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Abstract Many classes of graphs where the vertex coloring problem is polynomially solv-
able are known, the most prominent being the class of perfect graphs. However, the list-
coloring problem is NP-complete for many subclasses of perfect graphs. In this work we
explore the complexity boundary between vertex coloring and list-coloring on such sub-
classes of perfect graphs where the former admits polynomial-time algorithms but the latter
is NP-complete. Our goal is to analyze the computational complexity of coloring problems
lying “between” (from a computational complexity viewpoint) these two problems: precol-
oring extension, μ-coloring, and (γ,μ)-coloring.
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1 Introduction

A coloring of a graph G = (V ,E) is a function f : V → N such that f (v) �= f (w) whenever
vw ∈ E. A k-coloring is a coloring f such that f (v) ≤ k for every v ∈ V . The vertex
coloring problem takes as input a graph G and a natural number k, and consists in deciding
whether G is k-colorable or not. This well-known problem is a basic model for frequency
assignment and resource allocation problems.

In order to take into account particular constraints arising in practical settings, more elab-
orate models of vertex coloring have been defined in the literature. One of such generalized
models is the list-coloring problem, which considers a prespecified set of available colors
for each vertex. Given a graph G and a finite list L(v) ⊆ N for each vertex v ∈ V , the list-
coloring problem asks for a list-coloring of G, i.e., a coloring f such that f (v) ∈ L(v) for
every v ∈ V .

Many classes of graphs where the vertex coloring problem is polynomially solvable are
known, the most prominent being the class of perfect graphs (Grötschel et al. 1981). Mean-
while, the list-coloring problem is NP-complete for general perfect graphs, and is also NP-
complete for many subclasses of perfect graphs, including split graphs (Jansen and Scheffler
1997), interval graphs (Biro et al. 1992; Marx 2006), and bipartite graphs (Jansen and Schef-
fler 1997). However, using dynamic programming techniques this problem can be solved in
polynomial time for a well known subclass of bipartite graphs: trees (Jansen and Scheffler
1997). Another class of graphs where list-coloring can be polynomially solved is the class
of complete graphs: we can reduce this problem to maximum matching on bipartite graphs,
a known polynomial problem. Combining these two ideas, list-coloring can be solved in
polynomial time for block graphs (Jansen 1997).

We are interested in the complexity boundary between vertex coloring and list-coloring.
Our goal is to analyze the computational complexity of coloring problems lying “between”
(from a computational complexity viewpoint) these two problems.

We consider some particular cases of the list-coloring problem. The precoloring exten-
sion (PrExt) problem takes as input a graph G = (V ,E), a subset W ⊆ V , a coloring f ′

of W , and a natural number k, and consists in deciding whether G admits a k-coloring f

such that f (v) = f ′(v) for every v ∈ W or not (Biro et al. 1992). In other words, a prespec-
ified vertex subset is colored beforehand, and our task is to extend this partial coloring to a
valid k-coloring of the whole graph. This is a typical case of a completion problem. Many
efficiently-solvable combinatorial problems have a more difficult general solution by the im-
position of a partial one (we refer to Easton et al. 2000 for a review about some completion
problems).

Given a graph G and a function μ : V → N, G is μ-colorable if there exists a coloring
f of G such that f (v) ≤ μ(v) for every v ∈ V (Bonomo and Cecowski 2005). This model
arises in the context of classroom allocation to courses, where each course must be assigned
a classroom which is large enough so it fits the students taking the course. We define here
a new variation of this problem. Given a graph G and functions γ,μ : V → N such that
γ (v) ≤ μ(v) for every v ∈ V , we say that G is (γ,μ)-colorable if there exists a coloring f

of G such that γ (v) ≤ f (v) ≤ μ(v) for every v ∈ V .
The classical vertex coloring problem is clearly a special case of μ-coloring and pre-

coloring extension, which in turn are special cases of (γ,μ)-coloring. Furthermore, (γ,μ)-
coloring is a particular case of list-coloring. These observations imply that all the problems
in this hierarchy are polynomially solvable in those graph classes where list-coloring is
polynomial and, on the other hand, all the problems are NP-complete in those graph classes
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where vertex coloring is NP-complete. Furthermore, list-coloring can be polynomially re-
duced to precoloring extension in a straightforward way. To this end, attach precolored ver-
tices of degree 1 to each vertex in order to reduce the available colors from which it can
be colored, creating the desired lists. But note that this reduction, unlike the previous ones,
does not preserve the graph. In particular, many graph classes are not closed under this kind
of operations. List-coloring can be polynomially reduced to μ-coloring in a similar way, but
again this reduction does not preserve the graph structure.

It is interesting to note that the list-coloring problem can be polynomially reduced to
the (γ,μ)-coloring problem while preserving the original graph, if the list of colors can be
renamed in such a way that each list is an interval of colors. This renaming is possible if and
only if there exists a row permutation of the 0 − 1 color-vertex matrix such that the ones in
each column of the resulting matrix are consecutive (Hell 2006). This property is known as
the consecutive ones property and can be checked in linear time (Booth and Lueker 1976).

In this work, we are interested in the computational complexity of these problems over
graph classes where vertex coloring is polynomially solvable and the complexity of list-
coloring is NP-complete. In Sect. 2, we show some known complexity results about these
coloring problems.

In Sect. 3, we prove new complexity results about precoloring extension, μ-coloring,
(γ,μ)-coloring, and list-coloring in some subclasses of perfect graphs and line graphs of
complete graphs. As a consequence of our results, we prove that, unless P = NP, μ-coloring
and precoloring extension are strictly more difficult than vertex coloring. On the other hand,
we show that list-coloring is strictly more difficult than (γ,μ)-coloring, and (γ,μ)-coloring
is strictly more difficult than precoloring extension.

In Sect. 4, some general theorems are stated showing polynomial-time reductions from
list-coloring to the other problems. These reductions involve changes in the graph, but are
closed within some graph classes. They can be used, therefore, to prove that the problems
studied here are polynomially equivalent in those classes. Finally, Sect. 5 presents a table
reviewing the complexity situation of these problems in the classes of graphs we analyzed.

An extended abstract of a preliminary version of this work appears in Bonomo et al.
(2006).

2 Known results

Most of the graph classes considered in this paper are subclasses of perfect graphs. A graph
G is perfect when the chromatic number is equal to the cardinality of a maximum complete
subgraph for every induced subgraph of G.

A graph is an interval graph if it is the intersection graph of a set of intervals over the
real line. A unit interval graph is the intersection graph of a set of intervals of length one.
Since interval graphs are perfect, vertex coloring over interval and unit interval graphs is
polynomially solvable. On the other hand, precoloring extension over unit interval graphs is
NP-complete (Marx 2006), implying that (γ,μ)-coloring and list-coloring are NP-complete
over this class and over interval graphs.

A split graph is a graph whose vertex set can be partitioned into a complete graph K

and an independent set I . A split graph is said to be complete if its edge set includes all
possible edges between K and I . It is trivial to color a split graph in polynomial time, and
it is a known result that precoloring extension is also solvable in polynomial time on split
graphs (Hujter and Tuza 1996), whereas list-coloring is known to be NP-complete even over
complete split graphs (Jansen and Scheffler 1997).
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A bipartite graph is a graph whose vertex set can be partitioned into two independent
sets V1 and V2. A bipartite graph is said to be complete if its edge set includes all pos-
sible edges between V1 and V2. Again, the vertex coloring problem over bipartite graphs
is trivial, whereas precoloring extension (Hujter and Tuza 1993) and μ-coloring (Bonomo
and Cecowski 2005) are known to be NP-complete over bipartite graphs. This implies that
(γ,μ)-coloring and list-coloring over this class are also NP-complete, and that the four
problems are NP-complete on comparability graphs, a widely studied subclass of perfect
graphs which includes bipartite graphs. Moreover, list-coloring is NP-complete even over
complete bipartite graphs (Jansen and Scheffler 1997).

For complements of bipartite graphs, precoloring extension can be solved in polynomial
time (Hujter and Tuza 1996), but list-coloring is NP-complete (Jansen 1997). The same
holds for cographs, i.e., graphs with no induced P4 (or P4-free) (Hujter and Tuza 1996;
Jansen and Scheffler 1997). For this class of graphs, μ-coloring is polynomial (Bonomo
and Cecowski 2005). Cographs are a subclass of distance-hereditary graphs, another known
subclass of perfect graphs. A graph is distance-hereditary if any two vertices are equidistant
in every connected induced subgraph containing them.

Two known subclasses of cographs are trivially perfect and threshold graphs. A graph is
trivially perfect if it is {C4,P4}-free. A graph G is threshold if G and G are trivially perfect.
This last class includes complete split graphs.

The line graph of a graph is the intersection graph of its edges. The edge coloring prob-
lem (equivalent to coloring the line graph) is NP-complete in general (Holyer 1981) but
can be solved in polynomial-time for complete graphs and bipartite graphs (König 1916).
It is known that precoloring extension is NP-complete on line graphs of complete bipartite
graphs Kn,n (Colbourn 1984), and list-coloring is NP-complete on line graphs of complete
graphs (Kubale 1992).

A good survey on variations of the coloring problem appears in Tuza (1997). Graph
classes and graph theory properties not defined here can be found in Brandstädt et al. (1999),
Golumbic (2004).

3 New results

In this section we introduce new results on the computational complexity of the previously
mentioned coloring problems over the graph classes described in Sect. 2 and related classes.
We first analyze different subclasses of perfect graphs and in Sect. 3.2 we study a non-perfect
class: line graphs of complete graphs.

3.1 Subclasses of perfect graphs

3.1.1 Interval graphs

In order to prove that the μ-coloring problem over interval graphs is NP-complete we
will show a reduction from the coloring problem over circular-arc graphs, which is NP-
complete (Garey et al. 1980). The proof is similar to the one given in Biro et al. (1992) for
precoloring extension over interval graphs.

Theorem 1 The μ-coloring problem over interval graphs is NP-complete.
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Proof An instance of the coloring problem over circular-arc graphs is given by a circular-
arc graph G and an integer k ≥ 1, and consists in deciding whether G can be k-colored
or not. Let G be a circular-arc graph and k be an integer greater than zero. Let A =
{(a1, b1), . . . , (an, bn)} be a circular-arc representation of G (i.e., a collection of arcs over
the unit circle [0,2π) such that G is the intersection graph of A). For i = 1, . . . , n, we call
vi the vertex of G corresponding to the arc (ai, bi).

Let A0 be the set of arcs from A containing the point 0. We can suppose w.l.o.g. A0 =
{(a1, b1), . . . , (at , bt )}. We can also suppose t ≤ k, otherwise G is clearly not k-colorable.
Define

I = (A\A0) ∪ {(ai,2π) : i = 1, . . . , t} ∪ {(0, bi) : i = 1, . . . , t}
to be a family of arcs over the unit circle. Since a < b for every arc (a, b) ∈ I , we can see
I as a family of intervals on the real line. Let H be the interval graph induced by I . For
i = 1, . . . , t , we call wi and w′

i the vertices of H corresponding to the intervals (ai,2π) and
(0, bi), respectively. For i = t + 1, . . . , n, we call wi the vertex corresponding to the interval
(ai, bi). Moreover, let μ : V (H) → N be defined by

μ(wi) =
{

i if i = 1, . . . , t

k otherwise
for i = 1, . . . , n

μ(w′
i ) = i for i = 1, . . . , t

This construction is clearly polynomial. We claim that G is k-colorable if and only if H is
μ-colorable.

Assume first that G is k-colorable and let c : V (G) → N be a coloring of G using at
most k colors. The vertices v1, . . . , vt corresponding to arcs of A0 form a complete graph,
hence we can reorder the colors of c in such a way that c(vi) = i, for i = 1, . . . , t . Now, the
function d : V (H) → N defined by

d(wi) = c(vi) for i = 1, . . . , n

d(w′
i ) = c(vi) for i = 1, . . . , t

is a μ-coloring of H and, therefore, H is μ-colorable.
On the other hand, assume that H is μ-colorable and let d : V (H) → N be a μ-

coloring of H . Since the vertices w1, . . . ,wt form a complete subgraph and μ(wi) = i for
i = 1, . . . , t , then we have d(wi) = i for i = 1, . . . , t . A similar analysis shows d(w′

i ) = i

for i = 1, . . . , t .
Consider now the function c : V (G) → N defined by c(vi) = d(wi) for i = 1, . . . , n.

Since t ≤ k and d(wi) ≤ μ(wi) for i = 1, . . . , n, it holds that c(vi) ≤ k for i = 1, . . . , n. We
claim that c is a valid k-coloring of G. To this end, let vivj ∈ E(G) be an edge of G. The
following case analysis shows that c(vi) �= c(vj ):

– If i, j > t or i, j ≤ t , then c(vi) = d(wi) �= d(wj ) = c(vj ).
– If i ≤ t and j > t , then either the interval (aj , bj ) intersects the interval (ai,2π) (in

which case c(vi) = d(wi) �= d(wj ) = c(vj )), or the interval (aj , bj ) intersects the interval
(0, bi) (in which case c(vi) = d(wi) = i = d(w′

i ) �= d(wj ) = c(vj )). In both cases we get
c(vi) �= c(vj ).

– If i > t and j ≤ t , a similar argument shows c(vi) �= c(vj ).

Hence, the graph G is k-colorable. �
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With this result and the NP-completeness of precoloring extension on interval graphs, it
follows that the four problems considered are NP-complete also for chordal graphs, one of
the most studied subclasses of perfect graphs, which is a superclass of interval graphs.

3.1.2 Complete bipartite graphs

The next theorem uses combinatorial arguments to prove that (γ,μ)-coloring problem is
polynomial in complete bipartite graphs. If G = (V ,E) is a graph and γ,μ : V → N, we
define γmin = min{γ (v) : v ∈ V } and μmax = max{μ(v) : v ∈ V }.

Theorem 2 The (γ,μ)-coloring problem in complete bipartite graphs can be solved in
polynomial time.

Proof Let G = (V ,E) be a complete bipartite graph, with bipartition V1 ∪ V2, and let γ,μ :
V → N such that γ (v) ≤ μ(v) for every v ∈ V . Let K0 = {γmin, . . . ,μmax}, and consider the
following procedure:

set K := K0; {available colors}
set F := ∅; {uniquely colorable vertices}
while there exists some non-colored vertex v ∈ V such that
K ∩ {γ (v), . . . ,μ(v)} is a singleton, say {i}:

Let j ∈ {1,2} such that v ∈ Vj ;
Assign color i to all the vertices w in Vj such that
γ (w) ≤ i ≤ μ(w) (note that this includes the vertex v);
set K := K\{i};
set F := F ∪ {v};

end;

Upon termination of this procedure, we are left with a set C ⊆ V of colored vertices.
Moreover, the set F ⊆ C contains uniquely colorable vertices and so, each vertex of this set
is assigned the only possible color in any valid (γ,μ)-coloring of G. We now show that G is
(γ,μ)-colorable if and only if K ∩ {γ (v), . . . ,μ(v)} �= ∅ for every v ∈ V \C. Assume there
exists some v ∈ V \C such that K ∩ {γ (v), . . . ,μ(v)} = ∅, and suppose w.l.o.g. v ∈ V1. For
every j = γ (v), . . . ,μ(v), there exists some w ∈ V2 ∩F such that the procedure has assigned
the color j to w, and this is the only possible color for w in any (γ,μ)-coloring. Hence v

cannot be assigned any color in {γ (v), . . . ,μ(v)} and, therefore, G is not (γ,μ)-colorable.
On the other hand, suppose K ∩ {γ (v), . . . ,μ(v)} contains at least two colors for every

v ∈ V \C. Let K = {i1, . . . , ik} with it < it+1 for t = 1, . . . , k − 1. Since each vertex in V1\C
(resp. V2\C) admits at least two consecutive colors in K (note that they are not necessarily
consecutive in K0), then we can color V1\C with colors in {ij in K : j is odd} and we can
color V2\C with colors in {ij in K : j is even}, thus obtaining a valid (γ,μ)-coloring of G.
This procedure is clearly polynomial in the number of vertices of G. �

This result implies that μ-coloring over complete bipartite graphs can be solved in poly-
nomial time.

Remark 1 The final observation in the proof of the previous theorem can be generalized as
follows. Let G = (V ,E) be an arbitrary k-colorable graph, and let γ,μ : V → N such that,
for each vertex v in V , μ(v)−γ (v)+1 ≥ k. Then G is (γ,μ)-colorable: just take a coloring
c of G with k colors, and then for each vertex v of G, assign to it a color c′(v) such that
γ (v) ≤ c′(v) ≤ μ(v) and c′(v) ≡ c(v) mod k.
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3.1.3 Split graphs

We first prove that for general split graphs the μ-coloring problem is NP-complete. We use a
reduction from the dominating set problem on split graphs, which is NP-complete (Bertossi
1984; Corneil and Perl 1984).

Theorem 3 The μ-coloring problem over split graphs is NP-complete.

Proof An instance of the dominating set problem on split graphs is given by a split graph
G and an integer k ≥ 1, and consists in deciding if there exists a subset D of V (G), with
|D| ≤ k, and such that every vertex of V (G) either belongs to D or has a neighbor in D.
Such a set is called a dominating set.

Let G be a split graph and k be an integer greater than zero. We will construct a split
graph G′ and a function μ : V (G′) → N such that G′ is μ-colorable if and only if G admits
a dominating set of cardinality at most k. Let K and I such that V (G) = K ∪ I , K is a
complete and I is an independent set in G. We may assume w.l.o.g. that G does not have
isolated vertices and k ≤ |K|. The graph G′ is defined as follows: V (G′) = K ∪ I ; K is
a complete and I is an independent set in G′; for every pair of vertices v ∈ K and w ∈ I ,
vw ∈ E(G′) if and only if vw �∈ E(G). Define μ(v) = |K| for every v ∈ K , and μ(w) = k

for every w ∈ I .
Suppose first that G admits a dominating set D with |D| ≤ k. Since G has no isolated

vertices, G admits such a set D ⊆ K . Let us define a μ-coloring of G′ as follows: color
the vertices of D using different colors from 1 to |D|; color the remaining vertices of K

using different colors from |D| + 1 to |K|; for each vertex w in I , choose w′ in D such that
ww′ ∈ E(G) and color w with the color used by w′.

Suppose now that G′ is μ-colorable, and let c : V (G′) → N be a μ-coloring of G′. Since
μ(v) = |K| for every v ∈ K and K is complete in G′, it follows that c(K) = {1, . . . , |K|}.
Since k ≤ |K|, for each vertex w ∈ I there is a vertex w′ ∈ K such that c(w) = c(w′) ≤ k.
Then ww′ �∈ E(G′), so ww′ ∈ E(G). Thus the set {v ∈ K : c(v) ≤ k} is a dominating set of
G of size k. �

This result implies that (γ,μ)-coloring over split graphs is NP-complete too. At this
moment, split graphs is the only class where we know that the computational complexity of
μ-coloring and precoloring extension is different, unless P = NP.

Now, integer programming techniques are employed to prove the polynomiality of the
(γ,μ)-coloring problem for complete split graphs.

Theorem 4 The (γ,μ)-coloring problem in complete split graphs can be solved in polyno-
mial time.

Proof Let G = (V ,E) be a complete split graph with partition V = K ∪ I , where K is a
complete graph and I is an independent set. For 0 < j ≤ i ≤ μmax, let Li,j = |{v ∈ K : j ≤
γ (v) and μ(v) ≤ i}|. We reduce the problem of finding a (γ,μ)-coloring of G to a linear
programming feasibility problem. For j = 1, . . . ,μmax, we define the integer variable xj to
be the number of colors from the set {1, . . . , j} assigned to vertices of K and, based on this
definition, we consider the following linear program:

x0 = 0 (1)

xj+1 − xj ≥ 0 ∀j ∈ {0, . . . ,μmax − 1} (2)
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xj+1 − xj ≤ 1 ∀j ∈ {0, . . . ,μmax − 1} (3)

xi − xj−1 ≥ Li,j ∀i, j : 0 < j ≤ i ≤ μmax (4)

xμ(v) − xγ (v)−1 ≤ μ(v) − γ (v) ∀v ∈ I (5)

We may assume that every color between 1 and μmax belongs to the interval [γ (v),μ(v)],
for some v ∈ V . Furthermore, we may assume μ(v) − γ (v) ≤ d(v) for every v ∈ K ∪ I ,
implying that the number of variables and constraints is polynomial in the size of G. All
the constraints take the form xj − xk ≥ αjk or xj = αj , hence the constraint matrix is totally
unimodular, implying that the associated polytope is integral (see for example Nemhauser
and Wolsey 1988). To complete the proof, we verify that G is (γ,μ)-colorable if and only
if the linear program (1)–(5) is feasible.

Assume first G is (γ,μ)-colorable. Let x0 = 0 and, for j = 1, . . . ,μmax, let xj be the
number of colors from {1, . . . , j} assigned to vertices of K . Constraints (1) to (3) are clearly
verified. Since K is a complete subgraph, then |K| different colors are assigned to the ver-
tices of K , hence constraints (4) hold. Finally, since every vertex v ∈ I is assigned a color
between γ (v) and μ(v), and v is adjacent to every vertex in K , then K cannot use all the col-
ors in {γ (v), . . . ,μ(v)} and, therefore, constraints (5) are verified. Thus, the linear program
(1)–(5) admits a feasible solution.

Conversely, assume the linear program (1)–(5) is feasible and let x be an integer solution,
which exists since the associated polytope is integral. We shall verify that G admits a (γ,μ)-
coloring. Let M = {j : 1 ≤ j ≤ μmax and xj − xj−1 = 1}. We construct a bipartite graph B

with vertex set K ∪ M , and such that v ∈ K is adjacent to j ∈ M if and only if γ (v) ≤ j ≤
μ(v). Any (γ,μ)-coloring of K using a subset of M as color set corresponds to a matching
of B of size |K|. Moreover, by Hall’s Theorem, such a matching exists if and only if for
every subset R of K , the neighborhood of R in M has at least |R| vertices (Hall 1935).

Let R be a subset of K , and let MR ⊆ M be the neighborhood of R in B . Let i1, . . . , it
be the elements of M in (strictly) increasing order, and partition MR = M1

R ∪ · · · ∪ Mk
R such

that M
j

R is a maximal interval in MR (i.e., M
j

R = {ipj
, ipj +1, . . . , iqj

} for some pj and qj ,
and ipj −1, iqj +1 �∈ MR). Since the neighborhood of every vertex of K is an interval in M ,
then we can partition R in k disjoint sets R1, . . . ,Rk such that the neighborhood of Ri in
M is exactly Mi

R , for i = 1, . . . , k. Therefore, |MR| = ∑k

i=1 |Mi
R| and |R| = ∑k

i=1 |Ri |. In
order to complete the proof, we verify |Mi

R| ≥ |Ri | for i = 1, . . . , k.
Let M ′ = M ∪ {0,μmax + 1}. For i = 1, . . . , k, define ai to be the maximum value in

M ′ such that every element from Mi
R is strictly greater than ai , and define bi to be the

minimum value in M ′ such that every element from Mi
R is strictly less than bi . We have

|Ri | ≤ Lbi−1,ai+1 and, since x verifies (2)–(4), then |Mi
R| ≥ Lbi−1,ai+1. We conclude that B

admits a matching of size |K| and, therefore, K is (γ,μ)-colorable. Since x verifies (5) and
I is an independent set, then this (γ,μ)-coloring of K can be extended to a (γ,μ)-coloring
of G. �

This theorem implies that μ-coloring over complete split graphs can be solved in poly-
nomial time.

3.1.4 Line graphs of complete bipartite graphs

Considering these coloring variations applied to edge coloring, we have the following result.

Theorem 5 The μ-coloring problem over line graphs of complete bipartite graphs is NP-
complete.
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Proof We will show a reduction from precoloring extension of line graphs of bipartite
graphs, which is NP-complete (Colbourn 1984), to μ-coloring of line graphs of complete
bipartite graphs. The former takes as input a bipartite graph B = (V1 ∪ V2,E), an integer
k ≥ 1, and a partial edge-precoloring f : E1 ⊆ E → {1, . . . , k}, and consists in deciding
whether f can be extended to a valid k-edge-coloring of B or not. The second takes as input
a complete bipartite graph Kn,n, a function μ, and consists in deciding whether B ′ can be
μ-edge-colored or not.

Let B = (V1 ∪ V2,E), k ≥ 1, f : E1 ⊆ E → {1, . . . , k} be an instance of precoloring
extension of line graphs of bipartite graphs.

Construct a new graph B ′ = (V ′
1 ∪ V ′

2,E
′) with

V ′
1 = V1 ∪ {wv′v : v ∈ V1, v

′ ∈ V2 and vv′ ∈ E1}
∪ {zvv′j : v ∈ V1, v

′ ∈ V2 and vv′ ∈ E1, 1 ≤ j < f (vv′)}
V ′

2 = V2 ∪ {wvv′ : v ∈ V1, v
′ ∈ V2 and vv′ ∈ E1}

∪ {zv′vj : v ∈ V1, v
′ ∈ V2 and vv′ ∈ E1, 1 ≤ j < f (vv′)}

E′ = (E \ E1) ∪ {v wvv′ : v ∈ V1, v
′ ∈ V2 and vv′ ∈ E1}

∪ {v′ wv′v : v ∈ V1, v
′ ∈ V2 and vv′ ∈ E1}

∪ {wvv′ zvv′j : v ∈ V1, v
′ ∈ V2 and vv′ ∈ E1, 1 ≤ j < f (vv′)}

∪ {wv′v zv′vj : v ∈ V1, v
′ ∈ V2 and vv′ ∈ E1, 1 ≤ j < f (vv′)}

Define μ : E′ → N as follows: μ(e) = k for e ∈ E \E1; μ(v wvv′) = μ(v′ wv′v) = f (vv′)
for vv′ ∈ E1; μ(wvv′ zvv′j ) = μ(wv′v zv′vj ) = j for vv′ ∈ E1, 1 ≤ j < f (vv′).

Finally, let n = max{|V ′
1|, |V ′

2|}. Add the required vertices and edges to B ′ in order to
obtain Kn,n, and extend μ by defining μ(e) = 2n− 1 for each new edge e (this upper bound
allows to color correctly the new edges because they have 2n − 2 incident edges). It is not
difficult to see that the transformation is polynomial, and that f can be extended to a valid
k-edge-coloring of B if and only if Kn,n can be μ-edge-colored. �

3.2 A non-perfect class: line graphs of complete graphs

Finally, we analyze the class of line graphs of complete graphs. Again, we have to consider
the edge coloring of complete graphs.

Theorem 6 The μ-coloring problem over line graphs of complete graphs is NP-complete.

Proof We show a reduction from the edge coloring problem, which is NP-complete (Holyer
1981), to the edge μ-coloring problem of complete graphs, which is equivalent to the μ-
coloring problem over line graphs of complete graphs. The edge coloring problem takes
as input a graph G with n vertices, and consists in deciding whether the edges of G can
be colored with Δ(G) colors or not, where Δ(G) is the maximum degree of the vertices
of G. The reduction consists in extending G to the complete graph Kn, and then defining
μ : E(Kn) → N such that μ(e) = Δ(G) if e ∈ E(G) and μ(e) = 2n − 3, otherwise (this
upper bound allows to color correctly the new edges because they have 2n − 4 incident
edges). It is easy to see that G can be Δ(G)-edge-colored if and only if Kn can be μ-edge-
colored. �
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This result implies that (γ,μ)-coloring over line graphs of complete graphs is NP-
complete too.

Theorem 7 The precoloring extension problem over line graphs of complete graphs is NP-
complete.

Proof We provide a reduction from the precoloring extension problem over line graphs of
complete bipartite graphs, which is NP-complete (Colbourn 1984), to the edge precolor-
ing extension problem of complete graphs, which is equivalent to the precoloring extension
problem over line graphs of complete graphs. The former takes as input the complete bipar-
tite graph Kn,n = (V1 ∪ V2,E) on 2n vertices, an integer k, and a partial edge-precoloring
f : E′ ⊆ E → {1, . . . , k}, and consists in deciding whether f can be extended to a valid
k-edge-coloring of Kn,n or not.

Consider the case n even first. We extend the graph Kn,n to the complete graph K2n by
adding an edge between every pair of vertices in V1 and an edge between every pair of ver-
tices in V2. Denote by E1 (resp. E2) the set of edges joining pairs of vertices in V1 (resp. V2).
Since V1 (resp. V2) induces a complete graph on (even) n vertices, then E1 (resp. E2) can be
optimally edge-colored with n − 1 colors. We precolor the edges in E1 (resp. E2) with such
an optimal edge-coloring using colors k + 1, . . . , k + n − 1, and we maintain the original
precoloring f for the precolored edges in E. Since every vertex in V1 (resp. V2) is incident
to an edge precolored with color c, for each c ∈ {k + 1, . . . , k +n− 1}, then this new precol-
oring can be extended to a (k +n−1)-edge-coloring of K2n if and only if f can be extended
to a k-edge-coloring of Kn,n.

Consider now the case n odd. We cannot directly apply the previous procedure in this
case, since for odd n the chromatic index of Kn is n, hence some edge in E could be assigned
a color in {k + 1, . . . , k + n}. In order to handle this situation, we first construct a graph
K2n,2n with bipartition V11 ∪ V12 and V21 ∪ V22 (each set Vij has n vertices). Define the
partial precoloring f ′ in the following way: color the edges joining vertices of V11 with
vertices of V22 (resp. V12 and V21) with an optimal n-color edge-coloring using colors k +
1, . . . , k + n, and the edges joining vertices of V11 with vertices of V21 (resp. V12 and V22)
with the precoloring f . This new graph admits a precoloring extension with k + n colors
if and only if the original graph admits a precoloring extension with k colors. To complete
the proof, we now apply the procedure for the even case to the newly constructed graph,
thus obtaining a complete graph on 4n vertices which admits a precoloring extension with
(k + 3n − 1) colors if and only if f ′ can be extended to a k + n-edge-coloring of K2n,2n. �

4 General results

Since all these problems are NP-complete in the general case, there are polynomial-time
reductions from each one to any other one. The reductions we suggest in the following
theorems involve changes in the graph, but are closed within some graph classes. Therefore,
they can be applied to prove that the problems are polynomially equivalent in those classes.

Theorem 8 Let F be a family of graphs such that every graph in F has minimum degree
at least two. Then list-coloring, (γ,μ)-coloring and precoloring extension are polynomially
equivalent in the class of F -free graphs.
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Proof Let (G,L) be an instance of list-coloring over F -free graphs, consisting of an F -
free graph G = (V ,E) and a list L(v) ⊆ {1, . . . , k} of colors for every v ∈ V . We may
assume

⋃
v∈V L(v) = {1, . . . , k}. For v ∈ V , define L̄(v) = {1, . . . , k} \ L(v) to be the set of

forbidden colors for the vertex v. We shall reduce this instance to an instance of precoloring
extension over F -free graphs. To this end, we construct a new graph H = (V ′,E′) with

V ′ = V ∪ {wvj : v ∈ V and j ∈ L̄(v)}
E′ = E ∪ {v wvj : v ∈ V and j ∈ L̄(v)}

In other words, for every vertex v ∈ V and every color j ∈ L̄(v), we add a new vertex wvj

adjacent to v. Furthermore, for every v ∈ V and every j ∈ L̄(v), we precolor the vertex wvj

with color j . Since G is an F -free graph and all the vertices added to G by the construction
have degree one, then H does not contain any induced subgraph from F . Moreover, G

is list-colorable if and only if the precoloring of H can be extended to a k-coloring. We
can, therefore, reduce list-coloring over F -free graphs to precoloring extension over F -free
graphs and conversely, hence precoloring extension, (γ,μ)-coloring, and list-coloring are
polynomially equivalent over this class. �

Theorem 9 Let F be a family of graphs satisfying the following property: for every graph
G in F , no connected component of G is complete, and for every cutpoint v of G, no con-
nected component of G \ v is complete. Then list-coloring, (γ,μ)-coloring, μ-coloring and
precoloring extension are polynomially equivalent in the class of F -free graphs.

Proof Since F satisfies the conditions of Theorem 8, it follows that list-coloring, (γ,μ)-
coloring, and precoloring extension are polynomially equivalent over the class of F -free
graphs. It suffices now to show a reduction from (γ,μ)-coloring on F -free graphs to μ-
coloring on F -free graphs.

Let (G,γ,μ) be an instance of (γ,μ)-coloring over F -free graphs, consisting of an F -
free graph G = (V ,E) and two functions γ,μ : V → N such that γ (v) ≤ μ(v) for every
v ∈ V . We may assume μ(v) − γ (v) ≤ d(v) for every v ∈ V , and that all the intervals cover
the set {1, . . . ,μmax}, implying that μmax is polynomial in the size of G. We shall reduce this
instance to an instance of μ-coloring over F -free graphs. To this end, we construct a new
graph H = (V ′,E′) with

V ′ = V ∪ {wvj : v ∈ V and 1 ≤ j < γ (v)}
E′ = E ∪ {v wvj : v ∈ V and 1 ≤ j < γ (v)}

∪ {wvj wvt : v ∈ V and 1 ≤ j < t < γ (v)}
In other words, for every vertex v ∈ V we add a complete subgraph on γ (v) − 1 vertices,
all of them joined to v. Furthermore, we keep μ(v) for every v ∈ V and set μ(wvj ) = j for
every v ∈ V and every j = 1, . . . , γ (v) − 1. Note that any μ-coloring of H assigns color j

to wvj , for v ∈ V and j = 1, . . . , γ (v) − 1, hence precluding the colors in {1, . . . , γ (v) − 1}
for the vertex v. Therefore, G is (γ,μ)-colorable if and only if H is μ-colorable.

Finally, we verify that the construction of H ensures that H does not contain any induced
subgraph from F . Suppose the contrary, i.e., assume H contains some induced subgraph S ∈
F . Denote by V new = V ′\V the vertices of H added to G by the previous construction. Since
G is an F -free graph, then S must contain at least one vertex from V new. Moreover, since
no connected component of S is complete and every connected component of H induced
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Fig. 1 Example of reductions of Theorems 8 and 9. From left to right, a list-coloring instance and its corre-
sponding precoloring extension and μ-coloring instances, respectively

Fig. 2 Forbidden induced
subgraphs for distance-hereditary
graphs

by V new is complete, then every connected component of S must contain at least one vertex
from V . Let C be a connected component of S containing vertices of V new, and let v ∈ C ∩V

such that v has some neighbor in C ∩ V new. By construction, and since C is not complete, v

is a cutpoint of C, and the neighbors of v in C ∩V new form a complete connected component
M of C\v (in order to see that v is a cutpoint of C, recall that every vertex in C ∩V , different
from v, does not have adjacencies in M). Therefore, S admits a cutpoint v such that some
connected component of S\v is complete, contradicting the fact that S ∈ F . �

An example of these reductions is shown in Fig. 1, where we can see a list-coloring
instance and its corresponding precoloring extension and μ-coloring instances.

Please note that, since odd holes and antiholes satisfy the conditions of the theorems
above, then these results are applicable for many subclasses of perfect graphs. For exam-
ple, since distance-hereditary graphs are equivalent to {house, domino, gem, {Cn}n≥5}-free
graphs (Bandelt and Mulder 1986) (see Fig. 2 for the definition of each one of these graphs),
we obtain the following result as a corollary of Theorem 9 and the fact that list-coloring is
NP-complete for distance-hereditary graphs (Jansen and Scheffler 1997).

Corollary 1 The (γ,μ)-coloring, μ-coloring and precoloring extension problems are NP-
complete for distance-hereditary graphs.

5 Summary of complexity results

We summarize all the results about these coloring problems in Table 1. As this table shows,
unless P = NP, μ-coloring and precoloring extension are strictly more difficult than vertex
coloring (due for example to interval and bipartite graphs). On the other hand, list-coloring
is strictly more difficult than (γ,μ)-coloring, due to complete split and complete bipartite
graphs, and (γ,μ)-coloring is strictly more difficult than precoloring extension, due to split
graphs.
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It remains as an open problem to know if there exists some class of graphs where (γ,μ)-
coloring is NP-complete and μ-coloring can be solved in polynomial time. Among the
classes considered in this work, the candidate classes are COGRAPHS, UNIT INTERVAL,
TRIVIALLY PERFECT, THRESHOLD and COMPLEMENT OF BIPARTITE.

Acknowledgements We thank Dominique de Werra, Pavol Hell and Mario Valencia-Pabon for some inter-
esting discussions about different topics on this work.
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