocotyl growth, and the fresh and dry 331 

weight of Cucumis sativus seedlings (Muzaffar et al., 2012). We may suggest that 332 

the combined effect of gallic acid, hydroxytyrosol, tyrosol, phloridzin, and the 333 

exacerbated production of (-)-epigallocatechin gallate contributed synergistically to 334 

limit the growth of the Control seedlings. 335 

In the stilbenoids group, the Control treatment showed the highest total 336 

concentration of these family compounds. We suggest that the deflection of the 337 
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photoassimilates product of the primary metabolism towards the synthesis of 338 

stilbenoids seems to be a strategy that limits the growth of the non-inoculated 339 

seedlings. It is possible that peat, as a low nutrient inert substrate, induces the 340 

seedlings to produce those types of compounds. It is known that the production of 341 

stilbenoids in plants is a defense mechanism that overcomes insect and pathogen 342 

attacks, although their synthesis can also be induced in response to a wide range 343 

of biotic and abiotic stressors, particularly in the leaves (Riviere et al., 2012). In the 344 

Control treatment the abundance of polydatin contrasts with the low concentrations 345 

of trans-resveratrol. Polydatin is a glycoside of resveratrol and it is possible that the 346 

low concentration of trans-resveratrol in the Control is due to that compound being 347 

in a glycosylated form as polydatin. While in the treatment inoculated with the 42P4 348 

strain, polydatin was catabolized to trans-resveratrol, which gave other types of 349 

stilbenoids through oxidation, such as ε-viniferin, and pterostilbene, which have 350 

been reported in other strains. The Bacillus natto strain can induce the 351 

transformation of polydatin into resveratrol in Pediomelum cuspidatum plants (Fan 352 

et al., 2021). 353 

5. Conclusion 354 

Overall, the present study suggests that all PGPR used can promote the growth of 355 

pepper seedlings. However, Pseudomonas 42P4 and Cellulosimicrobium 60I1 356 

were more effective in increasing nitrogen uptake and improving the morphological, 357 

biochemical, and physiological parameters in pepper seedlings. The higher 358 

concentration of flavonoids, such as naringin and (-)-gallocatechin gallate, 359 

quantified in the Fertilized and inoculated treatments are correlated with a major 360 
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seedlings’ growth. The combined effect of gallic acid, hydroxytyrosol, tyrosol, 361 

phloridzin, and the exacerbated production of (-)-epigallocatechin gallate may 362 

contribute synergistically to limiting the growth of Control seedlings. Finally, it can 363 

be suggested that PGPR applied in this study could be used as biofertilizers, 364 

reducing the use of nitrogen fertilizers, and the time and cost of production of 365 

quality seedlings for horticulturists and nursery. 366 
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Table 1. Chlorophyll a, chlorophyll b, total chlorophyll, carotenoids and 

anthocyanins of pepper seedlings 25 days after treatment with: Fert: Fertilized; 

42P4: Pseudomonas 42P4; 60I1: Cellulosimicrobium 60I1; 64S1: Enterobacter 

64S1; 53F: Ochrobactrum 53F and Control (without bacteria).  

Treatments 
Chlorophyll a 
(µg mg-1 leaf) 

Chlorophyll 
b 

(µg mg-1 leaf) 

Total chlorophyll 
(µg mg-1 leaf) 

Carotenoids 
(µg mg-1 leaf) 

Anthocyanins 
(OD546 mg-1 leaf) 

Fertilized 4.03±0.67a 1.90±0.18a 5.93±0.69a 1.20±0.17a 0.12<0.01a 

42P4 4.10±0.80a 1.78±0.22a 5.88±0.82a 1.22±0.28a 0.12<0.01a 

60I1 3.95±0.55a 1.86±0.25a 5.81±0.60a 1.17±0.25a 0.10<0.01a 

64S1 3.98±0.84a 1.92±0.22a 5.90±1.01a 1.12±0.11a 0.11<0.01a 

53F 4.01±0.97a 1.27±0.29b 5.28±1.01ab 1.22±0.14a 0.10<0.01a 

Control 3.75±0.62b 0.96±0.19b 4.71±0.64b 1.15±0.23a 0.10<0.01a 

Values are presented as the mean ± SE of a total of 30 pepper seedlings for each treatment. 
Different letters indicate significant differences (P < 0.0001) according to one-way ANOVA with 

Duncan’s multiple range test. 
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Table 2. Profile of phenolic compositions observed in pepper seedlings treated 

with: Fert: Fertilized; 42P4: Pseudomonas 42P4; 60I1: Cellulosimicrobium 60I1 and 

Control (without bacteria). Quantitative results expressed in mg g-1 of dry material. 

Compounds Control 60I1 42P4 Fertilized 

                                             Phenolics compounds 

Simple phenolic alcohols 

Hydroxytyrosol 1.37±0.18a 1.11±0.12a 0.27±0.02b 0.41±0.08b 

Tyrosol 0.55±0.00a 0.30±0.04b 0.41±0.01b 0.38±0.08b 

∑Simple phenolic alcohols 1.92±0.18a 1.41±0.04a 0.68±0.01b 0.79±0.11b 

Flavonoids         

(+)-Catechin 0.10±0.04c 0.26±0.01b 0.47±0.09a 0.31±0.05b 

(-)-Epicatechin 0.16±0.01a n.d.* 0.11±0.01b 0.12±0.01a 

Routine 1.37±0.15b 0.19±0.05c 2.22±0.12a 0.18±0.03c 

(-)-Gallocatechin gallate 7.89±0.86b 21.41±1.46a 23.71±0.77a 23.30±1.01a 

(-)-Epigallocatechin 3.71 ±0.96a 1.08±0.18b 2.55±0.19a 2.51±0.18a 

(-)-Epigallocatechin gallate 8.12±1.57a 4.15±0.31b 2.64±0.16c 2.95±0.18c 

Quercetin 0.47±0.01b 0.42±0.02b 8.93±1.24a 8.79±0.15a 

Astilbine 2.26± 0.35b n.d.* 3.92±0.27a n.d.* 

Naringin 2.01±0.20c n.d.* 25.65±0.04a 18.92±0.97b 

Naringenin n.d.* n.d.* 0.22±0.01a 0.22±0.02a 

Myricetin 3.99±0.01c 1.99±0.30d 6.73±0.32b 10.18±0.16a 

Phloridzin 1.26±0.10a n.d.* n.d.* n.d.* 

Procyanidin B1 n.d.* n.d.* n.d.* 8.10±0.33a 

∑Flavonoids 30.05±4.23b 29.49±2.30b 76.90±0.33a 72.61±2.08a 

Phenolic acids 

Gallic acid 48.87±6.40a n.d.* n.d.* 4.98±0.33b 

Syringic acid 0.12±0.01c 0.14±0.00c 0.40±0.00b 0.55±0.06a 

Cinnamic acid 20.73±1.59b 5.46±0.65c 21.63±0.52b 25.66±1.65a 

p-coumaric acid 2.10±0.04a 0.34±0.01b n.d.* 0.41±0.13b 

Ferulic acid n.d.* 0.18±0.03b n.d.* 4.34±0.38a 

∑Phenolic acids  71.82±6.59a 6.12±0.65c 22.03±0.52b 35.94±1.73b 

Stilbenoids 

Polydatin 21.02±2.81a 1.33±0.11c 1.96±0.23c 4.83±0.19b 

Trans-resveratrol 3.10±0.23b 1.65±0.09c n.d.* 6.13±0.44a 

ε-viniferin n.d.* n.d.* 0.39±0.03a 0.45±0.06a 

Pterostilbene 1.81±0.15a 1.25±0.19c 1.50±0.19b 2.00±0.16a 

∑Stilbenoids 25.93±2.82a 4.23±0.23c 3.85±0.29c 13.41±0.50b 

∑Total phenolics compounds 130.97±15.77a 41.22±3.46c 103.66±1.75b 125.67±4.23ab 
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Data are presented as mean ± SEM of three independent biological replicates. Different letters 

indicate significant differences (P < 0.0001) according to one-way ANOVA with Duncan’s multiple 

range test. *n.d.: non-detected.  
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