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In this work we present the explicit representations of the Voigt function

K(a, b) (the convolution between a Gaussian and a Lorentzian function),

the function N(a, b) defined as the convolution of Gaussian and dispersion

distributions as well as the complex error function erf(a + ib), all in terms of

the Kummer functions M(α, γ, a2). The expansions are valid for all values

of the parameter a (the relation between Lorentzian and Gaussian widths

at the half maxima). Previous analytical works were known only when the

parameter a ≤ 1, or were based on numerical interpolations or empirical

approximations. Also, new series and asymptotic expansions are presented.

PACS numbers: 32.70.Jz, 33.70.Jg, 34.20.Cf

1. Introduction

The Voigt function K(a, b) and the complex error function erf(a + ib) are
important in diverse branches of physics and applied mathematics; K(a, b) is the
convolution between Gaussian and Lorentzian probability distributions. It is use-
ful in physical sciences whenever the two distributions arise independently. In
fact, it is used in the study of terrestrial and stellar atmospheres, in atomic and
plasma physics (analysis of symmetric and asymmetric line profiles [1]) as well
as in the physics of nuclear-fission reactors. Jointly with the function N(a, b),
they are important in the theory of matter-radiation interaction [2]. From the
practical point of view, many techniques were devised for computing K(a, b) more
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or less efficiently. K(a, b) is related to the complex error function erf(a + ib);
see below, Eq. (8) and this relation is the basis of several algorithms to compute
it [3]. Researchers did not find a closed-form expression for K(a, b) for all values
of the parameter a (see below, Eq. (4)) and the expression has been treated from
the graphical and numerical points of view. Many empirical approximations and
computational procedures were (and are) currently published in diverse physical
journals. Moreover, one of them is devoted exclusively to the problems of radiative
transfer, where the Voigt function is of paramount interest [4].

In this work, we present explicit representations of K(a, b), N(a, b), and
erf(a + ib) in terms of the Kummer functions M(α, γ, a2), for all values of the pa-
rameter a. This is interesting because some computer algebra systems (CAS, eg.
Maple) contain the programmed Kummer functions. The more relevant results are
presented in Eqs. (14, 16, 26) and (28). Furthermore, we deduce other integral rep-
resentations for W (z) = exp(z2)(1− erf(z))/

√
π (see Eqs. (8) and (18)). Finally,

several new series and asymptotic expansions, useful for numerical calculations,
are presented in diverse Appendixes.

2. The Voigt function, first notation and different expressions

There is a wide and confusing variety of notations for the probability distri-
butions; we use the normalized expressions for G(x), L(x), and V (x) which make
the area under the curves equal to the unity. Despite other definitions [5], we write
explicitly the parameter related to the half width at half maximum (HWHM). The
following notation is employed: for the moment, x is the independent variable (see
below, one row before Eq. (6); furthermore, w is used for the parameter giving the
simplest normalized expressions and γ for the HWHM’s; lower index G, L, and V,
indicate Gauss, Lorentz, and Voigt, respectively.

With the above conventions, the normalized Gaussian distribution is

G(x) = G0 exp[−(x/wG)2], (1)

where wG = γG/
√

ln 2 and G0 = 1/
√

πwG. Analogously, the Lorentzian (or
Cauchy) distribution is given by

L(x) = L0
w2

L

(x2 + w2
L)

, (2)

where wL = γL and L0 = 1/πwL. From Eqs. (1) and (2), the convolution between
both functions is given by the normalized expression

V (x) =
(wL/wG)

π3/2

∫ ∞

−∞

e−(x′/wG)2

(x− x′)2 + w2
L

dx′. (3)

Defining the dimensionless parameter a as

a = wL/wG ≡
√

ln 2γL/γG (4)

and the dimensionless variables y, b, and u as
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y = x′/wG, b = x/wG, u = (y − b)/a, (5)

we can write the normalized function Ka(b) ≡ wGVa(b) in the forms

Ka(b) =
a

π3/2

∫ ∞

−∞

e−y2
dy

(y − b)2 + a2
=

1
π3/2

∫ ∞

−∞

e−(au+b)2du

u2 + 1
. (6)

After some manipulations, it can be shown that Eq. (6) is equivalent to

Ka(b) =
1
πa

∫ ∞

0

e−xe−(x/2a)2 cos(bx/a)dx. (7)

Equation (7) is the basis of all our results.

3. The change of notation: the Voigt and dispersion functions,
K(a, b) and N(a, b), respectively

As indicated in Ref. [3], Eq. (6) can be manipulated in terms of the comple-
mentary error function of complex argument as:

Ka(b) = ReW (z) ≡ Re
[
ez2

(1− erf(z))/
√

π
]
, (8)

where [6]

z = a + ib and erf(a + ib) =
2√
π

∫ a+ib

0

exp(−t2)dt, (9)

t being also a complex variable. Therefore, after Eqs. (8) and (9), the parameter
“a” can be considered as a variable and we can change the notation

K(a, b) ≡ Ka(b).

The relation given in Eq. (8) is one of the methods used to devise algorithms
to compute K(a, b) from series and asymptotic expansions of erf(z) [3]. In this
work we proceed in the reciprocal form. Writing W (z) ≡ ez2

(1− erf(z))/
√

π in
the form

W (z) = K(a, b) + iN(a, b), (10)

we found representations of K(a, b) and N(a, b) in terms of the Kummer (or con-
fluent hypergeometric) functions, M(α, γ, a2) [7]:

M(α, γ, a2) = 1 +
α

γ
a2 +

α(α + 1)
γ(γ + 1)

a4

2!
+

α(α + 1)(α + 2)
γ(γ + 1)(γ + 2)

a6

3!
+ . . . ,

and then we evaluate Re(erf(z)) and Im(erf(z)) in terms of M(α, γ, a2).
It is important to remark that, despite the variety of definitions, we have

verified that Eqs. (3, 6, 7) and (8) are consistent between them.
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4. Expansion of K(a, b) and N(a, b) for all values of a

in terms of M(α, γ, a2).

The first step toward the attainment of a compact expression for the Voigt
function is the expansion of K(a, b) in a power series valid for all values of the
parameter a. From Eq. (7) and using the following representation:

cos(bx/a) =
∞∑

n=0

(−1)n

(2n)!

(
b

a

)2n

x2n,

we can write

K(a, b) =
1
πa

∞∑
n=0

(−1)n

(2n)!

(
b

a

)2n

In(a), (11)

with

In(a) =
∫ ∞

0

e−xe−(x/2a)2x2ndx. (12)

The above integral can be expressed in terms of M(α, γ, a2) [8]:

In(a) = 22na
[
a2nΓ

(
2n + 1

2

)
M

(
2n + 1

2
,
1
2
, a2

)

−2a2n+1Γ (n + 1)M
(

n + 1,
3
2
, a2

) ]
/
[
Γ (n + 1)Γ

(
2n + 1

z

) ]

such that

K(a, b) =
1√
π

∞∑
n=0

(−1)nkn(a)b2n; (13)

explicitly

K(a, b) =
1√
π

∞∑
n=0

(−1)n

×
[
Γ

(
2n+1

2

)
M

(
2n+1

2 , 1
2 , a2

)− 2aΓ (n + 1)M
(
n + 1, 3

2 , a2
)

Γ (n + 1)Γ
(

2n+1
2

)
]

b2n. (14)

On the other hand, taking into account that W (z) satisfy the Cauchy–
Riemann conditions, we obtain N(a, b) from

N(a, b) =
∫ (

∂K(a, b)
∂a

)
db. (15)

Deriving Eq. (14), remembering that

dM(α, γ, x2)
dx

=
2αxM(α + 1, γ + 1, x2)

γ
,

integrating and taking into account the well-known properties of the Kummer
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functions [8], we obtain

N(a, b) = − b√
π

∞∑
n=0

(−1)n

[
1

Γ (n + 3/2)
M

(
n + 1,

1
2
, a2

)

− 2a

Γ (n + 1)
M

(
n +

3
2
,
3
2
, a2

) ]
b2n. (16)

The same result can be obtained by developing − sin(bx/a) in Eq. (7) in
place of cos(bx/a). Then, remembering Eq. (10), we can say that

W (z) =
1
πa

∫ ∞

0

e−xe−(x/2a)2 [cos(bx/a)−i sin(bx/a)] dx

=
1
πa

∫ ∞

0

e−xe−(x/2a)2e−ibx/adx, (17)

which is an integral representation of W (z). Furthermore, making the variable
change x = at, and as z = a + ib, other integral representation of W (z) is

W (z) =
1
π

∫ ∞

0

e−zte−t2/4dt, (18)

considered for some authors [1]. However, to our knowledge, Eq. (17) was not
previously reported.

5. Real and imaginary parts of the complex error function

Starting of Eq. (10) and writing

1− erf(z) = C(a, b) + iD(a, b) so erf(z) = [1− C(a, b)]− iD(a, b) (19)

we obtain
√

πe(b2−a2)K(a, b) = [C(a, b) cos(2ab)−D(a, b) sin(2ab)] ≡ W1(a, b) (20)

and
√

πe(b2−a2)N(a, b) = [D(a, b) cos(2ab) + C(a, b) sin(2ab)] ≡ W2(a, b); (21)

then

C(a, b) = W1(a, b) cos(2ab) + W2(a, b) sin(2ab) (22)

and

D(a, b) = W2(a, b) cos(2ab)−W1(a, b) sin(2ab). (23)

Therefore, the real and imaginary parts of erf(z) are

Re(erf(z)) = 1− C(a, b)

= 1−√πe(b2−a2)[K(a, b) cos(2ab) + N(a, b) sin(2ab)] (24)
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and

Im(erf(z)) = −D(a, b)

= −√πe(b2−a2)[N(a, b) cos(2ab)−K(a, b) sin(2ab)] (25)

with K(a, b) and N(a, b) given by Eq. (14) and Eq. (16), respectively.

6. Appendix 1: Expansions of K(a, b) and N(a, b) for a < 1 and a > 1

Although the expressions given by Eqs. (14) and (16) are valid ∀a, for
completeness we present the following expansions for a < 1 and a > 1.
Equations (27–29) are new, to our knowledge.

6.1. K(a, b); expansions for a < 1 and a > 1

The fundamental relation for all evaluations is Eq. (7). In fact, when a < 1,

after replacing

e−x =
∞∑

n=0

(−1)n xn

n!

in that equation, we obtain the rapidly convergent expression (see Eq. 3.952-8 of
Ref. [8]):

K(a < 1, b) =
e−b2

π

∞∑
n=0

(−1)n(2a)n

n!
Γ

(
n + 1

2

)
M

(−n

2
,
1
2
, b2

)
. (26)

This is a better known case because is widely used in astrophysics [9].
For a > 1 there are no published analytical results valid for all values of the

variable b, although it is of interest in plasma physics. After the expansion

e−(x/2a)2 =
∞∑

n=0

(−1)n x2n

n!(2a)2n

and using the results of the cosine transform (Eq. 3.944-6 of Ref. [8]), we obtain
the asymptotic expansion

K(a > 1, b) ∼ 1
π
√

b2 + a2

∞∑
n=0

(−1)n(2n)!
22nn!(b2 + a2)n

cos[(2n + 1) arctan(b/a)], (27)

that we will use below.

6.2. N(a, b); expansions for a < 1 and a > 1

As was indicated after Eq. (16), N(a, b) can be represented by an expression
similar to Eq. (7), by replacing cos(bx/a) by − sin(bx/a):

N(a, b) =
−1
πa

∫ ∞

0

e−xe−(x/2a)2 sin(bx/a)dx.
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Then, working as in the above paragraph and using the results for the sine
transform, we obtain for a ≤ 1

N(a ≤ 1, b →∞) = −2be−b2

π

×
∞∑

n=0

(−1)n(2a)n

n!
Γ

(
n + 2

2

)
M

(
1− n

2
,
3
2
, b2

)
, (28)

whereas for a > 1

N(a > 1, b) = − 1
π
√

b2 + a2

×
∞∑

n=0

(−1)n(2n)!
22nn!(b2 + a2)n

sin[(2n + 1) arctan(b/a)]. (29)

7. Appendix 2: expressions of K(a, b) and N(a, b) for a = 0 and a →∞

7.1. K(a, b)

We note some limits for the integral expression in Eq. (3). As a → 0, the
Voigt integral tends to the Gaussian profile. On the other hand, as a → ∞, the
integral approaches a Lorentzian function. We will see that our expansion (14)
satisfies these requirements. In the following, we call G(b) and L(a, b), respectively,
to the functions G(x) and L(x), when wG = 1 and therefore wL = a.

For a = 0, M(α, γ, a2) = 1 and we get

K(0, b) =
1√
π

∞∑
n=0

(−1)n

n!
b2n =

1√
π

exp(−b2), (30)

that is G(b).
For a → ∞, using the asymptotic expansion for M(α, γ, z) (see the last

Appendix), kn is

kn ∼ (−1)−(n+1)
√

π

Γ ( 2n+1
2 )Γ ( 1−2n

2 )a2n+1

and taking into account that

1
Γ

(
2n+1

2

)
Γ

(
1−2n

2

) =
(−1)n

π
,

we have

K(a →∞, b) ∼ 1
πa

∞∑
n=0

(−1)n(b/a)2n =
1
π

a

(b2 + a2)
,

that is L(a, b).
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7.2. N(a, b)

Analogously to the above section, when a = 0 and the M ′s = 1

N(0, b) = − 1√
π

∞∑
n=0

(−1)n 1
Γ (n + 3/2)

b2n+1; (31)

this sum can be evaluated analytically to

N(0, b) =
i√
π

e−b2erf(ib) =
−2D(b)

π
, (32)

D(b) being the Dawson function [10]

D(b) = e−b2
∫ b

0

et2dt. (33)

For a →∞, the asymptotic expansions of M ′s give us

N(a →∞, b) = − 1
πa

∞∑
n=0

(−1)n

(
b

a

)2n+1

, (34)

that evaluates to

N(a →∞, b) = − b

π(a2 + b2)
. (35)

It is easy to verify that the function given by Eqs. (35) satisfies:

N(a →∞, b) =
∫ (

∂L(a, b)
∂a

)
db.

8. Appendix 3: asymptotic expansions for b →∞

Although the expressions given by Eqs. (14) and (16) are valid ∀b, by nu-
merical reasons it is convenient to use the following expressions for large values
of b:

8.1. Real part

For a < 1, we can use Eq. (26), due to the strongly convergent factor e−b2 .

For a > 1, it is sufficient to take n = 0, 1 in Eq. (27):

K(a > 1, b →∞) ∼ a

π(b2 + a2)

[
1− cos(3 arctan(b/a))

2(b2 + a2) cos(arctan(b/a))

]

= L(a, b)(1− f1(b/a)).

8.2. Imaginary part

Analogously to the above paragraph, for a < 1 we can use Eq. (28), whereas
for a > 1, we take n = 0, 1 in Eq. (29):
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N(a > 1, b →∞) ∼ − b

π(b2 + a2)

[
1− 1

2
sin(3 arctan(b/a))

(b2 + a2) sin(arctan(b/a))

]

= N(a →∞, b)(1− f2(b/a)).

9. Appendix 4: evaluation of the coefficients for high values of a

The coefficients of bn in Eqs. (14) and (16) are proportional to M(α, γ, a2).
From the numerical point of view, for the evaluation of the Kummer functions of
high values of a it is necessary to use the following asymptotic expansion [7]:

M(α, γ, z) ∼ Γ (γ)
Γ (γ − α)

(−z)−αG(α, α− γ + 1,−z)

+
Γ (γ)
Γ (α)

ez(z)α−γG(γ − α, 1− α, z) (36)

with

G(a, b, z) = 1 +
ab

z
+

a(a + 1)b(b + 1)
2z2

+ . . . (37)
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