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Abstract

In this paper we shall give some results on irreducible deductive sys-
tems in BCK-algebras and we shall prove that the set of all deductive
systems of a BCK-algebra is a Heyting algebra. As a consequence of this
result we shall show that the annihilator F'* of a deductive system F is
the the pseudocomplement of F'. These results are more general than that
the similar results given by M. Kondo in [7].
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1 Introduction and preliminaries

In [7] it was shown that the set of all ideals (or deductive systems, in our
terminology) of a BCK-algebra A is a pseudocomplement distributive lattice and
that the annihilator F™* of a deductive system F' of A is the pseudocomplement
of F. Related results on annihilators in Hilbert algebras and Tarski algebras (or
also called commutative Hilbert algebras [6] or Abbot’s implication algebras)
are given in [2] and [3]. On the other hand, it was shown in [9] that the set
of deductive systems Ds(A) of a BCK-algebra A is an infinitely distributive
lattice, and thus it is a Heyting algebra. In this note we will give a description
of this fact and we shall prove that the annihilator F* of the deductive system F'
can be obtained as F* = F' = {1}, where = is the Heyting implication defined
in the lattice Ds(A).
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In the remaining part of this section we shall review some results on BCK-
algebras. In section 2 we shall study the notion of irreducible deductive system.
In particular, we shall give a generalization of a result given in [8] for BCK-
algebras with supremum. In Section 3 we shall prove that the lattice of deductive
system of a BCK-algebra is a Heyting algebra.

Definition 1 An algebra A = (A, —,1) of type (2,0) is a BCK-algebra if for
all a,b,c € A the following conditions hold:
l.a—a=1,
(@a—=0) = ((b—=c)=(a—0c)=1,
a—(b—c)=b— (a— ),

a—(b—a)=1

AN

a—b=1and b — a =1, implies a = b.

If A is a BCK-algebra and we define the binary relation < on A by a < b if
and only if @ — b =1, then < is a partial order in A.
Let us recall that in all BCK-algebras A the following properties are satisfied:
Pl 1—-a=aqa,
P2 a— ((a—b)—b)=1
P3 a—=b<(c—b) — (c—a),
P4 a—b=((a—b)—b)—b,

P5 ifa<b thenc—a<c—bandb—c<a—c
A BCK-algebra with supremum, or BCK"-algebra is an algebra
A=(4,-,Vv,1)

where (A, —, 1) is a BCK-algebra, (A,V,1) is a join-semilattice, anda — b =1
if and only if a Vb = b. For a,b € A we define inductively a —, basa —gb =10
and a —,41 0 =0a — ((a —, 1)).

Let A be a BCK-algebra. A deductive system or filter of A is a nonempty
subset [’ of A such that 1 € F, and for every a,b € A, if a, a — b € F, then
b e F. It is clear that if F' is a deductive system, a < b and a € F, then b € F.
The set of all deductive system of a BCK-algebra A is denoted by Ds(A). The
deductive system generated by a set X C A is denoted by (X). Let us recall
that

(Xy={a€eA:21 - (...(xy, —a)...) =1 for some z1,...,2, € X}.

In particular, (z) ={a € A: 2 - (...(x —a)...) =2z =, a=1}.

Let A be a BCK-algebra. In [9] (see also [10]) it was proved that the struc-
ture (Ds(A), V, A, {1}, A) is a bounded (infinitely) distributive lattice where the
operations A and V are defined by:

ANE, =FNE
BVE, ={acA:Ia,y) € A X Fy; 2 — (y = a) =1}.
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We note that
Fv{a)={ceA:a—, ceF for somen >0}

for F' € Ds(A) and a € A. Indeed, let ¢ € F'V (a). Then there exist 2 € F' and
n >0 such that x — (y > c¢)=1land a —», y=1. Sincex — (y > ¢)=1€ F,
y—ceF. So,y—c<(a—npy) —(a—pc)=1—(a—,c)=a—,c€eF.

2 Irreducible deductive systems

In (8] the separation theorem for BCK"-algebras was proved. In this section
following the paper [1], we prove a separation theorem for any BCK-algebra.
Let A be a BCK-algebra. A deductive system I is irreducible if and only if
for any F1, Fy € Ds(A) such that F' = 7 N Fy, we have F = I or F = F». We
denote by X (A) the set of all irreducible deductive systems of a BCK-algebra A.

Lemma 2 Let A be a BCK-algebra. Let F' € Ds(A). Then F is irreducible if
and only if for every a,b ¢ F there exist ¢ ¢ F and n > 0 such thalt a —, ¢,
b—, ceF.

Proof =) Leta,b ¢ F. Let us consider the deductive systems F,, = (F U {a}) =
FV{ay and F, = (FU{b}) = F Vv (b). Since F # F, and F # F,, then
by irreducibility of F' we have F' C F, N F, . It follows that there exists
ce(F,NF,)—F. Then a —, ¢ € F and b —,, ¢ € F for some n,m > 0. If we
assume that n > m, then by property P4 we have that b —,, ¢ < b —,, ¢. So,
a—,c€Fandb—, ceF.

<). Let F1, Fy € Ds(A) such that F' = F; N F5. Suppose that F' # I and
F # F5. Then there exist a € Fy — F and b € F» — F. So, by the assumption,
there exists ¢ ¢ F' and n > 0 such that « —,, ¢ € F and b —,, ¢ € F. As,
a, & —, ¢ € Fy and F} € Ds(A), then ¢ € Fy. Similarly, ¢ € Fy. Thus,
c € F1 N F; = F, which is a contradiction. O

Let A be a BCK-algebra. A subset [ of A is called an ideal of A if:
1. Ifbe ] and a < b, then a € [.
2. If a,b € I there exists ¢ € I such that a < cand b < c.

The set of all ideals of A will be denoted by Id(A).

Theorem 3 Let A be a BCK-algebra. Let F' € Ds(A) and I € Id(A) such
that FNI = (. Then there exists P € X(A) such that F C P and PN 1 = .

Proof Let us consider the following subset of Ds(A):
F={HeDs(A): FCHand HNI =(}.

Since F' € F, then F # (). It is clear that the union of a chain of elements of F
is also in F. So, by Zorn’s lemma, there exists a maximal element P of 7. We
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prove that P € X(A). Let a,b ¢ P and let us consider the deductive systems
P, = (PU{a}) and P, = (PU{b}). Clearly, P C P, N P,. Then, P,,P, ¢ F.
Thus, P, NI # () and P, NI # (. It follows that there exist z,4 € I such that
a —y, x € Pand b —,, y € P for some n,m > 0. Suppose that m < n. Then
b—,y<b—,yec P. Since I is an ideal, there exists ¢ € I such that x < ¢
and y <c So,a—,x<a—,c€Pandb—,y<b—, ce P. Therefore, by
Lemma 2, we conclude that P € X(A). O

Corollary 4 Let A be a BCK-algebra. Let F' € Ds(A).

1. For each a ¢ F there exists P € X(A) such that a ¢ P and F' C P.
2. F=N{Pe X(A): FCP).

3 Annihilators

Let us recall that a Heyting algebra is an algebra (A4,V,A,=,0,1) of type
(2,2,2,0,0) such that (A4,V,A,0,1) is a bounded distributive lattice and the
operation = satisfies the condition: ¢ A b < ¢ if and only if ¢« < b = ¢, for
all a,b,c € A. The pseudocomplement of an element 2 € A is the element
¥ =x=0.

Let A be a BCK-algebra. Let a € A. Define the set [a) = {x € A:a < z}.
We note that in general the set [a) ¢ Ds(A).

For each pair F, H € Ds(A) let us define the subset /' = H of A as follows:

F=H={acA:[a)NFCH}.
Theorem 5 Let A be a BCK-algebra. Let F, H € Ds(A). Then
1. F= H € Ds(A).
22 F=H={xcA:(x— f)— fe€H for each f € F}.
3. (Fi(A),V,A\,=,{1}, A) is a Heyting algebra.

Proof 1. Since, [1)NF ={1} C H,thenl e F= H.
Let 2, 2 -y € F = H. Then, ) NF C Hand [z — y)NF C H. Let
z € ly)NF. As, y < z, then by the property P5, @ — y < 2 — z. By property
P4., we have z — z € F. Thus,
x—z€[r—y)NF.

On the other hand, as z < (x — 2) — z and z < (z — z) — 2z, we get
(¥ — z) — z € [x) N F. Therefore,

r—z (t—2)—>2z€H,

and consequently z € H. So, F = H € Ds(A).
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2. We prove that
F=HCG={zcA:(x— f)— feHforeach f € F}.

Let « € A such that [x) N F C H. Let f € F. Since, 2z < (x — f) — f and
f<(@—f)— fythen (2 — f) = fe[z)NF C H. Thus, 2 € G.

Let 2 € G. Let y € A such that z <y and y € F. Since (x —y) »y € H
andx —y=1,thenl - y=y € H. Thus,z € FF = H.

3. Let F, H, K € Ds(A). Then it is easy to check that

FNHCK ifandonly if F C H= K.
Thus, (Ds(A),V,A,=, {1}, A) is a Heyting algebra. O
As a corollary we have the following result, first given by M. Kondo in [7].

Corollary 6 Let A be a BCK-algebra. The annihilator of a deductive system
F' is the deductive system

Fr=F={1}={zcA:[zx)nF={1}}.
Proof It is immediate by the above theorem. O

For BCKY-algebras we can give the following result which generalize a similar
result given by M. Kondo in [7] for commutative BCK-algebras.

Proposition 7 Let A be a BCK"-algebra. Then for every F € Ds(A)
F*={zxcA:x2V f=1 foreach f € F}.

Proof Let € A such that 2V f = 1 for each f € F. We prove that
[) N F = {1}. Let a € A such that x < e and ¢ € F. Thena =2 Va = 1.
Thus, z € F'*.

Let z € F*. Then [) N F = {1}. Since z < a2V f, f < aV f, for each
f € F, and as F is increasing, then 2 V f € [) N F. Thus, 2V f = 1, for each
fekr. O

Now we prove that the annihilator of a subset X is the annihilator of the
deductive system generated by X. This result was proved for Tarski algebras
in [2].

Theorem 8 Let A be a BCKY -algebra. Then for every subset X of A, we have
X* = (X)*.
Proof Since X C (X), then (X)* C X*. Let € X*. We prove that for every

a € (X), xVa = 1. Suppose that there exists ¢ € (X) such that a V2 # 1.
Then there exist x1,...,x; € X such that

21— (22— ... (xy —a)...) =1

As 2z e X*, 2Vx; =1 for every z; € {x1,...,2}. Since, aVa # 1, by Theorem
3 there exists an irreducible deductive system P such that © ¢ P, a ¢ P and
taking into account that z V a; = 1, then a; € P for every a; € {x1,..., 2k}
But since, 1 — (2 — ...(2py —a)...) =1 € P, then a € P, which is a
contradiction. Thus, ¢ Vo =1 for every a € (X) and consequently z € (X)*.

O
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