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Abstract

We present fully nonlinear time-dependent simulations of the gravity driven flow of thin wetting liquid films. The

computations of the flow down a homogeneous substrate show that the contact line where liquid, solid, and gas phase

meet becomes unstable and develops patterns. These computations are extended to inhomogeneous surfaces, and show

that inhomogeneity can induce instability of the fluid front. In particular, we analyze flow on patterned surfaces, where

surface inhomogeneity is introduced in a controllable manner. We discuss the conditions that need to be satisfied so

that surface patterns, lead to predictable selective wetting of the substrate. Applications of these results to

technologically relevant flows are discussed.
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1. Introduction

The flow of thin films is relevant in a number of

different fields, such as engineering (microchip

production), biology (lining of mammalian lungs),

and chemistry (flow of surface active materials).

These flows can be driven by gravitational (flow

down an inclined plane), centrifugal (spin coating),

or Marangoni forces. In many situations, the fluid

fronts become unstable leading to formation of

patterns (fingers or triangular saw-tooth patterns),

and resulting in uneven or partial surface coverage.

Very often, these instabilities are undesirable in

technological applications since they may lead to

formation of dry regions or other defects.

In this work, we concentrate on perhaps the

simplest of these problems, the flow of a thin film

down an inclined plane. This configuration still

retains the most important aspects of the problem,

while its relative simplicity allows for detailed

theoretical, computational, and experimental ana-

lysis. One hopes that if this problem can be

understood in detail, the analysis and the results

can be extended to more involved configurations,
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such as those involving flows on chemically etched
substrates [1,2]. Another important reason for

analyzing the gravity driven flow is that experi-

ments are relatively easy to perform, so that the

theoretical and computational results can be

verified in a straightforward fashion. Further, the

main results are scale-independent, allowing for

rescaling of macroscopic experiments/simulations/

theory to micro or even shorter scales (in the case
where nanoscales become relevant, one needs to

include contact line tension (see, e.g. Pompe [3])).

Experiments are usually performed by releasing

fluid in some controllable fashion at the top of an

incline. After some time, the initially straight

contact line, where liquid, gas, and solid phase

meet, becomes unstable with respect to transverse

perturbations. It has been conjectured that this
instability is related to the formation of a capillary

ridge in the fluid profile, just behind the advancing

contact line. Silvi and Dussan [4] expanding on the

pioneer work by Huppert, [5] showed that the

wetting properties of the fluid played an important

role in instability development and the degree of

the surface coverage. Very recently, the experi-

ments by Johnson [6] and Johnson et al. [7], as well
as the computations by Diez and Kondic [8,9]

show that another important parameter is the

inclination angle; since it influences not only the

rate of growth of the patterns, but also modifies

their shape.

Theoretical analysis of the problem requires, in

the first place, resolving the so-called ‘contact line

paradox’. As it is well known, assuming standard
no-slip boundary condition at the contact line

leads to a divergence of energy dissipation (see e.g.

Dussan [10] de Gennes [11] or Haley and Miksis

[12]). This problem is typically approached by

either relaxing the no-slip boundary condition, or

by assuming the presence of a thin precursor film

in front of the propagating contact line. Both

approaches introduce a short length scale into the
problem, thus requiring analysis of the influence of

this additional parameter on the stability.

The dynamics of the main body of the fluid film

is typically approached using lubrication approx-

imation. Within this framework, an initial insight

into the instability results from the linear stability

analysis (LSA). Troian et al. [13] perform LSA for

the flow down a vertical plane and show that there
is a band of unstable modes, with short wave-

lengths stabilized by surface tension. Bertozzi and

Brenner [14] extend the analysis to the general case

of the flow down an inclined plane, and show that

the normal component of gravity (hydrostatic

term) shifts the mode of maximum growth to

longer wavelengths, and also tends to stabilize the

flow by decreasing the growth rate of the instabil-
ity. This stabilizing effect appears to be so strong

that it completely removes the instability for very

small inclination angles, in contradiction to ex-

periments. The work by Bertozzi and Brenner [14],

as well as a very recent work by Ye and Chang

[15], attribute this discrepancy to the fact that the

surface itself is not perfect, and analyze how noise

could propagate from the substrate to the fluid
front and lead to instability.

Our previous works [8,9] analyze instability

development in the flow of thin films on homo-

geneous surfaces. In this work, we concentrate on

the influence of heterogeneity of the surface on the

instability development, with particular emphasis

on the flow on patterned surface and resulting

selective wetting. This study is partially motivated
by an earlier work by Kondic and Bertozzi [16]

which has shown that perturbations of the sub-

strate can play a significant role in development of

instability. However, in [16] this conclusion is

reached indirectly, by observing the influence

that a perturbation of the substrate has on the

height of the capillary ridge, which is itself related

to the instability development. Here, we report
results of fully nonlinear simulations in 2�/1 space

dimensions (thickness of the fluid is averaged over

within the framework of lubrication approxima-

tion). Although our simulations concentrate on

the gravity driven flow of macroscopic thin films,

the results are closely related to the recent micro-

scale experiments of thermally driven flow on

patterned silicone wafers substrates [1,2].

2. Formulation of the problem

Dynamics of thin liquid films is typically

analyzed within the framework of lubrication

approximation. The assumptions of this approach,
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as well as the details of our computational
methods are given elsewhere [8,9,17]. For comple-

teness, here we give the basic outline, and refer the

interested reader to these earlier works for details.

Within the lubrication approximation, the velo-

city of the fluid is depth-averaged over the thick-

ness of the film (see e.g. Greenspan [18]).

Following this approach, one obtains the average

fluid velocity, v�/(u , v ),

v��
h2

3m
[9p�rg sin ai]; (1)

where 9�/(@x , @y ), h is the fluid thickness, p the

pressure, m the viscosity, r the density, g the
gravity, and a is the inclination angle of the plane

of the substrate. The coordinate frame is chosen so

that i points down the incline, and j is the

transverse direction in the plane. We note that

Eq. (1) assumes no-slip boundary condition at the

fluid�/solid interface. The pressure includes the

hydrostatic component, and the contribution fol-

lowing from the Laplace�/Young boundary condi-
tion at the fluid�/air interface

p��g92h�rgh cos a; (2)

where g is the surface tension. Assuming fluid
incompressibility, the continuity equation gives

@h

@t
��9(hv)

��
1

3m
9[gh3992h�rgh39h cos a

�rgh3 sin ai]: (3)

To balance viscous and capillary forces in Eq.

(3), we scale h by the fluid thickness far behind the

contact line, hc, and define the scaled in-plane
coordinates and the time by (/x̄; ȳ; z̄)/�/(x /xc, y /xc,

t /tc), where

xc�
�

a2hc

sin a

�1=3

; tc�
3m

g

a2xc

h2
c sin a

; (4)

and a�//

ffiffiffiffiffiffiffiffiffiffi
g=rg

p
is the capillary length. The velocity

scale is chosen naturally as U�/xc/tc, and the

capillary number is defined as Ca�/mU /g . Using

this nondimensionalization, Eq. (3) for h̄/�/h /hc is

given by (dropping the bars)

@h

@t
�9[h3992h]�D(a)9[h39h]�

@h3

@x
�0; (5)

where the single dimensionless parameter D (a )�/

(3Ca )1/3cot(a ) measures the size of the normal

component of gravity. In this work we mainly

concentrate on the flow down a vertical plane,

where D�/0.
As mentioned in the Section 1, all the theoretical

and computational methods require some regular-

izing mechanism*/either assumption of a small

foot of fluid in front of the apparent contact line

(precursor film, see the works by Troian et al. [13],

Bertozzi and Brenner [14] or Spa and Homsy [19]),

or relaxing the no-slip boundary condition at

fluid�/solid interface (see e.g. Greenspan [18]
Dussan [20] or Hocking and Rivers [21]). Diez et

al. [17] have recently performed an extensive

analysis of the computational performance of

these regularizing mechanisms applied to the

spreading drop problem. In that paper it is shown

that the results are rather insensitive to the choice

of the model, consistently with, e.g. Spa and

Homsy [19]. However, the computational perfor-
mance of the precursor film model is shown to be

much better than that of various slip models. For

this reason, in this work we also use a precursor

film of thickness b0 (scaled by hc) as a regularizing

method.

The computational domain is chosen as a

rectangle defined by 05/x 5/Lx and 05/y 5/Ly

which is divided into Nx �/Ny node points (xi , yj )
with i�/1, . . ., Nx and j�/1, . . ., Ny . Eq. (5) is then

discretized in space using a central finite difference

scheme. The boundary conditions are chosen to

model constant fluid flux far behind the fluid

front. That is, we assume that there is an infinite

stream of fluid far behind the front that keeps the

fluid height constant there. Within our nondimen-

sionalization scheme, this leads to h (0, y , t)�/1.
We require that far ahead of the moving front, the

fluid height is equal to the precursor thickness,

h(Lx , y , t)�/b0, and also that the streamwise

gradients of the fluid height vanishes there, i.e.

hx(0, y , t)�/hx (Lx , y , t)�/0. At the side bound-

aries y�/0 and y�/Ly , it is convenient to use hy(x ,
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0, t)�/hy(x , Ly , t)�/0, hyyy (x , 0, t )�/hyyy (x , Ly,
t)�/0. This choice enforces no-flow across these

boundaries. Since the tangential component of the

fluid flux is let free, these boundaries could be

thought of as ‘slipping walls’. Due to the fact that

odd derivatives are set to zero there, the bound-

aries can be also considered as symmetry planes.

Time discretization is performed using implicit

Crank�/Nicolson scheme. The advantages of an
implicit scheme for this problem are obvious: the

stability requirement for an explicit scheme is that

Dt B/Cmin[Dx , Dy ]4, where Dt is a time step, and

C is a positive constant. Thus, an explicit scheme

requires very short time steps for a reasonable

spatial accuracy. The nonlinear system of alge-

braic equations that results after time discretiza-

tion is linearized using Newton method; the
linearized problems are then solved using iterative

biconjugate gradient method. Clearly, the simula-

tions are computationally intensive, so that sig-

nificant effort has been put in producing an

efficient method. More details regarding effi-

ciency, computational cost, and other issues such

as convergence and accuracy of our method are

given in [8,9].

3. Stability of the flow

LSA [13,14,19] of the governing Eq. (5) has

showed that the flow is unstable with respect to

perturbations of the fluid front in the transverse

direction. LSA is performed by expanding to the

first order all the nonlinear terms in Eq. (5) about
the base state, which is obtained by assuming that

the fluid profile is y-independent. Fig. 1 shows the

base states for two values of the precursor film

thickness, resulting from the simulations of Eq.

(5), where it is assumed that h�/h (x , t) only. We

note the presence of the capillary ridge just behind

the advancing contact line and recall that it is

closely related to the instability development
[13,14,19]. By comparing Fig. 1(a and b), we

observe that the capillary ridge is increased in

size as the precursor thickness b0 is decreased.

Recent experiments by Ye and Chang [15] show

that the instability could be significantly enhanced

if b0 is decreased; correspondingly, one can con-

jecture that there is strong correlation between the

height of the capillary ridge and the instability of

the flow; we will use this observation in what

follows. For later reference we note that the fluid

flows slower as b0 is decreased, since smaller b0

provides more resistance to the flow. This is

intuitively obvious since the limit b00/0 is singular;

in the limiting case b0�/0, no-slip boundary

condition would not allow for any dynamics in

the contact line region.

Going back to LSA, we note that the surface

tension (responsible for the fourth order term in

Eq. (5)) suppresses the instability of short wave-

lengths, while the component of the gravity in the

downhill direction plays destabilizing role. As a

results, there is a critical wavelength, lc, where

stability changes from unstable to stable (we note

that l�/� is marginally stable as a consequence

of translational invariance of the unperturbed

system). Although LSA is valid for short times

only, one expects that the distance between result-

ing patterns in actual experiments is close to the

wavelength of maximum growth, l*, from LSA.

For future reference, we note that lc:/8 and l*:/

14 for D�/0 [13].

Fig. 1. Snapshot of the fluid profiles in dt�/2 intervals (D�/0).

The only difference between (a) and (b) is the precursor film

thickness which is b0�/0.01 (a) and b0�/0.005 (b).
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Our computational results [8,9] for the flow

down a homogeneous surface confirm the main

predictions of LSA. Fig. 2 shows an example of

these results, where the fluid front has been

perturbed at t�/0 by a superposition of N�/50

modes characterized by random amplitudes and

wavelengths l0,i �/2Ly /i , i�/1, . . ., 50. The main

result relevant to the discussion that follows is that

the resulting distance between the developed

patterns is nonuniform, although it is on average

relatively close to l* from LSA (additional

simulations which use different distributions of

initial wavelengths and different domain size show

that this average value is close to 12). This

nonuniformity is not a consequence of, for exam-

ple, the boundary conditions (in the simulations,

the boundaries are perfect), but it is an intrinsic

property of the flow.

LSA (and the computations mentioned above

[8,9]) assume presence of small perturbations of

the contact line in the transverse direction, that are

necessarily present in any physical experiment. Let

us, however, ignoring these perturbations, assume

that the position of the fluid front is initially y-

independent, and discuss the influence that per-

turbations of the surface itself can have on the

stability of the flow. In this work, we model these

perturbations by perturbing the thickness of the

precursor film. While it might appear that impos-

ing perturbations of this kind is rather restrictive
since a precursor film is not always present in

physical experiments or technological applica-

tions, this approach is actually quite general. As

mentioned earlier, a number of works [11,17,19]

have shown that the main features of the flow are

not influenced significantly by the choice of the

regularizing method at the contact line; for the

macroscopic flow properties (in particular, in-
stability development), the main factor is the

actual length-scale that is introduced at the front,

and not the regularizing method itself. This length-

scale determines the degree of energy dissipation at

the front, and one expects that its spatial variation

can have significant influence on the macroscopic

flow properties. We note that spatially dependent

slip coefficient was used some time ago by Hock-
ing [22] and more recently in weakly nonlinear

analysis by Hoffman et al. [23].

In a recent work, Kondic and Bertozzi [16]

analyzed the influence that a localized perturba-

tion of the precursor thickness has on the flow in

1D geometry (the y direction is ignored). Fig. 3

shows an example of these results: as the main

body of the fluid flows over a perturbation
(imposed at x�/20 in Fig. 3), the height of the

capillary ridge is increased, implying, as pointed

out above, that the stability properties of the flow

may be modified. Correspondingly, it is reasonable

to assume that surface inhomogeneities (which we

model by perturbing precursor thickness) might

lead to flow instabilities. Fig. 3 shows that a small

perturbation of the precursor film (see inset) is
significantly amplified; modification of the pre-

cursor on the scale of 1% of the thickness of the

main body of the fluid leads to large changes of the

height of the capillary ridge. We note that only

perturbations that are sufficiently wide influence

significantly the height of the capillary ridge [16].

This result is similar to the solutions of rather

different problem: planarization during spin coat-
ing over perturbations (trenches) whose depth is of

the same order as the thickness of the main body

of the fluid [24] (the perturbations considered here

are much more shallow).

Now we concentrate on using this extreme

sensitivity of the macroscopic flow to small

perturbations of the precursor to produce ‘con-

Fig. 2. Contour plot of the fluid thickness. Initial profile is

perturbed by a superposition of 50 modes characterized by

random amplitudes. Here D�/0 and b�/0.01. Note that the z

scale is considerably stretched for presentation purposes.

L. Kondic, J. Diez / Colloids and Surfaces A: Physicochem. Eng. Aspects 214 (2003) 1�/11 5



trollable’ instability. The main idea is that one

could prepare the surface in such a way that the

instability that develops resembles the effects of a

selective wetting mechanism, as in the recent

microscopic experiments [1,2]. In these experi-

ments, the patterned surface (alternating stripes

of bare and coated SiO2), is prepared in a rather

elaborate fashion, and the flow is driven by

thermocapillary shear stress at the air�/liquid

interface. Correspondingly, the problem is much

more complicated (and characterized by much

shorter length-scales) than the gravity driven

flow outlined here. However, due to the similar

nature of instability in these two problems, one

expects that it shall be possible to prepare a

macroscopic experiment in which the stripes (or

any other desired patterns) are imposed on the

base surface in some simple manner that allows for

relatively straightforward experiments.

From modeling point of view, one also desires

to introduce perturbations in some simple manner.

In the microscopic experiments mentioned above

[1,2], the perturbations result from different (hy-

drophilic/hydrophobic) wetting properties of the

stripes made out of different materials. Modeling a

flow where fluid wetting properties are nonuni-

form would require significantly more involved

computational and theoretical methods, since an

additional variable, the contact angle, comes into

play. However, we may use the fact that an

important aspect of the flow on a surface char-

acterized by different wetting properties is that the

fluid prefers flowing on the hydrophilic portions.

In the simulations, we can achieve similar effect by

modifying the precursor film thickness, since this
parameter defines resistance to the flow, as it can

be seen in Fig. 1. Correspondingly, we model the

patterned substrate by modifying the precursor

film thickness appropriately. While the manner in

which the perturbations are imposed definitely

influences the details of the flow, one hopes that

relatively crude modeling of surface heterogeneity

by modifying the precursor film still provides good
insight into the main aspects of the flow. This is

subject of the next section.

4. Flow on patterned surfaces

In what follows, we modify the precursor by

imposing ‘channels’ in the streamwise direction.

Fig. 4 shows these channels: they have flat central
region of a given depth, d (in the units of b0), and a

transition region surrounding the flat part and

providing smooth change from the channels’

bottoms to the unperturbed precursor. These

transition regions are needed since lubrication

approximation assumes weak gradients of the fluid

Fig. 3. Snapshot of the 1D fluid profile as it flows over a precursor perturbation. Th inset shows the perturbation itself (note different

scale).
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thickness, with which a sharp interface between

channels and unperturbed precursor would not be

consistent. On the sides of the channels, the

precursor thickness of these regions is specified

as b (y)�/b0[1�/d exp(�/wt(y�/yc)
2)], where wt de-

fines the width of the transition region, and yc is

the position of the edge of the bottom part of a

channel. We note that the results are almost

insensitive to the particular functional form, or

to the value given to wt; we typically use wt�/4,

which gives reasonable (order 1) width of the

transition region. There is also analogous transi-

tion area in front of the channel. In the results that

follow, we define the effective width of the

channels, w , as the width of the region in which

the precursor thickness is less than b0(1�/d )/2 (see

Fig. 4).

Fig. 5 shows an example of our results for the

flow down a vertical plane (D�/0), and unper-

turbed b0�/0.01. At t�/0, the time evolution is

started using the initial condition obtained from

1D simulations shown in Fig. 1(a). The precursor

film is thinner in the channel region, so, as

mentioned earlier, there is more resistance to the

flow there. The fluid preferentially flows in the

‘easy’ flow region in between the channels. As a

result, finger-like patterns form, similarly to the

results shown in Fig. 2, where the contact line itself

is perturbed. There are, however, significant dif-

ferences between the results shown in Figs. 2 and

5. First, the flow over perturbed precursor is

characterized by uniform distance between the

fingers, which also all grow at the same rate (as

they should, since there is no element of random-

ness in these simulations). Second, the distance

between the fingers in Fig. 5 is determined by the

imposed ‘wavelength’, or distance, d , between the

precursor perturbations (d�/10 in Fig. 5). On the

other hand, the average distance between the

fingers shown in Fig. 2 is about 12. We note that

in Fig. 5 and the later figures, the channels are

arranged in such a way that y�/48 is the symmetry

line; consequently, all the results are symmetric

with respect to the middle of the domain. The

distance from the outermost channels to the

domain boundaries (y�/0,96) can vary, and this

variation is responsible for different growth of the

boundary fingers in Fig. 5 and the following

figures.

Similar results to those shown in Fig. 5 have

been observed in the experiments on chemically

etched silicon wafers [1,2]. In these experiments, it

is also observed that there are limits to how closely

to each other the fingers can be made to flow. In

what follows, we verify that our simulations can

reproduce this effect, and also analyze the im-

portance of various parameters that influence the

Fig. 5. Contour plot of the fluid as it flows over striped

substrate. The part (a) shows the initial configuration, and the

part (b) shows well developed fingers that propagate between

the channels. Effective width of the channels is w�/3.5, and the

distance between their centers is d�/10. Other parameters are as

in Fig. 2. Note that y�/48 is the symmetry line.

Fig. 4. Cross section of the channels imposed on the precursor

film.
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flow. In particular, we explore whether it is only

the imposed d that is important in determining the

flow, or whether it is also the relative width of the

channel region compared with the unperturbed

precursor region that matters.

Fig. 6 shows the snapshots of the fluid fronts as

d is decreased from d�/10 (a) to d�/8 (b) and d�/

6 (c). By comparing the results shown in (a) and

(b) we notice that the fingers in the case (a)

propagate faster compared with (b); this result

can be explained qualitatively based on LSA that

predicts larger growth rates for l�/10 compared

with l�/8. In the case (c), the fluid does not follow

the pattern imposed by the surface. To understand

this result, let us recall that LSA predicts change in

stability about lc�/8, which is also the wavelength

imposed by the precursor at which we observe

transition in the flow behavior. We conclude that

for d +/8, the surface tension prevents the fluid

from following the imposed patterns. However,

even for d +/8, the imposed surface patterns do

lead to instability, but characterized by rather

irregular growth rates and separation of the

patterns. The fingers still tend to follow easy

flow regions, but this tendency is in obvious

competition with capillary forces; average emer-

ging distance between the fingers is about 12,

which is the same as in the case of the flow on

unperturbed precursor where random noise is

superimposed on the initial profile1, shown in

Fig. 2.

Next, we analyze how relative widths of the

channel and the unperturbed region influence the

flow. Fig. 7 shows the results where d�/8, and the

effective channel width is changed from w�/2.5 (a)

to w�/5.5 (b) (w�/3.5 in Fig. 6). While there is no

significant difference in the results, we observe,

perhaps surprisingly, that there is a particular

channel width for which finger tips propagate the

fastest (this is w�/3.5 among the cases presented

here). This result can be qualitatively explained as
Fig. 6. Snapshots of the fluid profiles in dt�/2 intervals.

Effective width of the channels (the regions covered by small

circles) is w�/3.5, and the distance between the centers of the

channels is d�/10, 8, 6 in (a), (b) and (c), respectively. Other

parameters are as in Fig. 5, the results are symmetric with

respect to y�/48, as explained in the text.

1 We note that channel pattern used in Fig. 6c is slightly

different at y�/3D (0,96). See [25] for more details.

Fig. 7. Snapshots of the fluid profiles in dt�/2 intervals. The

distance between the channels is d�/8, and the effective widths

are w�/2.5 and 5.5 in (a) and (b), respectively (w�/3.5 is shown

in Fig. 6(b)). Other parameters are as in Fig. 5.
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follows. If the width of easy flow regions, d�/w , is

small, fluid as a whole is slowed down significantly

by the channels. If, on the other hand, the width of

the channels, w , is small, the channels do not slow

down the fluid enough to produce large growth

rate of the fingers. Of course, in the limits w 0/0,

or w 0/d the fingers disappear completely.

Another consequence of having rather narrow

regions of easy flow (small d�/w ) is that the width

of the fingers is being slightly reduced if d�/w is

less than the natural finger width, which can be

estimated, e.g. from Fig. 2. We note that we have

not observed any influence of the relative width of

easy and difficult flow regions (i.e. (d�/w )/d ) on

the distance between the emerging fingers. We

have also performed simulations with different

channel depths, with the main result that deeper

channels enhance the finger formation and

growth, as expected.
Next question to ask is what happens if the

distance between the channels is considerably

larger than the wavelength of critical growth, lc.

In our simulations of flow on uniform surfaces, we

have observed that if the contact line is perturbed

with very long wavelengths, superharmonic fre-

quencies can be excited through nonlinear mode

(self) interaction [9]. Naturally, one could expect

similar effect in the flow on a patterned surface.

Indeed, Fig. 8 shows that this is exactly what

happens. In Fig. 8(a), where d�/20 we observe the

beginning of excitations of modes characterized by

shorter wavelengths; however, continuous channel

presence suppresses this instability. The result is

that there is still a single finger in each easy flow

region between the channels. On the sides of the

computational domain, where there is more space

available for growth, shorter wavelengths (i.e.

more than one finger) develop. In Fig. 8(b),

however, d�/30 leaves enough space for the

development of three fingers in each of easy flow

regions. Interestingly enough, the figure shows

that initially two fingers develop, and than ‘sec-

ondary’ instability leads to appearance of the third

one.

Until now, we have concentrated on the fluid

flow down a vertical plane. If the surface is

inclined, it is known that the instability is reduced,

the shape of the patterns is changed from finger-

like to triangular ones, and the critical wavelength

is shifted to longer wavelengths (see [8,9] and the

references therein). Therefore, if our assumption

that the capillary forces are responsible for the

change in the flow pattern as the channels are

shifted closer to each other (viz. Fig. 6) is correct,

then this effect should be modified as D is

increased.
Fig. 9 shows the fluid fronts for D�/1, and d�/

10 (a), and d�/8 (b). Here we show the flow for

longer times (dt�/10 between the consecutive

Fig. 8. Snapshots of the fluid profiles in dt�/2 intervals for

large distance between the channels: d�/20, 30 in (a) and (b),

respectively. All other parameters are as in Fig. 5.

Fig. 9. Snapshots of the fluid profiles in dt�/2 intervals for the

flow down an inclined plane (D�/1). Here d�/10 (a) and d�/8

(b). All other parameters are as in Fig. 5.
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snapshots), and in longer domain (200, compared
with 60 for D�/0). Obviously, the instability is

much weaker compared with D�/0 case. What is

more interesting is that for d�/10 (Fig. 9(a)), we

note deviation from perfect periodicity that is

different from the D�/0 case (viz. Fig. 6(a)). For

d�/8, periodicity of the imposed substrate has

been lost, and the front parts of the triangular

fluid patterns follow only every second of the easy
flow regions (Fig. 9(b)). Since for this d the flow

down a vertical plane does follow the periodicity

of the substrate (viz. Fig. 6(b)), this result clearly

shows that there is consistency between a shift of

lc in LSA and the minimum distance between the

channels as D is increased. Due to the fact that

surface tension is important factor that determines

lc, we conclude that one may use a fluid char-
acterized by lower surface tension, if the goal is to

produce closely spaced patterns. The manner in

which other fluid and flow variables influence this

minimum distance can be readily obtained from

the scales used to nondimensionalize the governing

Eq. (5), see Eq. (4). Presumably the same ideas can

be extended to other similar flows (see [1] for an

example).

5. Conclusion

In this paper, we present computational results

that outline the connection between natural in-

stability of gravity driven thin liquid films on

homogeneous surfaces, and the flow of thin films
on patterned (stripped) surfaces. Heterogeneity of

the surface is modeled by varying the thickness of

the precursor film. An important observation is

that, even in this relatively simple model, one can

obtain very similar results as in the related, but

much more involved recent experiments of the

flow on etched silicon wafers, driven by thermo-

capillary shear stresses [1]. In our system, we find
that the shortest attainable distance between con-

secutive fingers is approximately equal to the

critical wavelength obtained from LSA. Further,

we find that this shortest distance is not signifi-

cantly influenced by the relative widths of easy and

difficult flow regions, although the finger widths,

and the growth rates of propagating fingers might
be influenced.

Another interesting result involves the flow on

patterned surfaces where the wavelength imposed

by the surface is larger than the wavelength of

maximum growth from linear stability theory. In

that case, we find that the presence of channels

prevents the formation of multiple fingers in the

easy flow region, although for very large distance
between the channels, these multiple fingers do

form.

While the gravity driven flow of thin liquid films

is rather simple, it is closely related to technologi-

cally more relevant flows, such as spin coating, dip

coating, Marangoni driven flows, etc. We expect

that thorough understanding of this simple flow

will also improve our understanding of these other
more involved flow geometries, as well as of their

applications.
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