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Phonon instabilities in uniaxially compressed fcc metals as seen in molecular
dynamics simulations
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We show that the generation of stacking faults in perfect face-centered-cubic (fcc) crystals, uniaxially
compressed along [001], is due to transverse-acoustic phonon instabilities. The position in reciprocal space
where the instability first manifests itself is not a point of high symmetry in the Brillouin zone. This model
provides a useful explanation for the magnitude of the elastic limit, in addition to the affects of box size,
temperature, and compression on the time scale for the generation of stacking faults. We observe this phenom-
enon in both simulations that use the Lennard-Jones potential and embedded atom potentials. Not only does
this work provide fundamental insight into the microscopic response of the material but it also describes certain
behavior seen in previous molecular dynamics simulations of single-crystal fcc metals shock compressed along

the principal axis.
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When a perfect single crystal is deformed beyond its elas-
tic limit, defects are homogeneously nucleated which allows
plastic flow. This is of importance because it can be seen as
the ideal strength of a material which is an upper bound of
what can be obtained practically. Numerical studies of this
ideal case have benefited from the advent of large-scale non-
equilibrium molecular dynamics (NEMD) simulations,
which allow the calculation of the motion of tens and even
hundreds of millions of atoms over the course of simulation
periods that can now approach of order of a nanosecond.
Significant progress in understanding at the atomic level has
been made in the fields of shear deformation,!-? crack-tip
propagation,’ and nanoindentation*~® but one area where our
understanding of this process has remained elusive is
uniaxial shock compression. Of particular interest, and sub-
ject to a great deal of study,”?? is the mechanism by which a
perfect face-centered-cubic (fcc) metal, shocked to a point on
the Hugoniot above its elastic limit, relieves the high shear
stresses present at the shock front and approaches the hydro-
static state.

From the pioneering work of Holian and co-workers
onward,’ the above-cited work has demonstrated that perfect
fec metals, shocked along the [001] axis, relax after the ho-
mogeneous generation of stacking faults close to the shock
front, which subsequently allows the system to act in such a
way as to reduce the shear stress. Despite the considerable
volume of interest that this problem has generated, as yet
there does not seem to be a common view as to the underly-
ing mechanism behind the defect generation. Several ideas
have been proposed previously, most of which are variations
on the traditional engineering view of a critical shear
stress!223 and thermal activation.'*!5 However, Clatterbuck
et al.®* reported that phonon instabilities occur in ab initio
simulations of Al under uniaxial tension and shear, and Li et
al.® discussed soft phonon modes leading to defects under
hydrostatic tension but until now, their role in uniaxial com-
pression has not been investigated.

In this Brief Report, we explain the fundamental mecha-
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nism for stacking-fault generation in NEMD simulations of
perfect fce crystals under [001] uniaxial compression. We
demonstrate that defect generation at low temperature and
uniaxial compression can be described in terms of soft (un-
stable) phonon modes, which grow on picosecond time
scales to produce stacking faults. The characteristics of these
soft modes, in terms of their complex frequencies and distri-
bution within the Brillouin Zone (BZ) as a function of com-
pression, explains several key aspects of such NEMD simu-
lations that have been a matter of debate for some years. We
show why defect generation occurs not, as might naively be
thought, simply above a critical shear stress but (as shown in
Fig. 1) at a certain stress and strain. A knowledge of the time
scale and means by which defects nucleate, and how this
varies with temperature, could be of importance in the simu-
lation of ramp (isentropically) compressed materials—an
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FIG. 1. (Color online) Shear stress as a function of uniaxial
compression along [001] using the Cu-Mishin potential (Ref. 26) at
0 K. The shaded regions show the range of compression for which
stacking faults are generated in a perfect crystal.
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area of burgeoning research interest. Furthermore, the wave-
length of the instabilities determines the periodicity of the
defects generated, and hence influences the defect density
and strength of the material. Importantly, the fact that the
unstable regions are not at high-symmetry positions of the
BZ further explains why certain simulation box sizes are
required to observe plasticity at certain values of compres-
sion, and how the box size determines the time scale for
defects to be generated. We believe this understanding of
defect generation will be invaluable in the future design of
NEMD simulations aimed at understanding the critical time
scales required for defect generation, and how the input pa-
rameters of simulation size, temperature, and strain rate de-
termine the plastic behavior and hence strength of the
sample. We go on to consider how this model can be applied
to shocks and why in simulations with small box sizes we
often do not see all of the four possible {111} slip planes
activated.

The results presented here are not strongly potential de-
pendent. We focus on simulations using the Cu potential by
Mishin et al.,’® performed with the molecular dynamics
package LAMMPS,”’ although we have observed similar fea-
tures with many other potentials that have been designed to
model fcc metals. These include the Lennard-Jones
potential,’ the Al and Ni embedded-atom method (EAM) po-
tentials by Mishin er al.,”® Ag EAM by Williams et al.,* and
the Al potentials by Zope and Mishin®® and Ercolessi and
Adams.3!

Figure 1 shows the instantaneous shear stress, where
Oshear=0.5[0,,—0.5(0,,+0y,)], as a function of uniaxial
compression along [001] for Cu-Mishin at 0 K. The maxi-
mum in the shear stress at 12%, with a reduction toward zero
at 29.3% compression is well understood, being due to the
Bain path;*? an fcc lattice compressed along [001] such that
the lattice parameter becomes 1/ \2 of its original value leads
to a bee lattice (and hence shear-free state). However, what is
less clear is why uniaxial shock simulations using this poten-
tial only exhibit the generation of defects and subsequent
plastic flow for uniaxial compressions above 14% (the
shaded regions in the figure)—that is to say plasticity is not
simply dependent on exceeding a certain stress but a certain
strain. In order to answer this question, we have interrogated
the stability of the lattice as a function of uniaxial compres-
sion by determining the phonon-dispersion relation over the
entire BZ. The dispersion relations were calculated both by
the Born-von Karman force-constant approach,’ and by in-
sertion of single small-amplitude known-wavelength sinu-
soidal perturbations in an otherwise perfect crystal, and de-
termining the restoring forces to calculate phonon frequency,
o for a given amplitude.

For Cu-Mishin, we indeed find that the lattice first goes
unstable at 14% uniaxial compression—precisely the com-
pression required for defects to be observed in uniaxial shock
compression.!” Importantly, for compression defined to be
along the z axis, the region that first goes unstable is trans-
verse acoustic and centered along [445], i.e., not at a direc-
tion of high symmetry. As the uniaxial compression is in-
creased, the region of instability within the BZ grows. In Fig.

2, we plot the (110) plane of dispersion space at a uniaxial
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FIG. 2. (Color online) Dispersion relation for Cu-Mishin in the
(110) plane of reciprocal space for 16% uniaxial compression along
[001]. The color scale represents phonon frequency. The white dots
indicate the phonon modes set by having a 20X 20X 20 unit-cell
box. The dashed line represents the [111] transverse branch which

has an e vector in the [112] direction.

compression of 16%—just above the elastic limit. Complex
values of w are represented as negative values. We see that a
volume of the BZ slightly away from the [111] branch be-
comes unstable. The polarization vectors of these pure trans-
verse unstable modes are as close as possible to the slip

direction which is [112]. While the dispersion surface can be
generated at arbitrary resolution and is independent of box
size, in a particular NEMD simulation the available phonon
modes are determined by the boundary conditions. Hence,
for simulations of cubic samples with periodic boundary
conditions (PBCs) in all three dimensions while there would
always be phonon modes lying along the [111] branch of
dispersion space, if the box size were small, the next-nearest
mode may miss the soft region altogether, and no defects
would be generated, despite being above the critical com-
pression. For example, in Fig. 2, the white dots indicate the
phonon modes set by having a 20 X 20 X 20 unit-cell box—
note none intercept the unstable region in the BZ and Cu-
Mishin uniaxially compressed to 16% within such a box re-
sponds totally elastically.

As the compression is increased, the volume of the un-
stable region in the BZ grows until we near a bce structure.
For Cu-Mishin, it encompasses the [111] branch above 21%,
and only at this point would one notice the instability within
the lattice if plotting the phonon-dispersion curve along di-
rections of high symmetry. Furthermore, at this compression
even the smallest of simulation boxes will have a mode that
falls within the unstable region. As compression is increased
further, the volume of the unstable region eventually starts to
diminish but this time toward the zone boundary rather than
where it started close to the origin. In Cu-Mishin, it vanishes
at 28.6% compression, just before the point of the crystal
becoming bcc. If we compress the crystal further, we find
that softening occurs along the [100] branch indicating that
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FIG. 3. (Color online) Phonon frequencies as a function of com-
pression for high-symmetry points within the fct primitive BZ cor-
responding to space group 139 (74/mmm) using the Cu-Mishin po-
tential. The unstable region does not coincide with the high-
symmetry points until 21% compression.

plasticity will no longer be in the form of (111) stacking
faults. This is illustrated in Fig. 3 which shows the phonon
frequencies as a function of compression at points of high
symmetry within the BZ. The N point corresponds to the
zone-boundary mode at (0.5,0.5,0.5) in the uncompressed
conventional fcc cell (top right-hand corner of Fig. 2) which
results in {111} shearing, leading to stacking faults. The I'-M
direction corresponds to [100] in the conventional fcc cell
and likewise the I'-X direction corresponds to [001]. Thus a
simple phonon analysis not only indicates if the system is
unstable but also the type of defects that will be generated. In
systems using the Lennard-Jones potential,” we also see an
unstable region form just off the [111] branch but this time at
16.5% uniaxial compression and continuing on beyond 34%
implying that bec is unstable.

Having demonstrated that regions of the BZ are unstable
under unixial compression, we now consider the growth of
these modes from thermal noise and the subsequent genera-
tion of stacking faults. We create an initially cubic simulation
box with PBCs which we populate with atoms arranged in a
perfect fcc lattice. Each atom is then assigned a random ve-
locity from a Gaussian distribution corresponding to the de-
sired temperature, before rescaling the entire system in the z
direction to the required uniaxial compression and running
the simulation under constant NVE conditions (microcanoni-
cal ensemble). The time at which defects are created after the
start of the simulation, 7., is observed by monitoring the
centrosymmetry parameter* which allows us to determine
when the stacking order of {111} planes changes from the fcc
order of the perfect crystal to the hcp order of a stacking
fault. Previous work in shock simulations has defined nucle-
ation to occur only once a stacking fault has reached a criti-
cal size'> but this is not relevant here because the growth of
such defects is very prompt in comparison to 7. in the ex-
amples we present.

As an illustrative example, we consider the case of a box
consisting of 40X 40X 40 unit cells of Cu-Mishin at 16%

PHYSICAL REVIEW B 81, 092102 (2010)

compression. By inspecting Fig. 2, one notes that a box of
40 X 40 X 40 unit cells will have double the number of modes
in each dimension than those shown, and hence a mode will
fall right in the middle of the unstable region with a q vector
of (0.1,0.1,0.125). The level of compression dictates the dis-
persion landscape and the box size defines the mode loca-
tions but the temperature determines the initial-mode popu-
lations and hence the initial-mode amplitude, A,. The
unstable modes grow exponentially until a critical amplitude
is reached, A, in this case ~0.25 A which corresponds to
{111} planes having slipped far enough to be classed as
stacking faults. Thus the time taken for the stacking faults to
be generated 7, is a function of A, and hence a function of
temperature. For a system at 300 K, this process is almost
instantaneous (~500 fs, comparable to the thermal equili-
bration time) but at 1 K, we determine 7, to be ~5 ps and at
10719 K, ~16 ps. Likewise, for a given initial temperature,
the box size will also cause a variation in 7. because it de-
termines where within the BZ the modes are located and
hence their growth rate. Obviously this model of exponential
growth breaks down when anharmonicity becomes signifi-
cant such as during the final stages of stacking-fault genera-
tion or at high temperature.

This behavior is of importance because it can result in a
time lag for stacking-fault generation, which can be in the
order of picoseconds at low temperature and the burgeoning
interest in isentropic (ramp) compression. If a NEMD simu-
lation of a ramp-compressed material is being performed at
low temperature, one could easily ramp compress through an
unstable region too quickly and miss out on the defect gen-
eration that might well be present in a room-temperature
simulation.

While the simulations so far have been for cubic boxes
with three PBCs, we can also start to see how these phonon
instabilities might manifest in shock simulations. The situa-
tion in shock simulations is obviously more complicated due
to the lack of a PBC in the shock direction, the heating from
rapid compression and the general inhomogeneity along the
shock direction. Although extensive further work will be re-
quired, we can consider two main characteristics previously
reported.'? The first is the sudden onset of plasticity after the
shock front has propagated tens of unit cells which is reason-
ably temperature independent. For a particle velocity of
0.75 km s~' in Cu-Mishin (~16% compression), this dis-
tance is ~40 unit cells which would coincide with the modes
falling on the unstable region if the mode locations are de-
fined by the piston and the shock front.

The second is why we do not see all the {111} slip planes
populated with stacking faults for small cross sections in
shock simulations. If we consider a system where only one
mode lies in the unstable region then by symmetry there are
four possible q vectors that will grow exponentially, one in
each of the four {111} slip directions. If the unstable modes
do not have initially equal populations then they will not
reach critical amplitude at the same time. Once one set of
planes have slipped, distorting the system, slippage in the
other directions is likely to be inhibited. However, by making
the simulation sufficiently large, sufficient inhomogeneity is
introduced to allow nucleation of different planes in different
regions which can then propagate throughout the system.
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In summary, we have shown that the generation of stack-
ing faults in MD simulations of perfect fcc crystals under
uniaxial compression along [001] is due to the growth of soft
phonon modes. As such, the time for defects to be generated
is strongly temperature dependent, which is important in
simulations of ramp-compressed fcc single crystals. The fact
that the position in the BZ where the instability first occurs is
not along a direction of high symmetry not only means that a
conventional phonon-dispersion plot is inadequate but also
that care must be taken when choosing the simulation box
size. The implication is that this generation of stacking faults
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is not something specific to shock simulations but instead is
a fundamental instability of the lattice when uniaxially
strained.
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