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Abstract
We explore the main entanglement properties exhibited by the eigenfunctions
of two exactly soluble two-electron models, the Crandall atom and the Hooke
atom, and compare them with the entanglement features of helium-like systems.
We compute the amount of entanglement associated with the wavefunctions
corresponding to the fundamental and first few excited states of these models.
We investigate the dependence of the entanglement on the parameters of the
models and on the quantum numbers of the eigenstates. It is found that the
amount of entanglement of the system tends to increase with energy in both
models. In addition, we study the entanglement of a few states of helium-like
systems, which we compute using high-quality Kinoshita-like eigenfunctions.
The dependence of the entanglement of helium-like atoms on the nuclear charge
and on energy is found to be consistent with the trends observed in the previous
two model systems.

PACS numbers: 03.65.−w, 03.67.−a, 03.67.Mn

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Information-theoretic ideas and methods provide an interesting new point of view in the study
of atomic structure that has been explored in various recent research works [1–12]. This
line of enquiry has several points of contact with the field of quantum information theory,
particularly in connection with the study of the entanglement-related properties exhibited
by atomic systems. Besides its intrinsic theoretical interest, this area of research is also of
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practical relevance because some of the systems studied by contemporary atomic physics, such
as ion traps, constitute important candidates for the experimental implementation of quantum
information technology.

Quantum entanglement is one of the most essential features of quantum mechanics
[13–15]. Entanglement constitutes a fundamental resource for the implementation of quantum
information processes of technological relevance, such as quantum teleportation, superdense
coding and quantum computation [14, 16]. Recent developments related to the study of
quantum entanglement are also leading to a more indepth understanding of various basic
aspects of quantum physics, such as, for example, quantum interference [17], the foundations
of quantum statistical mechanics [18] and the quantum-to-classical transition [19].

Quantum entanglement in two-electron systems has attracted the attention of several
researchers [5–8, 20–22]. Interesting results concerning the entanglement-related features
of the eigenstates of a one-dimensional atomic model with Coulomb-like interactions [8],
the ground state of the Hooke system [20], the spherically averaged helium-like model near
the ionization threshold [21] and quantum dots with a step-like confining potential well [22]
have been recently reported. However, the systematic characterization of the entanglement
properties of the eigenstates of two-electron systems, particularly in the case of excited
states, remains largely an open problem. The aim of the present work is to investigate the
entanglement-related properties of the energy eigenstates of two exactly soluble two-electron
systems: the Crandall [23] and the Hooke [20, 24, 25] atomic models. These are three-
dimensional atomic models consisting of two identical, spin- 1

2 fermions (‘electrons’) in an
external harmonic confining potential, with an electron–electron interaction potential having
the r−2 form (in the case of the Crandall atom) and the standard Coulomb form in the case
of the Hooke atom. We use the terms ‘electrons’ and ‘atoms’ in this paper in spite of the
fact that these models can be used to describe other types of systems, such as ions in an ion
trap, where the two interacting particles are ions and not electrons. In particular, it is clear
that in the case of the Crandall model the inter-particle interaction does not correspond to real
‘electrons’. However, as already said, we are going to follow the usual custom in the literature
of referring to these systems as ‘atoms’ constituted by interacting ‘electrons’ (see, for instance,
[5–7]). In this respect, we must also emphasize that the Hooke model actually does provide a
useful model for a quantum dot consisting of a pair of real electrons. The helium Hamiltonian
also corresponds, obviously, to a real two-electrons system.

Exactly soluble atomic models provide valuable foil systems where some fundamental
aspects of atomic physics, such as the basic entanglement features exhibited by atomic states,
can be studied in detail. The information gained about the eigenstates of these kind of
toy models can be used as a valuable guide to interpret the properties exhibited by more
realistic models such as, for example, describing helium-like atoms, quantum dots or ion
traps. The study of soluble models is also useful for developing approximation techniques
to treat realistic scenarios [20, 26]. Some results related to the entanglement properties of
a soluble two-electron system have already been obtained for the Moshinsky model, both
for the ground state [5, 6] and for excited states [7]. However, the Moshinsky system is a
very special system because the interaction between the two constituent particles (‘electrons’)
is harmonic. Here we consider the entanglement properties of the ground and the first few
excited states of the two aforementioned models. Furthermore, we compute numerically
the entanglement of the ground and first excited states of helium-like atoms (using high-
quality eigenfunctions of the Kinoshita type [27]) and investigate its dependence on both
the states’ energy and the nuclear charge. Some entanglement-related aspects of helium
have been considered by Gemmer and Mahler [28] in connection with the effective potential
approach. However, these previous developments are unrelated to our present work, because
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they involve the entanglement between the electron and the nucleus in the He+ ion, here
we shall investigate the entanglement between the two electrons of a neutral helium atom,
regarded as two interacting, identical fermions moving in a given electrostatic potential (due
to the nucleus) as described by the standard helium Hamiltonian.

The paper is organized as follows. In section 2, we provide a brief discussion of quantum
entanglement in systems of two identical fermions. The Crandall and the Hooke atomic
models are reviewed in section 3. Then, in sections 4 and 5, the entanglement properties
of the eigenstates of these model atoms are investigated. The entanglement features of the
ground and first excited states of helium-like atoms are considered in section 6. Finally, some
conclusions are drawn in section 7.

2. Quantum entanglement in systems of two identical fermions

The Schmidt decomposition of the pure states of systems constituted by two identical fermions
[29, 30] leads to a natural and physically sensible measure of the amount of entanglement
exhibited by these states [30]. Given a pure state |�〉 of two identical fermions there always
exists an orthonormal basis {|i〉, i = 0, 1, . . .} of the single-particle Hilbert space such that
|�〉 can be cast as

|�〉 =
∑

i

√
λi

2
(|2i〉|2i + 1〉 − |2i + 1〉|2i〉), (1)

where the Schmidt coefficients λi verify 0 � λi � 1 and
∑

i λi = 1 (if the single-particle
Hilbert space has a finite dimension N, we assume that N is even and that the sums on the index
i go from i = 0 to i = N/2). A useful measure of the amount of entanglement exhibited by
the pure state |�〉 is [30, 31]

E(|�〉) = 1 −
∑

i

λ2
i = 1 − 2Tr

(
ρ2

1

)
, (2)

where ρ1 = Tr2(|�〉〈�|) is the single-particle reduced density matrix obtained after tracing
the two-particle density matrix ρ = |�〉〈�| over one of the particles. The entanglement
measure (2) has been recently applied to the analysis of electron–electron scattering processes
[32] and to the study of entanglement-related aspects of quantum brachistochrone evolutions
[33].

According to the entanglement measure (2), correlations between the two fermions that
are due solely to the antisymmetric character of the global two-particle state do not contribute
to the entanglement of the state. Indeed, the amount of entanglement of a two-fermion state
is associated with the quantum correlations exhibited by the state on top of the minimum
correlations required by the antisymmetry of the global wavefunction [15, 30–36]. For
example, in the case of a two-fermion state whose wavefunction can be expressed as a single
Slater determinant, one of the Schmidt coefficients is equal to 1 and the rest are equal to zero.
It is clear from (2) that such a state has no entanglement. In fact, there are profound physical
arguments indicating that two-fermion states represented by a single Slater determinant must
be regarded as non-entangled [15, 30–37]. First, the correlations exhibited by such states
are not useful as a resource to perform non-classical information transmission or information
processing tasks [34]. Second, the non-entangled character of states that can be represented
as one Slater determinant is consistent with the possibility of assigning complete sets of
properties to both parts of the composite system [35, 36].
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Let us now consider the application of the above measure to a pure state of a two-electron
system. For our present purposes, it is sufficient to consider states described by wavefunctions
of the type

� = �(�r1, �r2)χ(σ1, σ2), (3)

where the global wavefunction � can be factorized as the product of a coordinate wavefunction
�(�r1, �r2) and a spin wavefunction χ(σ1, σ2), �r1 and �r2 being the vector positions of the two
electrons. The density matrix corresponding to a wavefunction of the type (3) has the form

ρ = ρ(coord.) ⊗ ρ(spin), (4)

where the matrix elements of ρ(coord.) are

〈�r ′
1 , �r ′

2 |ρ(coord.)|�r1, �r2〉 = �(�r ′
1 , �r ′

2 )�∗(�r1, �r2). (5)

In the case of a state with wavefunction (3) (and density matrix (4)) the entanglement measure
(2) is given by

E(|�〉) = 1 − 2Tr
[(

ρ
(coord.)
1

)2]
Tr

[(
ρ

(spin)

1

)2]
, (6)

where ρ
(coord.)
1 and ρ

(spin)

1 are, respectively, the marginal density matrices obtained after
computing the partial traces of the matrices ρ(coord.) and ρ(spin) over the degrees of freedom
of one of the two particles. It is plain that the entanglement between the two electrons given
by equation (6) involves both the translational and spin degrees of freedom of the electrons.
To evaluate the entanglement measure (6), we have to consider separately the cases of a spin
wavefunction describing parallel spins or antiparallel spins. If spins are parallel (that is, if the
coordinate wavefunction is antisymmetric and the spin wavefunction is either χ++ or χ−−), we
have Tr

[(
ρ

(spin)

1

)2] = 1, and the entanglement measure (2) corresponding to a two-electron
state of the form (3) reduces to

E(|�〉) = 1 − 2
∫

|〈�r ′
1 |ρr |�r1〉|2 d�r ′

1 d�r1, (7)

On the other hand, if the spins are anti-parallel (that is, if the coordinate wavefunction is
symmetric and the spin wavefunction is 1√

2
(χ+− − χ−+) or, alternatively, if the coordinate

wavefunction is antisymmetric and the spin wavefunction is 1√
2
(χ+− + χ−+)), we have

Tr
[(

ρ
(spin)

1

)2] = 1
2 , and the amount of entanglement is given by

E(|�〉) = 1 −
∫

|〈�r ′
1 |ρr |�r1〉|2 d�r ′

1 d�r1. (8)

In equations (7) and (8), we have

〈�r ′
1 |ρr |�r1〉 =

∫ ∞

−∞
�(�r ′

1 , �r2)�
∗(�r1, �r2) d�r2. (9)

Note that a two-electron state with a wavefunction of the form

1√
2
[ψ1(�r1)ψ2(�r2) − ψ2(�r1)ψ1(�r2)]χkk, k = ±, (10)

with ψ1(�r) and ψ2(�r) orthogonal, normalized single-particle (coordinate) wavefunctions,
has zero entanglement. This example illustrates an important point already mentioned.
Wavefunction (10) is a Slater determinant. The associated correlations between the two
electrons, due entirely to the anti-symmetry requirement on the fermionic state, do not
contribute to the entanglement of the state.
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3. The Crandall and the Hooke atoms

3.1. The Crandall atom

The Crandall ‘atom’ is a two-‘electron’ model with a harmonic confining potential and an
inverse cubic electron–electron repulsion force [23]. The total Hamiltonian of the system is

H = −1

2

(∇2
1 + ∇2

2

)
+

1

2
ω2

(
r2

1 + r2
2

)
+

λ

r2
12

, (11)

where �r1 and �r2 are the vector positions of the two particles, r12 = |�r1 − �r2|, ω is the natural
frequency of the external harmonic field and λ is the interaction parameter. We have used
atomic units (m = 1, h̄ = 1) throughout the paper. Introducing the new variables �u and �v [23],

�u = 1√
2
(�r1 + �r2), �v = 1√

2
(�r1 − �r2), (12)

the Hamiltonian separates as

H = H�u + H�v = −1

2
∇2

�u +
1

2
ω2u2 − 1

2
∇2

�v +
1

2
ω2v2 +

λ

2v2
, (13)

admitting the factorized eigenfunctions

�(�r1, �r2) = �(�u, �v) = Un2l2m2(�u)Vn1l1m1(�v), (14)

with

Un2l2m2(�u) = e− ωu2

2 ul2L
l2+ 1

2
n2 (ωu2)Yl2m2(θu, φu), (15)

and

Vn1l1m1(�v) = e− ωv2

2 vaL
a+ 1

2
n1 (ωv2)Yl1m1(θv, φv), (16)

where Lα
n(x) denote the Laguerre polynomials and a = 1

2 [
√

1 + 4λ + 4l1(l1 + 1) − 1]. The
variables u, θu, φu, v, θv, φv are the spherical coordinates associated with the vectors (�u, �v).
We will denote by |n1l1m1n2l2m2〉�u,�v the (spatial) eigenfunctions of the Hamiltonian (11),
which are characterized by the quantum numbers n1, l1, m1, n2, l2 and m2 (to fully define
the eigenstates of the two-electron system, we have to specify also the spin wavefunction
ξ(σ1, σ2)). The above quantum numbers adopt the values

n1, l1 = 0, 1, 2, 3, . . . m1 = −l1, . . . , l1,

n2, l2 = 0, 1, 2, 3, . . . m2 = −l2, . . . , l2,
(17)

and the corresponding eigenenergies are [23]

E = ω

2
{5 + 4n2 + 4n1 + 2l2 + [1 + 4λ + 4l1(l1 + 1)]

1
2 }. (18)

All the (coordinate) wavefunctions |n1l1m1n2l2m2〉�u,�v have definite parity, which is determined
by the quantum number l2: even values of l2 correspond to symmetric coordinate eigenfunctions
and odd values of l2 to antisymmetric ones. A final remark concerning our notation is in order.
A cursory glance at the ket |n1l1m1n2l2m2〉�u,�v may suggest that it represents a separable state.
However, in general, it represents an entangled state of the two-electron system. Indeed,
these wavefunctions are the product of two functions, one depending on the centre of mass’
coordinates and the other on the relative coordinates of the two electrons, and these products
are not in general expressible as a single Slater determinant. As we shall see in the next
section, the same occurs in the case of the Hooke model.

5
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3.2. The Hooke atom

The Hooke atom is a two-electron atomic model with harmonic confining potential and
Coulombic electron–electron repulsion force. The total Hamiltonian of the system is

H = −1

2

(∇2
1 + ∇2

2

)
+

1

2
ω2

(
r2

1 + r2
2

)
+

1

r12
, (19)

where �r1 and �r2 are the coordinates of the two particles, r12 = |�r1 − �r2| and ω is the natural
frequency of the external harmonic field. Introducing the centre of mass and the relative
position vectors [25]

�R = 1
2 (�r1 + �r2) �r = �r1 − �r2, (20)

the Hamiltonian separates as follows:

H = H �R + H�r = −1

4
∇2

�R + ω2 �R2 − ∇2
�r +

1

4
ω2r2 +

1

r
. (21)

The eigenfunctions of (21) can be factorized as

�(�r1, �r2) = �( �R, �r) = ψn1,l1,m1(
�R)φn2,l2,m2(�r), (22)

leading to the pair of eigenvalue equations[− 1
2∇2

R + 1
2ω2

RR2
]
ψ( �R) = η′ψ( �R), (23)

and [
−1

2
∇2

r +
1

2
ω2

r r
2 +

1

2r

]
φ(�r) = ε′φ(�r), (24)

with ωR = 2ω and ωr = 1
2ω. The total energy of eigenstate (22) is then E = η + ε, where

η = 1
2η′ and ε = 2ε′.
Equation (23) is the eigenvalue equation corresponding to a three-dimensional, isotropic

quantum harmonic oscillator, with well-known solutions of the form

ψ( �R) = Nn1,l1R
l e

−ω2
R

R2

2 L(l1+1/2)
n1

(ωR2)Yl1,m1(θR, φR), (25)

with

Nn1,l1 =
((

ω3
R

4π

) 1
2 2n1+2l1+3n1!(ωR/2)l

(2n1 + 2l1 + 1)!!

) 1
2

(26)

and

η′ = ωR

(
2n1 + l1 + 3

2

)
. (27)

On the other hand, the eigenvalue equation (24) admits a closed analytical solution only for
certain particular states, each of them requiring a separate treatment. These analytical solutions
can be determined by recourse to a power-series expansion with a three-step recurrence in the
quantum number n2. The lowest energy state that can be calculated by this method corresponds
to n2 = 2. For n2 = 2 and arbitrary l2,m2, the wavefunction is given by

φ(�r) = k2r
l2 e− r2

8(l2+1)

(
1 +

r

2(l2 + 1)

)
Yl2,m2(θr , φr), (28)

where

k2 = [
21+2l2(1 + l2)

l2
(√

l2 + 1(5 + 4l2)�
(

3
2 + l2

)
+ 4(l2 + 1)�(2 + l2)

)]− 1
2 . (29)

6
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Figure 1. Entanglement of the ground (labelled by 000000) and first excited state (labelled by
100000), with anti-parallel spins of the Crandall atom as a function of the parameter λ.

The concomitant eigenvalue is

ε′ = 2l2 + 5

8(l2 + 1)
. (30)

By recourse to solution (28), we can build the full wavefunctions for the states (n1, l1,m1, n2 =
2, l2,m2) with ω = 1

2(l2+1)
. For n2 = 3 and arbitrary l2,m2, one has that

φ(�r) = k3r
l2 e− r2

8(4l2+5)

(
1 +

r

2(l2 + 1)
+

r2

4(l2 + 1)(4l2 + 5)

)
Yl2,m2(θr , φr) (31)

with

k3 = 1

16

[
27+2l2(3 + 2l2)(5 + 4l2)

2+l2�(1 + l2)

1 + l2

+
42+l2(5 + 4l2)

3/2+l2(61 + 88l2 + 32l2
2)�(3/2 + l2)

(1 + l2)2

]
. (32)

The associated eigenvalue is

ε′ = 2l2 + 7

8(4l2 + 5)
. (33)

Using (31), we can build the complete wavefunctions for the states (n1, l1,m1, n2 = 3, l2,m2)

with ω = 1
2(4l2+5)

. Heretoforth we will denote by |n1l1m1n2l2m2〉�r, �R the eigenfunctions of the
Hamiltonian (19), which are characterized by the quantum numbers n1, l1, m1, n2, l2 and m2.
To fully define the eigenstates of the two-electron system, we have to specify, of course, also
the spin wavefunction χ(σ1, σ2).

4. Entanglement in the Crandall atom

The integrals appearing in equations (7)–(9), that have to be computed in order to evaluate
the amount of entanglement of the eigenstates, cannot be computed analytically for general
eignestates of the Crandall model. We have evaluated these integrals by recourse to the Monte
Carlo method. The main results obtained are summarized in figures 1–4.

7
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Figure 2. Entanglement of the (n = l = 1 and all the other quantum numbers equal to 0)-
eigenstates, with parallel (PS) and anti-parallel spins (APS) of the Crandall atom as a function of
the parameter λ.
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 0  5  10  15  20
n

ε

λ=0
λ=1

λ=10

Figure 3. Entanglement as a function of the quantum number n corresponding to the eigenstates
having all the other quantum numbers equal to zero, for three different values of the parameter λ.

We encounter two general trends. First, the entanglement increases monotonically with
the parameter λ and, consequently, with the strength of the interaction between the particles.
For high enough values of λ, the entanglement approaches its maximum value E = 1. Second,
the amount of entanglement also tends to increase when we consider higher excited states (that
is, it increases with the energy).

Another interesting feature observed in figures 1 and 2 is that the entanglement exhibited
by excited eigenstates does not necessarily go to zero in the limit λ → 0. In other words, for
an arbitrarily weak (but finite) interaction, there are already excited eigenstates exhibiting a
considerable amount of entanglement. In the non-interacting case corresponding to λ = 0,

these states have degenerate eigenenergies and the degeneracy enables one to construct an
alternative set of non-entangled eigenstates sharing the same energy. However, when λ > 0,

the interaction lifts the degeneracy and the aforementioned eigenstates become necessarily
entangled. It is worth stressing that the finite amount of entanglement corresponding to the
limit λ → 0 is not due to the correlations arising exclusively from the antisymmetric nature
of the (global) fermionic states. As already mentioned, these correlations do not contribute

8



J. Phys. A: Math. Theor. 43 (2010) 275301 D Manzano et al

 0

 0.2

 0.4

 0.6

 0.8

 1

 4  5  6  7  8  9  10  11  12  13  14
Energy

ε

Figure 4. Entanglement for the ground state and some excited states of the Crandall model as
a function of the energy of the system in the λ → 0 limit. The states represented correspond to
m1 = m2 = 0 and the remaining four quantum numbers adopting all the possible combinations of
values within the range 0 � n1, l1, n2, l2 � 2.

to the entanglement of the state. As can be appreciated in figure 4, in the limit λ → 0, the
amount of entanglement tends to increase with the energy of the eigenstates.

5. Entanglement in the Hooke atom

As in the case of the Crandall model, integrals (7)–(9) needed to determine the amount of
entanglement of the systems’ eigenstates do not admit analytical treatment and we evaluated
them using a Monte Carlo approach similar to the one used in the calculations for the Crandall
model. The entanglement properties exhibited by the eigenstates of the Hooke atom are similar
to those characterizing the eigenstates of the Crandall model.

The entanglement of several eigenstates of the Hooke model with ω = 1
2 is depicted

in figures 5 and 6 against the corresponding eigenenergies. The states represented are
characterized by n2 = 2, l2 = 0, m1 = m2 = 0, and several different values of the quantum
numbers n1, l1. It can be appreciated in these figures that, as happens with the Crandall
model, the entanglement of the eigenstates of the Hooke atom also tends to increase with the
eigenstates’ energy. This is particularly evident in figure 5, where the entanglement exhibits
a tendency to increase both with n1 and l1 (note that in the Hooke model the energy is an
increasing function of both these numbers). The increasing behaviour of entanglement with
energy is also observed in figure 6, where the states with all combinations of the quantum
numbers n1 and l1 corresponding to η′

ωR
� 16.5 are represented.

The increasing behaviour of entanglement with energy may at first sight seem
counterintuitive. This idea is probably due to the fact that the two particles constituting
the system tend to separate from each other as the energy of the eigenstates increase. It must
be stressed, however, that the quantum entanglement and the spatial separation between two
particles are completely unrelated physical concepts. Two quantum particles may be highly
entangled no matter how large is the average distance between them. The large amount of
entanglement exhibited by highly excited states may also seem to contradict the fact that these
states yield a semiclassical description. However, even if some aspects of these eigenstates
are indeed describable by a semiclassical approach, these states do still exhibit fundamental

9
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Figure 5. Entanglement of the ground state and several excited states of the Hooke atom (with
ω = 1

2 ) as a function of the energy of the system. The eigenstates depicted correspond to
n2 = 2, l2 = 0, m2 = 0 , l1 = 0, 1, 2, m1 = 0, and several different values of the quantum
numbers n1.

 0
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Figure 6. Entanglement of the ground state and several excited states of the Hooke atom (with
ω = 1

2 ) as a function of the energy of the system. The eigenstates depicted correspond to
n2 = 2, l2 = 0, m1 = m2 = 0 and all the values of the quantum numbers n1 and l1 consistent

with η′
ωR

� 16.5.

quantum features5. Therefore, the tendency of entanglement to increase with energy, while
being an interesting feature of the systems considered here that certainly deserves further
elucidation, should not necessarily be regarded as counterintuitive. In this regard, it is worth
to mention that the observed connection between entanglement and energy is fully consistent
with a well-known fact in atomic physics: the Hartree–Fock approximation (which is actually
a zero-entanglement approximation) tends to deteriorate as one considers higher excited states
of a multi-electron atomic system.

5 In fact, there exist fundamental quantum features that are exhibited by all quantum states, pure or mixed. An
interesting example is provided by the violation of the Cabello inequalities associated with quantum contextuality
[38, 39].
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Table 1. Energies for the wavefunction of helium-like atoms. GS means the 1s2 1S ground state.

Z State Energy
1 GS −0.527 751 016 5226
2 GS −2.903 724 377 032
2 1s2s,2 3S −2.175 229 378 225
2 1s2s,2 1S −2.145 974 045 970
3 GS −7.279 913 412 667
4 GS −13.655 566 238 41
5 GS −22.030 971 580 23

6. Entanglement in helium-like atoms

It is interesting to explore to what extent the main entanglement features characterizing the
exactly soluble models of Crandall and Hooke are also observed in systems whose confining
potential is not harmonic. As a first step in this direction, we are now going to compute the
entanglement corresponding to the ground and first excited states of helium-like atoms by
means of the high-quality eigenfunctions of the Kinoshita type obtained by Koga [27].

The Hamiltonian of an helium-like atom (in atomic units) reads

H = −1

2
∇2

1 − 1

2
∇2

2 − Z

r1
− Z

r2
+

1

r12
, (34)

where Z denotes the nuclear charge. The aforementioned eigenfunctions for helium-like
systems are represented by the following Kinoshita-type Ansatz with half-integer powers
[27]:

�N = e−ξs

N∑
i=1

cis
li
2

(
t

u

)mi (u

s

) ni
2

, (35)

where s, t and u stand for the Hylleraas coordinates given by

s = |�r1| + |�r2| t = |�r1| − |�r2| u = | �r1 − �r2|
s ∈ [0,∞] , u ∈ [0, s] , t ∈ [−u, u] .

(36)

The optimization of the exponent ξ , the coefficients ci and the powers {li , mi, ni} in the
eigenfunctions given by equation (35) with N = 100 terms leads to the energies listed in
table 1.

The main results obtained here concerning the entanglement-related features of helium-
like atoms are summarized in figures 7 and 8. Our findings for the helium-like atoms are
fully consistent with the entanglement properties of the Crandall and Hooke models that
were discussed in the previous sections. Indeed, the data depicted in figure 7 suggest that
the entanglement of the helium eigenstates tends to increase with energy. On the other
hand, figure 8 clearly shows that the entanglement of the ground state of helium-like systems
decreases monotonically with the nuclear charge Z. This last parameter determines the strength
of the nuclear Coulomb field, while the strength of the electron–electron interaction is constant.
Consequently, the behaviour observed in figure 8 can be construed as indicating that the system
becomes more entangled when the relative strength of the electron–electron interaction (as
compared with the nuclear–electron interaction) increases. This behaviour is similar to those
exhibited by both the Crandall and Hooke atomic models.
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Figure 7. Entanglement of the ground and first excited states of the helium atom as a function of
the energy.
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Figure 8. Entanglement of the ground states of helium-like atoms for different values of the
nuclear charge Z.

7. Conclusions

We have explored the entanglement-related properties of two two-electron atomic models:
the Crandall and Hooke atoms. We have considered particular values of the Hamiltonian
parameters and eigenstates’ quantum numbers that allow for exact solutions of the
corresponding Schrödinger eigenvalue equation. Even though we have analytical expressions
for the models’ eigenfunctions, the associated amounts of entanglement have to be computed
numerically.

The main entanglement features exhibited by the eigenstates of the Crandall and Hooke
atoms are similar. In both cases the behaviour of the entanglement associated with the
eigenstates of the system obeys the same general patterns. The amount of entanglement of
the eigenstates tends to increase with the corresponding eigenenergy. This is consistent with
the trends observed in the Moshinsky model [7] and also in the one-dimensional helium-
like system investigated by Carlier et al [8]. The entanglement in the Crandall model also
tends to increase with the relative strength of the electron–electron interaction (as compared
with the strength of the confining harmonic potential) approaching its maximum when the
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interaction becomes large enough. On the other hand, when the interaction tends to zero
(but is still finite), the entanglement of the eigenstates does not necessarily go to zero. There
are eigenstates endowed with a finite amount of entanglement for arbitrarily weak (but non-
vanishing) interaction.

It would be interesting to explore systematically the entanglement properties of other
models, not confined within a harmonic well, in order to determine which (if any) of the
above trends are shared by general two-particle systems and which are the special properties
characterizing models with an external harmonic confining potential. As a first step towards
this goal, we have studied the entanglement of the ground and first excited states of helium-like
atoms. We found that the entanglement exhibited by the eigenfunctions of helium-like atoms
tends to increase with energy and decrease with the nuclear charge Z. Any new developments
along these lines of enquiry will be very welcome.
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[7] Yañez R J, Plastino A R and Dehesa J S 2010 Eur. Phys. J. D 56 141
[8] Carlier F, Mandilara A and Sarfati A 2007 J. Phys. B: At. Mol. Opt. Phys. 40 S199
[9] Dehesa J S, Gonzalez-Ferez R and Sanchez-Moreno P 2007 J. Phys. A: Math. Theor. 40 1845

[10] Nagy A 2007 Chem. Phys. Lett. 449 212
[11] Nagy A 2006 Chem. Phys. Lett. 425 154
[12] Glasser M L and Nieto L M 2005 J. Phys. A: Math. Gen. 38 L455
[13] Bengtsson I and Zyczkowski K 2006 Geometry of Quantum States: An Introduction to Quantum Entanglement

(Cambridge: Cambridge University Press)
[14] Nielsen N and Chuang I L 2000 Quantum Computation and Quantum Information (Cambridge: Cambridge

University Press)
[15] Amico L, Fazio L, Osterloh A and Vedral V 2008 Rev. Mod. Phys. 80 517
[16] Aquilanti V, Bitencourt A C P, Ferreira C D S, Marzuoli A and Ragni M 2008 Phys. Scr. 78 058103
[17] Luo S and Zhang Z 2003 Phys. Lett. A 315 189
[18] Gemmer J, Michel M and Mahler G 2004 Quantum Thermodynamics (Berlin: Springer)
[19] Schlosshauer M 2007 Decoherence and the Quantum-to-Classical Transition (Berlin: Springer)
[20] Coe J P, Sudbery A and D’Amico I 2008 Phys. Rev. B 77 205122
[21] Osenda O and Serra P 2008 J. Phys. B: At. Mol. Opt. Phys. 41 065502
[22] Ferrón A, Osenda O and Serra P 2009 Phys. Rev. A 79 032509
[23] Crandall R, Whitnall R and Bettega R 1984 Am. J. Phys. 52 438
[24] Ludeña E V, Gomez D, Karasiev V and Nieto P 2004 Int. J. Quantum Chem. 99 297
[25] Taut M 1993 Phys. Rev. A 48 3561
[26] Amovilli C and March N H 2003 Phys. Rev. A 67 022509
[27] Koga T 1996 J. Chem. Phys. 104 6308
[28] Gemmer J and Mahler G 2002 Europhys. Lett. 59 159
[29] Schliemann J, Cirac J I, Kus M, Lewenstein M and Loss D 2001 Phys. Rev. A 64 022303

13

http://dx.doi.org/10.1103/PhysRevA.79.012107
http://dx.doi.org/10.1103/PhysRevA.80.012505
http://dx.doi.org/10.1103/PhysRevLett.91.113001
http://dx.doi.org/10.1103/PhysRevA.76.032502
http://dx.doi.org/10.1103/PhysRevA.79.052501
http://dx.doi.org/10.1103/PhysRevA.69.054302
http://dx.doi.org/10.1140/epjd/e2009-00270-x
http://dx.doi.org/10.1088/0953-4075/40/9/S12
http://dx.doi.org/10.1088/1751-8113/40/8/011
http://dx.doi.org/10.1016/j.cplett.2007.10.026
http://dx.doi.org/10.1016/j.cplett.2006.05.013
http://dx.doi.org/10.1088/0305-4470/38/24/L04
http://dx.doi.org/10.1103/RevModPhys.80.517
http://dx.doi.org/10.1088/0031-8949/78/05/058103
http://dx.doi.org/10.1016/S0375-9601(03)01036-3
http://dx.doi.org/10.1103/PhysRevB.77.205122
http://dx.doi.org/10.1088/0953-4075/41/6/065502
http://dx.doi.org/10.1103/PhysRevA.79.032509
http://dx.doi.org/10.1119/1.13650
http://dx.doi.org/10.1002/qua.10858
http://dx.doi.org/10.1103/PhysRevA.48.3561
http://dx.doi.org/10.1103/PhysRevA.67.022509
http://dx.doi.org/10.1063/1.471291
http://dx.doi.org/10.1209/epl/i2002-00222-0
http://dx.doi.org/10.1103/PhysRevA.64.022303


J. Phys. A: Math. Theor. 43 (2010) 275301 D Manzano et al

[30] Naudts J and Verhulst T 2007 Phys. Rev. A 75 062104
[31] Plastino A R, Manzano D and Dehesa J S 2009 Europhys. Lett. 86 20005
[32] Buscemi F, Bordone P and Bertoni A 2007 Phys. Rev. A 75 032301
[33] Borras A, Plastino A R, Casas M and Plastino A 2008 Phys. Rev. A 78 052104
[34] Eckert K, Schliemann J, Bruss D and Lewenstein M 2002 Ann. Phys. 299 88
[35] Ghirardi G and Marinatto L 2004 Phys. Rev. A 70 012109
[36] Ghirardi G, Marinatto L and Weber T 2002 J. Stat. Phys. 108 49
[37] Oliveira V C G, Santos H A B, Torres L A M and Souza A M C 2008 Int. J. Quantum Inf. 6 379
[38] Cabello A 2008 Phys. Rev. Lett. 101 210401
[39] Kirchmair G, Zahringer F, Gerritsma R, Kleinmann M, Guhne, Cabello A and Blatt R 2009 Nature 460 494

14

http://dx.doi.org/10.1103/PhysRevA.75.062104
http://dx.doi.org/10.1209/0295-5075/86/20005
http://dx.doi.org/10.1103/PhysRevA.75.032301
http://dx.doi.org/10.1103/PhysRevA.78.052104
http://dx.doi.org/10.1006/aphy.2002.6268
http://dx.doi.org/10.1103/PhysRevA.70.012109
http://dx.doi.org/10.1023/A:1015439502289
http://dx.doi.org/10.1142/S0219749908003499
http://dx.doi.org/10.1103/PhysRevLett.101.210401
http://dx.doi.org/10.1038/nature08172

	1. Introduction
	2. Quantum entanglement in systems of two identical fermions
	3. The Crandall and the Hooke atoms
	3.1. The Crandall atom
	3.2. The Hooke atom

	4. Entanglement in the Crandall atom
	5. Entanglement in the Hooke atom
	6. Entanglement in helium-like atoms
	7. Conclusions
	Acknowledgments
	References

