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a b s t r a c t

There exist fast variants of the gcd algorithm which are all based
on principles due to Knuth and Schönhage. On inputs of size n,
these algorithms use a Divide and Conquer approach, perform
FFT multiplications with complexity µ(n) and stop the recursion
at a depth slightly smaller than lg n. A rough estimate of the
worst-case complexity of these fast versions provides the bound
O(µ(n) log n). Even the worst-case estimate is partly based on
heuristics and is not actually proven. Here, we provide a precise
probabilistic analysis of some of these fast variants, and we prove
that their average bit-complexity on random inputs of size n is
Θ(µ(n) log n), with a precise remainder term, and estimates of the
constant in the Θ-term. Our analysis applies to any cases when
the cost µ(n) is of order Ω(n log n), and is valid both for the
FFT multiplication algorithm of Schönhage–Strassen, but also for
the new algorithm introduced quite recently by Fürer [Fürer, M.,
2007. Faster integer Multiplication. In: Proceedings of STOC’07.
pp. 57–66].We view such a fast algorithmas a sequence ofwhatwe
call interrupted algorithms, and we obtain two main results about
the (plain) Euclid Algorithm, which are of independent interest.
We precisely describe the evolution of the distribution of numbers
during the execution of the (plain) Euclid Algorithm, andwe exhibit
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an (unexpected) density ψ which plays a central rôle since it
always appears at the beginning of each recursive call. This strong
regularity phenomenon proves that the interrupted algorithms are
locally ‘‘similar’’ to the total algorithm. This ultimately leads to
the precise evaluation of the average bit-complexity of these fast
algorithms. This work uses various tools, and is based on a precise
study of generalised transfer operators related to the dynamical
system underlying the Euclid Algorithm.

© 2008 Elsevier Ltd. All rights reserved.

1. Introduction

Gcd computation is a widely used routine in computations on long integers. It is omnipresent
in rational computations, public key cryptography or computer algebra. Many gcd algorithms have
been designed since Euclid. Most of them compute a sequence of remainders by successive division,
which leads to algorithmswith a quadratic bit-complexity (in theworst-case aswell as in the average-
case). Using Lehmer’s ideas (1938) (which replace large divisions by large multiplications and small
divisions), computations can be speeded-up by a constant factor, but the asymptotic complexity
remains quadratic. Major improvements in this area are due to Knuth (1971), who designed the
first subquadratic algorithm in 1970, and to Schönhage (1971) who subsequently improved it the
same year. They use Divide and Conquer techniques combined with Lehmer’s ideas to compute in
a recursive way the quotient sequence (whose total size is O(n)). Moreover, if a fast multiplication
with subquadratic complexity (FFT, Karatsuba. . . ) is performed, then one obtains a subquadratic
gcd algorithm (in the worst-case). Such a methodology has been recently used by Stehlé and
Zimmermann (2004) to design a Least-Significant-Bit version of the Knuth–Schönhage algorithm.
According to experiments due to Cesari (1998) and Möller (2008), these algorithms (with an FFT
multiplication) become efficient only for integers of size larger than 10000 words, whereas, with
Karatsuba multiplication, they become efficient for smaller integers (around 100 words). A precise
description of the Knuth–Schönhage algorithm can be found in Yap (1996) and Möller (2008) for
instance.

1.1. Previous results

The average-case behaviour of the quadratic gcd algorithms is now well understood. First results
are due to Heilbronn (1969) and Dixon (1970) in the seventies, who studied for the first time the
mean number of iterations of the Euclid Algorithm. Then Brent analysed the Binary algorithm (Brent,
1976), and Hensley (1994) provided the first distributional analysis for the number of steps of the
Euclid Algorithm. Since 1995, the Caen Group (Vallée, 2003, 2000, 2006) and its collaborators have
performed an average-case analysis of various parameters of a large class of Euclidean algorithms.
More recently, distributional results have also been obtained for the Euclid algorithm and some of
its variants: first Baladi and Vallée prove that a whole class of so-called additive costs of moderate
growth follows an asymptotic Gaussian law (Baladi and Vallée, 2005) (for instance, the number of
iterations, the number of occurrences of a given digit, and so on. . . ). In 2006, Lhote and Vallée (2006,
2008) showed that a more general class of parameters also follows an asymptotic Gaussian law. This
class contains the length of a remainder at a fraction of the execution, and the bit-complexity. To
the best of our knowledge, there are yet few results on ‘‘efficient’’ gcd algorithms. In Daireaux and
Vallée (2004), the authors perform an average-case analysis of Lehmer’s algorithm, and exhibit the
average speed-up obtained using these techniques. However, as far as we know, there does not exist
any probabilistic analysis of subquadratic gcd algorithms. It is the goal of this paper to perform such
a study.
An extended abstract (12 pages) which contains the main results of this paper, without proofs, has

appeared in the Proceedings of the ANALCO-ALENEX conference (a satellite conference of the SODA
conference) in January 2007.
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Fig. 1. Density distribution of x〈δ〉 in the case δ = 1/2, corresponding to the density distribution of the rational xk := Ak+1/Ak
obtained as soon as `(Ak) is smaller than (1/2)`(A0). The diagram compares Monte-Carlo simulations with the exact value of
ψ(x). For simulations, we consider 3 537 944 rationals with 48 bits, drawn according to the Gauss density ϕ. For estimating the
density, the interval [0, 1] is subdivided into equal subintervals of length 1/50.

1.2. Our results

There are two algorithms to be analysed: theHG algorithm and the G algorithm. The G algorithm
computes the gcd, and theHG algorithm (for ‘‘half-gcd’’ Algorithm) only simulates the ‘‘first half’’ of
the G algorithm. We first show that these algorithms can be viewed as a sequence of the so-called
Interrupted Euclidean algorithms. An Interrupted Euclidean algorithm is a subsequence formed by
successive iterations of the plain algorithm, as we now explain: On an input (A, B), the plain Euclid
algorithm builds a sequence of remainders Ai, a sequence of quotients Qi, and a sequence of matrices
Mi [see Section 2.1]. On an input (A, B) of binary size n, the Interrupted Euclidean algorithm E[δ,δ+γ ]
starts at the index k of the execution of the Euclid Algorithm, as soon as the remainder Ak has already
lost δ n bits (with respect to the initial A which has n bits) and stops at index k + i as soon as the
remainder Ak+i has lost γ n additional bits (with respect to the remainder Ak). The HG algorithm
just simulates the interrupted algorithm E[0,1/2]. A quite natural question is: how many iterations
are necessary to lose these γ n bits? Of course, it is natural to expect that this subsequence of the
Euclidean algorithm is just locally similar to the ‘‘total’’ Euclidean Algorithm; in this case, the number
of iterationswould be close to γ P (where P is the number of iterations of the ‘‘total’’ Euclid algorithm).
We prove in Theorem 1 that this is indeed the case: This is whywe say that the algorithm is ‘‘regular’’.
For a probabilistic study of fast variants, a precise description of the evolution of the distribution

during the execution of the plain Euclid Algorithm is of crucial interest. For real inputs, we know
that the continued fraction algorithm does not terminate (except for rationals . . . ). Moreover, as the
continued fraction algorithm is executed, the distribution of reals tends to the distribution associated
to the Gauss density ϕ, defined as

ϕ(x) =
1
log 2

1
1+ x

. (1)

For rational inputs, we begin with a given distribution on the set of the inputs x := A1/A0 of size n,
and we consider the rationals xk := Ak+1/Ak. We focus on the first index kwhere the binary size of xk
is less than (1 − δ)n and we denote the corresponding rational xk by x〈δ〉. What is the distribution of
the rational x〈δ〉? The evolution of this distribution is clearly more intricate than in the real case, since
at the end of the Algorithm (when δ = 1), the distribution is the Dirac measure at x = 0. We obtain
here a precise description of this distribution (see Theorem 2 and Fig. 1) which surprisingly involves
the density function

ψ(x) :=
12
π2

∑
m≥1

log(m+ x)
(m+ x)(m+ x+ 1)

. (2)
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One of our refereeswrites: ‘‘The authors find the result surprising, but there is an heuristic explanation
for it. Suppose one is riding various horses, some fast and some slow, on a long race, switching once
a minute to a random new horse. What horse will you be riding when you cross the finish line?
Probably, a fast one! Chasing down the quantitative consequences of this idea, weighting the horses
in proportion to their speed, and then thinking of horses as integers Q that would express the size of
the step (Ak, Ak−1)→ (Ak−1 − QAk, Ak), one arrives at the authors’ ψ(x) density.’’
We also need precise results on the distribution of some truncations of remainders. This is done in

Theorem 3. Then, the choice of parameters in the fast algorithmsmust take into account this evolution
of distribution. This is why we are led to introduce some variants of the classical algorithms, denoted
byHG and G for which the precise analysis can be performed.
The fast versions also involve other functions, which are called the Adjust functions. Such functions

perform a few steps of the (plain) Euclid Algorithm. However, the bit-complexity of the Adjust
functions depends on the size of the quotients which are computed during these steps. Even for
estimating the worst-case complexity of the fast variants, the Adjust functions are not precisely
analysed. The usual argument is ‘‘The size of a quotient is O(1)’’. Of course, this assertion is false in
the worst-case, and only (perhaps) true on average, provided that the distribution on input pairs be
made precise. Moreover, the Adjust functions are related to some specific steps, which happen just
when the pairs have lost a fraction of their bits. We are then led to study the mean value of the size
of the quotients computed at these specific steps, and we prove that it is asymptotic to a constant η
which is defined in (20). And, we also need this type of result for our truncated data. This is covered
by Theorem 4.
There are now twomain fast multiplication algorithms, both based on FFT principles. We consider

in fact a whole class of possible fast multiplication algorithms, for which the following is true:
There exist a function a(n) satisfying1 a(n) = O(log log n), a(n) = Ω(1) and two constants A1, A2

(probably large) such that, for any pair of integers u, v whose respective sizes satisfy `(u) = n and
`(v) = Kn for some integer K , the bit-cost M(u, v) of the product between two numbers u and v satisfies

A1 K µ(n) ≤ M(u, v) ≤ A2 K µ(n) with µ(n) = a(n)n log n. (3)

In particular, Fürer proved this year (Fürer, 2007) that it is possible to choose a(n) = 2O(log
? n), and

improves the previous function a(n) = log log n, due to Schönhage and Strassen.2

Such a fast multiplication also leads to a fast division:
There exist two constants A3, A4 (larger than A1, A2) such that, for any pair of integers u, v whose

respective sizes satisfy `(u) = n and `(v) = Kn for some integer K > 1, the bit-cost D(u, v) of the
division between two numbers v and u satisfies3

A3 (K − 1) µ(n) ≤ D(v, u) ≤ A4 (K − 1) µ(n) with µ(n) = a(n)n log n. (4)

Finally, we obtain the exact average-case complexity of our versions of the two main algorithms
of interest, theHG algorithm, and the G algorithm itself. When they use a fast multiplication which
satisfies (3) and a fast division which satisfies (4), we prove the following estimates [Theorems 6 and
7] for the average bit-complexity B, G of both algorithms, on the set of random inputs of size n:

En[B] = Θ(1) n(log n)2 a(n)
[
1+ O

(
1
a(n)

)]
,

En[G] = Θ(1) n (log n)2 a(n)
[
1+ O

(
1

a(
√
n log n)

)]
.

1 The notation f = Ω(g)means that there exists B > 0 such that, for n large enough, fn ≥ Bgn , and the notation f = Θ(g)
means that f = Ω(g) and f = O(g).
2 The function log? denotes the iterated logarithm function, that is log?(n) denotes the number of times the logarithm
function must be iteratively applied before the result is less than or equal to 1.
3 In this case (K − 1)n is the size of the quotient.
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Furthermore,we obtain precise information about theΘ-term,which involves two types of constants:
first, the constants A1, A2, A3, A4, which intervene in the cost of the multiplication and the division
[see (3) and (4)], second, together with the density ψ defined in (2), another mysterious ‘‘spectral’’
constant σ (defined in Section 1.3). Our proven average bit-complexity of theHG,G algorithms then
appears to be of the same order as the usual (heuristic) bound on the worst-case complexity ofHG,G
algorithms.

1.3. Methods

Even if our main conclusions obtained here are ‘‘expected’’, and certainly will not surprise the
reader, the irruption of the density ψ defined in (2) is unexpected, and an actual proof of this
phenomenon is not straightforward. This is due to the fact that there are correlations between
successive steps of the Euclid Algorithm. Accordingly, the tools which are usual in analysis of
algorithms (Flajolet and Sedgewick, in press), such as generating functions, are not well-suited in this
case. All the analyses which will be described here are instances of the dynamical analysis paradigm,
where the algorithm is seen as a dynamical system. Then, the analysis uses, together with generating
functions, the transfer operator of the underlying dynamical system as a main tool. Here, the transfer
operator Hs relative to the Euclidean dynamical system is

Hs[f ](x) :=
∑
m≥1

1
(m+ x)2s

f
(

1
m+ x

)
, (5)

and the Gauss density ϕ defined in (1) is just the unique density fixed by H := H1, whereas one of the
main objects of this paper, the density ψ , is proportional to

H′[ϕ], with H′ :=
d
ds

Hs|s=1 .

The present paper mainly uses two previous works, and can be viewed as an extension of them: first,
the average-case analysis of the Lehmer–Euclid algorithm performed in Daireaux and Vallée (2004);
second, the distributional methods described in Baladi and Vallée (2005) and Lhote and Vallée (2008).
First, we again use the general framework that Daireaux and Vallée have developed for the analysis of
the Lehmer–Euclid Algorithm, which explains how the Lehmer–Euclid algorithm can be viewed as a
sequence of Interrupted Euclidean algorithms E[δ,δ+γ ]. Most of the studies in the Dynamical Analysis
framework use well-known properties of the transfer operator Hs when it acts on the functional
space C1(I), namely the existence of a unique dominant eigenvalue, separated from the remainder
of the spectrum by a spectral gap. But, in the present paper, we also need other properties (deeper
ones) which were already crucial in previous distributional analysis (Baladi and Vallée, 2005, 2004;
Lhote and Vallée, 2008) – namely, the US (Uniform Estimates on Strips) Property for the quasi-inverse
(I − Hs)−1 of the transfer operator –. The US(α) Property can be summarised in an informal way as
follows:

Property US(α) (Uniform Estimates on Strips). When Hs acts on the functional space C1(I) of functions
with a continuous derivative on the unit interval I := [0, 1], the following holds on the strip Sα :=
{s, 1− α ≤ <s ≤ 1+ α}

(i) The quasi-inverse (I − Hs)−1 has a unique pôle located at s = 1.
(ii) It is of polynomial growth with respect to |=s| when |=s| tends to∞.

It is known from works of Mayer (1991) and Efrat (1993), that the quasi-inverse (I − Hs)−1, when
it acts on a nice space F of analytic functions, has a unique pôle located at s = 1 in the half-plane
<s > 1/2. The other singularities of the quasi-inverse are located on the line<s = 1/2 or at values s
for which the Riemann zeta function satisfies ζ (2s) = 0. Then, for any α < 1/2, the vertical strip Sα
contains only one pôle of the quasi-inverse (I−Hs)−1, located at s = 1. But this does notmean that the
US-strip can be chosen as Sα , for two main reasons: first, we do not know if the quasi-inverse (even
if it acts on F ) has a polynomial growth on Sα when |=s| tends to∞. Moreover, the quasi-inverse
(I − Hs)−1 (when it acts on C1) may possess many other singularities than when it acts on F .
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Extendingmethods due toDolgopyat, Baladi andVallée proved that there exists anα > 0 forwhich
Property US(α) holds. The arguments which show the existence of such a strip are not completely
constructive, and we do not know any explicit strictly positive lower bound on α. In the paper, such
a lower bound is denoted by σ , and the parameter σ := min(σ , 1/2) plays a central rôle in our
analyses: This is themysterious constantwhich intervenes in the constants of our twomain theorems,
Theorems 6 and 7. It also intervenes in the exponents of all the remainder terms of Theorems 1–5.
In order to establish our main results, we are led to studying parameters of various type, whose

generating functions involve operators Gs,t which depend on two variables s, t . However, for small
values of parameter t , all these operators can be viewed as a perturbation of the quasi-inverse
(I−Hs)−1 and theUS Property extends to these perturbated quasi-inverses. In particular, the existence
of a strip S where the US property holds uniformly with respect to t is crucial in the analysis.

Plan and notations. Section 2 describes the main algorithms HG and G. Section 3 presents the
main steps towards a proven analysis. Here, we state our main results of general interest, without
proofs. In Section 4, we describe the versions HG and G to be analyzed, and, with the results of
Section 3, we show the two main results about their average bit-complexity. Section 5 describes the
general framework of the Dynamical Analysis paradigm, and Section 6 is devoted to the proof of the
main results stated in Section 3. Some technical results are gathered in an Appendix.
We denote the logarithm in base 2 by lg x, and `(x) denotes the binary size of integer x, namely

`(x) := blg xc + 1.

2. Fast and interrupted Euclidean algorithms

We present in this section the main algorithms studied in this paper. We first describe the general
structure of the Euclid Algorithm (Section 2.1), thenwe present the idea of Lehmer,mademore precise
by Jebelean (Section 2.2). Next,we explain the principles of the Lehmer–Euclid algorithm (Section 2.4),
which were used later in the Knuth–Schönhage algorithm.We finally explain how theHG algorithm,
described in Section 2.5 can be seen as a sequence of interrupted Euclidean algorithms (introduced in
Section 2.3) where the sequence of divisions is stopped as soon as the integers have lost a fraction of
their number of bits.

2.1. Euclid’s algorithm

Let (A1, A0) be a pair of positive integers with A1 ≤ A0. On input (A1, A0), the Euclid algorithm
computes the remainder sequence (Ak)with a succession of divisions of the form

Ak = Qk+1Ak+1 + Ak+2, with Qk+1 =
⌊
Ak
Ak+1

⌋
, (6)

and stops when Ap+1 = 0. The integer Qk is the k-th quotient and the successive divisions can be
written as

Ak = Qk+1Ak+1, with Ak :=

(
Ak+1
Ak

)
and Qk :=

(
0 1
1 Qk

)
,

so that

A0 =M(i)Ai with M(i) := Q1Q2 · · ·Qi. (7)

In the following, we consider a part of the plain Euclidean Algorithm E , (which is sometimes called
a ‘‘slice’’) between index i and index j, namely the interrupted algorithm E(i,j) which begins with the
pair Ai as its input and computes the sequence of divisions (6) with i ≤ k ≤ j − 1. Its output is the
pairAj together with the matrix

M(i,j) =

j∏
k=i+1

Qk, M(1,i) =M(i), (8)
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with matrixM(i) defined in (7). We define the size of a matrixM as the maximum of the binary sizes
of its coefficients. The size `(i,j) of the matrixM(i,j) satisfies

`(i,j) ≤ 2(j− i)+
j∑

k=i+1

`(Qk). (9)

The (naive) bit-complexity C(i,j) of the algorithm E(i,j) satisfies

C(i,j) :=
j∑

k=i+1

`(Ak) · `(Qk) ≤ `(Ai+1) ·
j∑

k=i+1

`(Qk). (10)

The Lehmer Algorithm (Lehmer, 1938; Knuth, 1998) replaces large divisions by large multiplica-
tions and small divisions. The fast algorithm applies recursively the principles of Lehmer, and using
fast FFT multiplications of complexityΘ(µ(n)) (with µ(n) = a(n)n log n) replaces the costly compu-
tation of the remainder sequence Ai (which requires O(n2) bit operations), by a sequence of matrix
products: it divides the total Euclidean Algorithm into interrupted Euclidean algorithms, of the form
E(i,j) and computes matrices of the formM(i,j), defined in (8). The recursion, based on Divide and Con-
quer techniques, is stopped when the integers are small enough, and, at this moment, the algorithm
uses small divisions. One finally obtains a subquadratic gcd algorithm.

2.2. How to replace large divisions by small divisions?

Lehmer remarked that, when two pairs (A, B) and (a, b) lead to rationals A/B and a/b that are close
enough, the Euclid algorithm on (A, B) or (a, b) produces (at least at the beginning of the execution)
the same quotient sequence (Qi). This is why the following definition is introduced:

Definition (SetΠ〈γ 〉). Consider γ ∈]0, 1]. For an input pair (A, B), we denote by Π〈γ 〉(A, B) the set
defined as

Π〈γ 〉(A, B) :=
{
(a, b); `(b) = bγ `(B)c,

∣∣∣∣AB − ab
∣∣∣∣ ≤ 1b

}
.

And the criterion (due to Lehmer and made precise by Jebelean (1997, 1995)) is:

Lemma 1 (Lehmer, Jebelean). Considerγ ∈]0, 1]. Associatewith a (large) pair (A, B) a small pair (a, b) ∈
Π〈γ 〉(A, B), together with the sequence of the remainders (ai) of the Euclid Algorithm on the small input
(a, b). Denote by k the first integer k for which ak satisfies `(ak) ≤ dγ `(B)/2e ≈ `(b)/2. Then the
sequence of the quotients qi of the Euclid Algorithm on the small input (a, b) coincides with the sequence
of the quotients Qi of the Euclid Algorithm on the large input (A, B) for i ≤ k− 3.

Usually, this criterion is used with a particular pair (a, b) of the set Π〈γ 〉(A, B), where the integer
b is obtained by the bγ nc-truncation of B, i.e., the suppression of its (1 − γ )n least significant bits.
Then a is easy to compute since it may be chosen itself as the bγ nc-truncation of A. This special pair is
denoted by Tγ (A, B). However, the Jebelean criterion holds for any choice of (a, b) ∈ Π〈γ 〉(A, B), not
only for the special pair Tγ (a, b), even if the integer a is less easy to compute in the general case: the
integer a can be chosen as the integer part of the rational (Ab)/B, and its computation needs a product
and a division.

2.3. Interrupted algorithms

In Jebelean’s property (Lemma 1), the Euclid Algorithm on the small pair (a, b) of binary size m
is stopped as soon the remainder ak has lost dm/2e bits. This is a particular case of the so-called
Interrupted Euclidean Algorithm of parameter δ (with 0 < δ < 1), which stops as soon as the current
remainder has lost δm bits (with respect to the input which has m bits). This (general) interrupted
Algorithm denoted by Eδ , and described in Fig. 2, is defined as follows: on the input (A, B) of size n,
this algorithm begins at the beginning of the Euclid Algorithm, and stops as soon as the remainder Ai
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Fig. 2. The Eδ Algorithm, and the Êδ algorithm, which is a slight modification of the Eδ Algorithm.

Fig. 3. An implementation of theLE [δ,δ+γ ] Algorithm using theHG algorithm (in the case where 2γ < 1− δ).

has lost δ n bits (with respect to the input B). Then, with the notations defined in Section 2.1, one has
Eδ = E(1,Pδ), with

Pδ := min {k; lg Ak ≤ (1− δ)n} . (11)

Fig. 2 also describes the Êδ Algorithm, which is just a slight modification of the Eδ Algorithm, where
the last three steps are suppressed (in view of applications of Lemma 1), and P̂δ denotes the variable
Pδ − 3. Then, Pδ is just the number of iterations of the Eδ algorithm and P1 = P is just the number
of iterations of the Euclid Algorithm. The variable P̂δ denotes the number of steps of the plain Euclid
Algorithm which would be used to obtain the output of the Êδ algorithm.
In the following, it will be convenient to considermore general interrupted algorithms, of the form

E[δ,δ+γ ]. The Algorithm E[δ,δ+γ ] is defined as follows: on the input (A, B) of size n, this algorithm begins
at the Pδ-th iteration of the Euclid Algorithm, as soon as the remainder Ak has lost δ n bits (with respect
to the input B) and stops when the remainder Ai has lost γ n additional bits (with respect to the input
B). Then, E[0,δ] = Eδ = E(0,Pδ) and E[δ,γ+δ] = E(Pδ ,Pδ+γ ), where Pδ is defined in (11). Of course, we can
also design the variantswith a hat, where the last three steps are suppressed: this is the Ê1/2 algorithm
which is used in Jebelean’s Lemma.

2.4. Implementing the interrupted algorithmswith the help of the Ê1/2 Algorithm. Principles of the Lehmer–
Euclid Algorithm

With Jebelean’s lemma, it is possible to use the Ê1/2 algorithm inside the E[δ,δ+γ ] algorithm. This is
the main idea due to Lehmer, which gives rise to theLE [δ,δ+γ ] described in Fig. 3. We now comment
this figure.
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Suppose that the Euclid Algorithm, on an input (A, B) of length n, has already performed Pδ
iterations. Now, the current pair, denoted by (A′, B′) has a binary size close to (1 − δ)n. We may use
the Jebelean Property to continue. Then, we choose a degree 2γ of truncation (with 2γ < 1− δ) and
consider the small pair (a, b) = T2γ (A′, B′)with T2γ defined in Section 2.2. TheHG algorithm on this
pair (a, b) (of sizem ≈ 2γ n) will produce a matrixMwhich would have been produced by the Euclid
algorithm on the pair (A′, B′). Then, the pair (C,D) computed as

(
C
D

)
=M−1

(
A′
B′
)
is a remainder pair

of the Euclid algorithm on the input (A, B). The size of thematrixM is approximatelym/2, but smaller
thanm/2 (due to the three backward steps of Lemma 1), and thus of the form (m/2)− r(A, B), where
r(A, B) is the number of bits which are ‘‘lost’’ for the matrixM during the three backward steps. Then,
with (9), r(A, B) satisfies,

3 ≤ r(A, B) ≤ Q (a, b) with Q :=
P1/2∑

i=P1/2−2

`(qi)+ 1. (12)

Here, qi are the quotients that occur in the Euclid Algorithm, and Pδ is defined in (11). Since the
truncature lengthm is of the formm ≈ 2γ n, then the size of the pair (C,D) is approximately equal to
[1− δ− γ ]n, but slightly larger. If we wish to obtain a remainder pair (C ′,D′) of length [1− δ− γ ]n,
we have to perform, from the pair (C,D) a certain number of steps of the Euclid Algorithm, in order
to cancel the loss due to the backward steps. This is the goal of the Adjust function, whose cost R(A, B)
will be estimated with (10) as

3(1− δ)n ≤ R(A, B) ≤ (1− δ)n · Q (a, b). (13)

We recall that, in the papers where the worst-case of fast GCD’s is studied, the authors suppose that
Q is O(1) (in the worst case). We will prove that themean value of Q onΩn will be indeed asymptotic
to a precise constant η, which will be defined later. Then, the mean asymptotic cost of Step (iv) will
be of order O(n).
Step (iii) performs a matrix product and uses a fast multiplication of type (3). The integer pair

(A′, B′) has size ≈ (1 − δ)n, while the coefficients of the matrixM−1 have size ≈ γ n. Then, if there
exists an integer K for which (1− δ) = Kγ , the total cost S(A, B) of Step (iii) is ‘‘expected’’ to satisfy

4A1
1− δ
γ

µ(γ n) ≤ S(A, B) ≤ 4A2
1− δ
γ

µ(γ n). (14)

Finally, we have designed an algorithm LE [δ,δ+γ ] which produces the same result as the
interrupted algorithm E[δ,δ+γ ], and is described in Fig. 3.
In Section 3.4, we shall state a class of results which prove that these last estimates (14) hold in

the average case, as soon as a convenient choice of parameters δ, γ is done. In the same vein, these
results will prove that the mean value of parameter R on Ωn is of order O(n), which will entail, with
(12) and (13), that the cost R of the Adjust functionswill be negligiblewith respect to the cost ofmatrix
products.

2.5. The usual designs for the recursive gcd: TheHG and G algorithms

There are two main ideas: first, the decomposition

E[0,1/2] = E[0,1/4] · E[1/4,1/2],

is used. Second, each of the two interrupted algorithms LE [0,1/4] and LE [1/4,1/2] is designed as
previously, but it now calls (in a recursive way) the Ê[0,1/2] algorithm on truncated data of size n/2.
This leads to a recursive version of the HG algorithm. Then, the first recursive call uses γ = 1/4,
and two values for δ, namely δ = 0 and δ = 1/4. In fact, the precise decomposition used is
Ê[0,1/2] = E[0,1/4] · Ê[1/4,1/2], which leads to modifying the Adjust function for this step: the second
Adjust function may also perform some backward steps in the Euclid Algorithm on large inputs.
The general structure of the algorithmHG is described in Fig. 4. The recursion is stoppedwhen the

naive algorithm Ê1/2 becomes competitive. This defines a threshold for the binary size denoted by S
(remark that S = S(n) is a function of the input size n).
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Fig. 4. General structure of the classical algorithmsHG and G.

With thisHG algorithm,we can obtain an algorithmnamedGwhich computes the gcd. The idea for
designing such an algorithm is to decompose the total Euclid Algorithm into interrupted algorithms, as

E[0,1] = E[0,1/2] · E[1/2,3/4] · · · E[1−(1/2)k,1−(1/2)k+1] · · · .

Then, theHG algorithm,when running on inputs of size n/(2k) produced by the E[0,1−(1/2)k] algorithm
can easily simulate the E[1−(1/2)k,1−(1/2)k+1] algorithm.
This decomposition also stops when the naive algorithm gcd becomes competitive. This defines a

threshold for the length denoted by T (remark that T = T (n) is also a function of the input size n).
Wenowconsider theHGAlgorithm,where all the products use a FFTmultiplicationwhich satisfies

(3). In this case, we choose the recursion depth H so that the main cost will be the ‘‘internal’’ cost, of
order Θ(µ(n)) log n, since the cost due to the leaves (where the naive Ê1/2 is performed) will be of
asymptotic smaller order. Then, H satisfies the relation4

2H ·
( n
2H

)2
≈≤ µ(n) log n,

so that
n
2H
≈≤ S(n) = a(n) log2 n, H ≈≥ lg n− 2 lg lg n− lg lg lg n.

(We use here the fact that a(n) = O(log log n).)
This is the ‘‘classical’’ version of the Knuth–Schönhage algorithm. Clearly, the cost of this algorithm

comes from three types of operations:

(i) the two recursive calls of line 7;
(ii) the products done at lines 8 and 11: with a clever implementation, it is possible to use in line 8
the pair (c, d) just computed in line 7. If all the matrices and integer pairs have – on average –
the expected size, the total expected cost due to the products is

[12+ 8+ 8] µ(n/4) = 28Θ(1)µ(n/4),

where the constants hidden in theΘ-term are A1, A2 defined in (3);
(iii) the two functions Adjust performed at line 9, whose total average cost is R(n).

We consider as the set of all possible inputs of theHG algorithm the setΩ := {(u, v); 0 ≤ u ≤ v},
and the set of all possible inputs of size n,

Ωn := {(u, v); 0 ≤ u ≤ v, `(v) = n} (15)

4 The notation a(n) ≈≤ b(n)means: There exist two constants A, Bwith 0 < A < B < 1 for which Ab(n) ≤ a(n) ≤ Bb(n).
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is endowed with some probability Pn. We denote by B(n) the average number of bit operations
performed by the algorithm HG on Ωn. Since each of the two recursive calls is made on data with
size n/2, it can be ‘‘expected’’ that B(n) asymptotically satisfies

B(n) ≈ 2B
(n
2

)
+ 28Θ(1)µ

(n
4

)
+ R(n) for n > S. (16)

Moreover, the average cost R(n) can be ‘‘expected’’ to be negligible with respect to the multiplication
cost µ(n). If the FFT multiplication is used of type (3), the total average bit-cost is ‘‘expected’’ to be

B(n) ≈ Θ(µ(n) log n) = Θ(n(log n)2 a(n)),

where the constants hidden in theΘ-terms are 7A1, 7A2, with A1, A2 defined in (3).
With this (heuristic) analysis of theHG algorithm, it is easy to obtain the (heuristic) average bit-

complexity of the G algorithmwhich makes a recursive use of theHG algorithm and stops as soon as
the naive algorithm becomes competitive. It then stops at a recursion depthM , when( n

2M

)2
≈≤ µ(n) log n,

so that
n
2M
≈≤ T (n) =

√
n log n, M ≈≥

1
2
lg n− lg lg n.

The average bit-cost G(n) of the G algorithm on data of size n satisfies

G(n) ≈
M−1∑
i=0

B
( n
2i

)
so that G(n) ≈ Θ(B(n)).

3. The main steps towards a proven analysis

The previous analysis is based on the Divide and Conquer equation (16). It is only heuristic because
this equality is not a ‘‘true’’ equality. It is not clear why a ‘‘true’’ equality should hold, since each of
the two recursive calls is done on data which do not possess a priori the same distribution as the
input data. And, of course, the same problem will be asked at each depth of the recursion. If we wish
a ‘‘Divide and Conquer’’ probabilistic approach to be possible, we have to make precise the evolution
of the distribution during the Euclid Algorithm, but also the distribution of the associated truncated data.
We first describe in Section 3.1 the main parameters of interest, together with their probabilistic

version. Then, we state our main two results, Theorems 1 and 2, which are of general interest. In
particular, Theorem 2 involves the density ψ already defined in (2) which plays a central rôle in
our analysis. These theorems are stated here, but not proved. This will be done in Section 6. Then, in
Section 3.5, we explain howTheorem2 can be applied to truncated data and gives rise to Theorem3, as
soon as the truncation is a probabilistic one, defined in Section 3.4. Section 3.6 describes the analysis
of the Adjust Functions (Theorem 4), and finally Section 3.7 provides estimates for the mean bit-
complexity of the interrupted algorithms described in Section 2.4, in particular the mean-complexity
of Steps (iii) and (iv) (Theorem 5).

3.1. Parameters Pδ and x〈δ〉, and their probabilistic variants

Consider a density f on the unit interval= [0, 1], which is ‘‘extended’’ to the setΩ := {0 ≤ u < v}
via the equality f (u, v) := f (u/v). The set Ωn formed with the inputs of size n, already defined in
(15), namely Ωn := {0 ≤ u < v, `(v) = n} is endowed with the restriction of f to Ωn: for any pair
(u, v) ∈ Ωn,

Pn,f (u, v) :=
1
|Ωn|f

f
(u
v

)
, where |Ωn|f :=

∑
(u,v)∈Ωn

f
(u
v

)
(17)
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is the total f -weight of the setΩn. Remark that, for f ≡ 1, we recover the uniform density onΩn. For
reasons which will appear later, the subsets Ω̃, Ω̃n formed with coprime inputs

Ω̃ := {(u, v) ∈ Ω, gcd(u, v) = 1}, (18)
Ω̃n := {(u, v) ∈ Ω, gcd(u, v) = 1, `(v) = n}, (19)

play an important (intermediate) rôle. We endow Ω̃n with the probability P̃n,f defined in the same
vein as in (17).
For (u, v) ∈ Ω , the Euclid Algorithm creates a sequence of successive remainders uk, with u0 :=

v, u1 := u, . . . , up := gcd(u, v). The corresponding integer pairs are denoted byUk := (uk+1, uk), and
the corresponding rationals are denoted by xk := uk+1/uk. For some δ ∈]0, 1[, we have already defined
(respectively in Sections 1.2 and 2.3) the random variables x〈δ〉 and Pδ . But, we need a generalized
framework where the parameter δ possibly depends on the input size n: this means that we now
consider a sequence δ = (δn) of the ]0, 1[ interval. For (u, v) ∈ Ωn, the number of iterations Pδ(u, v)
is the smallest integer k for which lg uk < (1− δn)n. We are also interested in describing the density
of the pair U〈δ〉 defined as

U〈δ〉 := Uk when Pδ(u, v) = k.

This integer pair is the input for all interrupted algorithms with a beginning parameter δ. Since the
density onΩn is defined via the associated rationals, the position of rational

x〈δ〉 := xk when Pδ(u, v) = k

inside the interval [0, 1]will be essential.
We do not succeed in directly studying these two variables Pδ, x〈δ〉, and we replace them by some

of their probabilistic variants, as we now explain. Associate, to some sequence δ := (δn), a sequence
ρ := (ρn) which depends on sequence δ and satisfies ρ < (1 − δ). Then, for any n, consider the
interval In(δ) as

In(δ) :=
[
2(1−δn)n

(
1− (1− δn)2−nρn

)
, 2(1−δn)n

]
.

Then, In(δ) is an interval of length (1− δn)2(1−δn−ρn)n, its right bound being close to the point 2(1−δn)n.
When the input size n varies, this defines a sequence I(δ) of intervals. We always consider the case
where the interval length tends to∞ with n, which will be the case in our framework when δn does
not tend to 1 too fast.
For a given input size n, draw an integer W uniformly in the interval In(δ) and denote by Pδ the

first integer k for which uk is less than W , and by x〈δ〉 the rational xk. The two underlined variables
define probabilistic variants of the plain variables. Since they depend on the sequence I(δ), we call
them the I(δ)-probabilistic variants. Moreover, as soon as the inequality ρn > 1/n holds, the interval
In(δ) is contained in an interval ]A/2, A] and contains at most two possible rationals xk (this is due to
the fact that uk+2 ≤ (1/2)uk). This proves, that in the case when ρn > 1/n, the probabilistic variable
x
〈δ〉 equals x〈δ〉, x〈δ〉+1, or x〈δ〉+2, while the variables Pδ and Pδ satisfy

∣∣Pδ − Pδ∣∣ ≤ 2.
3.2. An asymptotic Gaussian law for the number of iterations of the interrupted algorithm

Since the rational x loses `(x) bits during P(x) iterations, it can be expected that it loses δ`(x) bits
during δP(x) iterations, which would imply that Pδ(x) is sufficiently close to δP(x). This is what we
call the regularity of the algorithm. With techniques close to the renewal methods, we prove a quasi-
powers expression for the moment generating function of Pδ , from which we deduce an asymptotic
Gaussian law for Pδ on Ω , then an asymptotic Gaussian law for the deterministic variable Pδ on Ω .
We then obtain an extension of the result of Baladi and Vallée (2005) (which exhibits an asymptotic
Gaussian law for P := P1), even if our proof cannot directly apply to δ = 1.

Theorem 1. Consider the transfer operator Hs defined in (5) when it acts on the functional space C1(I),
denote by Λ(s) := log λ(s) the logarithm of the dominant eigenvalue λ(s), and by σ a strictly positive
lower bound on the width of the US strip. Let σ := min(σ , 1/2). Consider the set Ωn endowed with
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Fig. 5. Definition of functions ρ and τ . Functions ρ describe the interval where the probabilistic choice is done, and functions
τ quantify the remainder terms. Both define piecewise affine functions of δ.

a probability Pn,f relative to a strictly positive function f of class C1, together with a sequence δ :=
(δn) ∈]0, 1[, and associate to δ the three sequences ρ̃(δ), τ̃ (δ), Ĩ(δ) as in Fig. 5. Suppose that the sequence
2−ñτ(δ)/(1− δ) tends to 0 (for n→∞). Then, the following holds
(i) The Ĩ(δ) probabilistic variant Pδ of Pδ is asymptotically Gaussian, with a speed of convergence

max
(
(δnn)−1/2,

2−ñτ(δn)

1− δn

)
.

Moreover, the expectation and the variance of the variable Pδ satisfy

En,f [Pδ] = 2 log 2
1

|Λ′(1)|
δnn+ D1 + O

(
2−ñτ(δn)

1− δn

)
,

Vn,f [Pδ] = 2 log 2
∣∣∣∣ Λ′′(1)Λ′(1)3

∣∣∣∣ δnn+ D2 + O(2−ñτ(δn)1− δn

)
.

The constants D1,D2 and the constant in the O-term only depend on the function f .
(ii) The variable Pδ is asymptotically Gaussian onΩn with a speed of convergence of order

max
(
(δnn)−1/3,

2−ñτ(δn)

1− δn

)
,

and the expectation and the variance of the variable Pδ satisfy

En,f [Pδ] = 2 log 2
1

|Λ′(1)|
δnn+ O(1) Vn,f [Pδ] = 2 log 2

∣∣∣∣ Λ′′(1)Λ′(1)3

∣∣∣∣ δnn+ O(1).
The main hypothesis on sequence τ̃ (δ) holds as soon as the sequence δ satisfies
δnn→+∞, (1− δn)n > log n.

Then, Theorem 1 holds for a quite large class of sequences δwhich contains all the constant sequences
δ ∈]0, 1[. For constant sequences δ, the speeds of convergence are of respective order n−1/2 and n−1/3.
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3.3. Distribution of the probabilistic variant of the variable x〈δ〉

Our second result is related to the distribution of the probabilistic variant x
〈δ〉, and, here, it does not

seem possible to derive some information for the deterministic variable x〈δ〉. This result shows that,
after Pδ iterations, the rational computed by the Euclid Algorithm is approximatively distributed with
the density ψ defined in (2), the remainder term being exponential with respect to the size n.

Theorem 2. Denote by σ a strictly positive lower bound on the width of the US strip and let σ :=
min(σ , 1/2). Consider a sequence δ := (δn) ∈]0, 1[, and associate with δ the three sequences
ρ(δ), τ (δ), I(δ) as in Fig. 5. For any n ≥ 1, consider an interval J ⊂ I whose length |J| satisfies
|lg(|J|)| < (n/4)ρ(δn). Then, for any strictly positive density f of class C1, the probability that the I(δ)-
probabilistic rational x

〈δ〉 computed by the Euclid Algorithm belongs to the interval J satisfies

Pn,f [x〈δ〉 ∈ J] =
(∫
J
ψ(t)dt

)
·

[
1+ O

(
2−nτ(δn)

1− δn

)]
.

Here, ψ the density defined in (2) and the constant in the O-term only depends on the function f via its
norm ‖f ‖1 := sup |f | + sup

∣∣f ′∣∣.
As previously, the sequence 2−nτ(δn)/(1− δn) tends to zero as soon as the sequence δ satisfies

δnn→+∞, (1− δn)n > log n.

Then, Theorem 2 holds for a quite large class of sequences δwhich contains all the constant sequences
δ ∈]0, 1[.

3.4. Probabilistic truncations

Finally, we are also interested by the distribution of the truncated pairs. We recall that
the truncated pair Tγ (A, B) classically used is obtained with truncations of ‘‘numerator’’ A and
‘‘denominator’’ B of pair (A, B). It is not clear how to describe the distribution of such a truncated
pair. This is why we define a probabilistic truncation, which randomly chooses an element of the set
Π〈γ 〉 defined in Section 2.2. This leads to a more regular distribution, and it is always possible to apply
Jebelean’s Property (Lemma 1).
For x = (A, B) ∈ Ωn, and a degree of truncation γ , we define π〈γ 〉(A, B) as follows:

(1) Choose at randomadenominator b in the set {v, `(v) = bγ nc}of integers of binary sizem := bγ nc,
with a probability proportional to b. More precisely, we choose a denominator b according to the
law

Pr[b = b0] =
1
θm
· b0 with θm =

∑
b;`(b)=m

b.

(2) Compute the integer awhich is the integer part of x · b. This computation involves the product A · b
then the division of the integer A ·b by B. This can be done in O(µ(n))with a O-constant larger than
the constant of the multiplication (see Eq. (4)). Of course, this does not give rise to a very efficient
algorithm. However, we will see that using this probabilistic truncation does not change the order
of the average complexity of theHG algorithm. We return to this remark in Theorem 5.

(3) Define πm(A, B) as the pair (a, b), and remark that the set π−1m (a, b) gathers the pairs (C,D) ofΩn
for which the associated rational C/D belongs to the interval

J
(a
b

)
:=

[
a
b
,
a
b
+
1
b

[
, with

∣∣∣J (a
b

)∣∣∣ = 1
b
= Θ(2−m).

This is sufficient for applying Jebelean’s criterion (Lemma 1).
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We start with a strictly positive density f of class C1 on [0, 1], and for any integerm, the function
gm = gm[f ] defined onΩm as

gm[f ](u, v) =
1
|J(y)|

∫
J(y)
f (t)dt, with y :=

u
v

only depends on the rational u/v and satisfies

Pn,f [(A, B);πm(A, B) = (a, b)] = Pm,gm[f ](a, b).

Furthermore, for any (u, v) ∈ Ωm, the relation

gm[f ](u, v) = f
(u
v

)
+ O

(∣∣∣J (u
v

)∣∣∣ · ‖f ‖1)
involves the norm ‖f ‖1 of the function f , defined as ‖f ‖1 := sup |f | + sup

∣∣f ′∣∣, and proves that the
function gm[f ] (viewed as a function defined on Q) is a smoothed version of the initial function f .
Furthermore,

Pm,gm[f ]
Pm,f

= 1+ O(2−m).

Since f is a density on [0, 1], the cumulative sum of gm[f ](x) onΩm satisfies∑
(u,v)∈Ωm

gm[f ](u, v) =
∑
`(v)=m

v

[∑
u<v

(∫
J( uv )

f (t)

)]
= θm

(∫
I
f (t)dt

)
= θm.

This allows a comparison between two probabilities:

Lemma 2. Consider γ ∈]0, 1] and a strictly positive density f of class C1 on I. For any n, for any
m := bγ nc, for any (a, b) ∈ Ωm, one has

Pn,f [(A, B);π〈γ 〉(A, B) = (a, b)] = Pm,f (a, b) · [1+ O(2−m)],

where the constant in the O-term only depends on f via its norm ‖f ‖1 := sup |f | + sup
∣∣f ′∣∣.

3.5. Truncations and evolution of densities

Wewill deal with the probabilistic truncation π〈γ 〉 defined in Section 3.4, and, with Theorem 2 and
the previous comparison of densities done in Lemma 2, we obtain the following result which will be
a central tool in our analysis.

Theorem 3. Denote by σ a strictly positive lower bound on the width of the US strip and let σ :=
min(σ , 1/2). Denote byψ the density defined in (2). Consider a sequence δ := (δn) ∈]0, 1[, and associate
with δ the two sequences ρ(δ), I(δ) as in Fig. 5. For any sequence γ which satisfies 2γ < (1/2)ρ(δ), the
distribution of the 〈2γ 〉–truncation of the I(δ)-probabilistic rational x

〈δ〉 computed by the Euclid Algorithm
satisfies

Pn,ψ [x;π〈2γ 〉(x〈δ〉) = y0] = Pb2γ nc,ψ [y0] ·
[
1+ O

(
2−nτ(δn,γn)

1− δn

)]
,

where τ(δ, γ ) is the sequence defined in Fig. 5.

As previously, the sequence 2−nτ(δn,γn)/(1− δn) tends to zero as soon as the sequences δ, γ satisfy
γ < (1/4)ρ(δ) and

δnn→+∞, γnn→+∞, (1− δn)n > log n.

Then, Theorem 3 holds for a quite large class of sequences δ, γ which contains all the constant
sequences γ , δ ∈]0, 1[ satisfying γ < (1/4)ρ(δ). Remark also that the best boundwhich should relate
γ and δ should be 2γ < 1 − δ. Here, the condition is more restrictive since it implies in particular
2γ < (1 − δ)/4. This extra factor 4 explains the design of our future algorithm HG, described in
Section 4.
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3.6. Mean number of bits lost during the backward steps

Wewish to study the parameter Q defined in (12). In fact, we study a more general parameter, the
parameter Qδ , which corresponds to the three backwards steps, when the pair (u, v) has already lost
a fraction δ of its bits. And, we are indeed interested in the probabilistic version Q

δ
of Qδ , defined as

Q
δ
:=

Pδ∑
i=Pδ−2

`(qi),

and the (initial) parameter Q is obtained for δ = 1/2. A central result is:

Theorem 4. Consider the set Ωn endowed with a probability Pn,f relative to a strictly positive function
f of class C1. Then, for sequence δ ∈]0, 1[, the mean value of the cost Q

δ
is asymptotic to a constant η,

which does not depend on δ and density f , and involves the Gauss density ϕ defined in (1), together with
the operators Hs,w,[`] and H′s defined in (32) and (33), under the form

En,f [Q δ] = η
[
1+ O

(
2−nτ(δn)

1− δn

)]
with η :=

−6 log 2
π2

∫
I
H′1 ◦

(
d
dw

H31,w,[`]

)
w=0
[ϕ](t)dt, (20)

where ρ(δ) and τ(δ) are the sequences defined in Fig. 5.

3.7. Mean bit-complexity of the interrupted algorithmLE
[δ,δ+γ ]

We return now to the algorithmLE [δ,δ+γ ] defined in Fig. 3 andwe use the notations of Section 2.4.
We will study a probabilistic version of the algorithm LE [δ,δ+γ ] which will be denoted by LE

[δ,δ+γ ].
We now describe the main differences between LE [δ,δ+γ ] and its probabilistic version. In the
probabilistic versionLE

[δ,δ+γ ]:

(a) the input pair of the algorithm is the pair U
〈δ〉 relative to the parameter ρ(δ);

(b) the output pair of the algorithm is the pair U
〈δ+γ 〉 relative to the parameter ρ(δ + γ );

(c) Step (i) uses the probabilistic truncature π〈2γ 〉 defined in Section 3.4;
(d) Step (ii) uses the probabilistic version Ê1/2, defined as the plain Euclid algorithm which stops at
the iteration of index P1/2 − 3.

Then, the Adjust function becomes also probabilistic, since it performs steps for adjusting two
probabilistic lengths: the (probabilistic) length of the pair (C,D) and the (probabilistic) length of the
output (C ′,D′). It is denoted by Adj. Due to the nature of probabilistic choices of these length, this is
the length due to the three backwards steps which is dominant,

R(A, B) ≤ (1− δ)n · Qε(a, b)
[
1+ O

(
2−nτ(δn)

1− δn

)]
, (21)

for some ε close to 1/2.
As in the initialLE [δ,δ+γ ], Step (iii) uses any fast multiplication of type (3).
The following result studies the bit-complexity of the Interrupted AlgorithmLE

[δ,δ+γ ] and proves
two facts: first, the cost of the multiplications performed in Step (iii) is exactly of the same order as
this expected. Second, the cost of the function Adj performed in Step (iv) is negligible with respect to
costs of Step (iii).

Theorem 5. Consider two sequences γ , δ satisfying 2γ < (1/2)ρ(δ), with the sequencesρ(δ), τ (δ) from
Theorem 3. Then, the probabilistic version LE

[δ,δ+γ ] of the LE [δ,δ+γ ] algorithm described in Section 3.4
satisfies the following:
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(a) In the case when the ratio (1 − δn)/γn is integer, the mean bit-complexity cost En,ψ [S] of Step (iii)
satisfies:

En,ψ [S] = Θ(1)
1− δn
γn

µ(γnn)
[
1+ O

(
2−nτ(δn)

1− δn

)]
,

where the hidden constants in the Θ-term are independent on the pair (γ , δ) and can be chosen as
4A1, 4A2 for constants A1, A2 relative to the fast multiplication defined in (3).

(b) In the case when the ratio (1 − δn)/γn is integer, the mean bit-complexity cost En,ψ [T ] of Step (i)
satisfies

En,ψ [T ] = Θ(1)
1− δn
γn

µ(γnn)
[
1+ O

(
2−nτ(δn)

1− δn

)]
,

where the hidden constants in the Θ-term are independent on the pair (γ , δ) and can be chosen as
2min(A1, A3), 2max(A2, A4) for constants A1, A2 relative to the fastmultiplication defined in (3), and
constants A3, A4 relative to the fast division defined in (4).

(c) The mean bit-complexity cost En,ψ [R] of Step (iv) satisfies:

En,ψ [R] ≤ (1− δn)nη
[
1+ O

(
2−nτ(δn)

1− δn

)]
and involves the constant η defined in (20).

(d) Suppose that the sequences γ , τ (δ) satisfy

log(γnn) a(γnn) ≤ (1− δn) 2nτ(δn).

Then, the total bit-complexity of Steps (i), (iii) and (iv) is

En,ψ [S + R+ T ] = Θ(1)
1− δn
γn

µ(γnn)
[
1+ O

(
1

log(γnn) a(γnn)

)]
and involves the functions µ(n) and a(n) associated with the fast multiplication. As previously, the
hidden constants in theΘ-term are independent on the pair (γ , δ) and can be chosen as 4A′1, 4A

′

2,

A′1 := min
(
A1,
A3
2

)
, A′2 := max

(
A2,
A4
2

)
(22)

and involve constants Ai defined in (3) and (4). The hidden constant in the O-term is independent on
the pair (γ , δ) too.

Remark. A sufficient condition to ensure the condition needed in (d) is that γ and δ satisfy

n(1− δn) = Ω(nα), nγn = Ω(nβ), α, β > 0.

4. The algorithms to be analyzed

There are three main differences between the usualHG and G Algorithms and our versions to be
analysed which are denoted asHG and G (see Fig. 6).

(i) Our algorithmHG has the same effect as the probabilistic algorithm L̂E
[0,1/2], which is defined

as the algorithmLE
[0,1/2] where the last three steps are suppressed. It is thus randomised.

(ii) It is a recursive version of the L̂E
[0,1/2], as the HG algorithm is the recursive version of the

LE [0,1/2]. They are both based on a Divide and Conquer principle. However, the relation 2γ <
(1/2)ρ(δ) which relates the two parameters γ , δ with the width σ of the US strip, crucial for
applying Theorem 5, leads to a recursive algorithmHG with L recursive calls, where L depends
on the width σ and satisfies L > 4/σ . Then, theHG algorithm is based on the decomposition

E
[0,1/2] = E

[0,γ ] · E [γ ,2γ ] · · · · · E [iγ ,(i+1)γ ] · · · · · E [(L−1)γ ,Lγ ], with γ =
1
2L
,
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Fig. 6. General structure of the algorithmsHG and G to be analysed. The number of recursive calls L satisfies L > (4/σ). For
two integersW1,W2 ∈ [2n, 1], withW1 ≥ W2 , the algorithm E〈W1,W2〉 is the Euclid algorithm which begins as soon uk ≤ W1
and ends as soon as uk ≤ W2 . The Adj function is the probabilistic variant of the Adjust function defined in Section 3.7.

and use truncations of degree 2γ . More precisely, one begins to randomly choose L integersWi
(for i ∈ [1..L]) withWi ∈ In(iγ ), and the decomposition used is

E
[0,1/2] = E〈0,W1〉 · E 〈W1,W2〉 · · · · · E 〈Wi,Wi+1〉 · · · · · E 〈WL−1,WL〉,

where the algorithm E〈Wi,Wi+1〉 is the Euclid algorithm which begins as soon as uk ≤ Wi and ends
as soon as u` ≤ Wi+1.

(iii) The study is donewhen the initial density equalsψ , since it is quasi-invariant under the recursive
calls. This choice makes the study of various recursions easier. The constants which appear in
Theorems 6 and 7 are relative to this particular case. Since any other strictly positive density f of
class C1 satisfies

min f
maxψ

≤
En,f [C]
En,ψ [C]

≤
max f
minψ

,

Theorems 6 and 7 hold with any strictly positive density of class C1, with other constants, which
depend on f . Remember that ψ is almost constant, with minψ ≥ 0.9 and maxψ ≤ 1.1 so
that the previous bounds are close to 1 for the choice f ≡ 1, that corresponds to the uniform
probability.

As before, the recursive calls in the HG Algorithm are stopped when the naive Ê1/2 Algorithm
becomes competitive. The calls of the G Algorithm to theHG algorithm are stopped when the naive
gcd algorithm becomes competitive.
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4.1. The first recursive call

Inside the first recursive call of G to HG, the parameter δ belongs to [0, 1/2]. We suppose that
there are L ≥ 2 recursive calls of HG to himself. We denote by BL the bit-complexity of the HG

Algorithm when it performs L recursive calls, and we analyse the asymptotic behaviour of the mean
value En,ψ [BL] (for n→∞).
Suppose indeed L ≥ 2. Then, the possible values for pairs (δ, γ ) of the first recursive call satisfy

δ ∈ ∆1 :=

{
i
2L
, with 0 ≤ i ≤ L− 1

}
, γ1 :=

1
2L
, (23)

and the pairs relative to the h-th recursive call are

δ ∈ ∆h :=

{
i
2Lh

, with 0 ≤ i ≤ Lh − 1
}

γh :=
1
2Lh

.

We stop the recursion at a level H for which the total bit-cost P(n) of the naive gcd computations is
negligible with respect to the total cost of the algorithm. More precisely, if a(n) is the function which
intervenes in the multiplication cost, we ask

P(n) = Θ
(
LH ·

( n
LH

)2)
= n log2 n =

µ(n) log n
a(n)

, H ∼
(
log n
log L

)
,
n
LH
= Θ(log2 n). (24)

The parameters δ and γ must satisfy the condition 2γ < 1
2ρ(δ). Since δ ∈ [0, 1/2], this is only possible

if
1
L
= 2γ <

1
2
ρ(δ) =

1
4
σ or L >

4
σ
,

and, in this case, the minimum value of τ(δ, γ ) at the h-th recursion level satisfies

∃K > 0, ∀h ≥ 1, min {τ(δ, γh), δ ∈ ∆h} ≥
K
Lh
. (25)

With (25), Theorem 3 entails the following Divide and Conquer probabilistic equation,

En,ψ [BL] =

(∑
δ∈∆1

Eδn,ψ [BL]

)
·
[
1+ O

(
2−nK/L

)]
+ Cn,1,

where Cn,1 is the total bit-complexity of steps Steps (i), (iii) and (iv) performed during the executions
of the E

[δ,δ+γ ] Algorithm, together with the matrix product performed in Line 11, for δ ∈ ∆1 easily
estimated with Theorem 5. Expanding the recursion (always with Theorem 3) leads to the estimate

En,ψ [BL] =

(
P(n)+

H∑
h=1

Cn,h

)[
H∏
h=1

1+ O
(
2−nK/L

h
)]
,

where P(n) is the cost of the ‘‘leaves’’ and Cn,h is the total mean cost of all the Steps (i), (iii) and (iv) of
the interrupted algorithms at the h-th level, corresponding to δ ∈ ∆h, γ := γh. The error term comes
from the comparison of the distributions made with Theorem 3, and is of the form, with (24) and (25)

1+ O(ε(n)), with ε(n) =
H∑
h=1

2−
nK
Lh ≤ H2−

nK
LH = Θ(log n) 2−K log

2 n
= O(n−K1 log n).

The cost Cn,h at the h-th recursion level is easily evaluated with Theorem 5. We let b(n) := a(n) log n.
For h = 1, Theorem 5 entails the estimate

Cn,1 = Θ(1)

[
L∑
i=1

2L
(
1−

i
2L

)]
µ
( n
2L

) [
1+ O

(
1

b(n/L)

)]

+Θ(1)

[
L∑
I=1

i

]
µ
( n
2L

) [
1+ O

(
1

b(n/L)

)]
,
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where the first term is due to the cost of the interrupted algorithms and the second term to matrix
products of Line 11. One has

Cn,1 = Θ(L2) µ
( n
2L

) [
1+ O

(
1

b(n/L)

)]
where the hidden constants are now respectively 6A′1 + 8A1, 6A

′

2 + 8A2, with (A
′

1, A
′

2) defined in (22)
and A1, A2 defined in (3). In the same vein,

Cn,h = Θ(Lh+1)µ
( n
2Lh

) [
1+ O

(
1

b(n/Lh)

)]
,

and finally

H∑
h=1

Cn,h = Θ(1)
L

2 log L
µ(n) log n ·

[
1+ O

(
1

b(log2 n)

)]
where the constants in the Θ-term are always respectively 6A′1 + 8A1, 6A

′

2 + 8A2. Now, with (24),
the error term due to the leaves is of the form 1/a(n), and the function b(log2 n) is larger than a(n).
Finally,

En,ψ [BL] = Θ(1)
L

2 log L
µ(n) log n ·

[
1+ O

(
1
a(n)

)]
where the constants in theΘ-term are always respectively 6A′1 + 8A1, 6A

′

2 + 8A2.

Theorem 6. Consider the HG algorithm defined in Fig. 6, relative to a parameter L which satisfies L >
(2/σ) − 1, and involves σ := max(σ , 1/2), where σ is a strictly positive lower bound for the US strip.
Suppose that the algorithm uses a fast multiplication of type (3). Then, the mean bit-complexity BL of this
HG algorithm on the setΩn endowed with the density ψ defined in (2) satisfies

En,ψ [BL] = Θ
(
L
log L

)
n (log n)2 a(n) ·

[
1+ O

(
1
a(n)

)]
.

Here, the constants in the Θ-term can be chosen as 3A′1 + 4A1, 3A
′

2 + 4A2, where A
′

1, A
′

2 defined in (22)
are the constants related to the fast multiplication and the fast division. The mean bit-complexity BL of this
HG algorithm on the setΩn endowed with any density f of class C1 satisfies

En,f [BL] = Θ(1) n (log n)2 a(n) ·
[
1+ O

(
1
a(n)

)]
.

Here, the constants in theΘ-term can be chosen as

min f
maxψ

min
(
7A1, 4A1 +

3
2
A3

)
, and

max f
minψ

max
(
7A2, 4A2 +

3
2
A4

)
,

where A1, A2 are the constants related to the fast multiplication and A3, A4 are the constants related to the
fast division.

4.2. The k-th recursive call

The k-th recursive call of G to HG is made on integers with size nk = n(1/2)k−1. It deals with
values δ(k) which belong to the interval [1 − (1/2)k−1, 1 − (1/2)k], so that the values (1 − δ(k))n
belong to the interval [nk, nk/2]. If wewish to perform at the k-th level an algorithmHG homothethic
to the algorithm of the first level [with a ratio (1/2)k−1], we deal with a truncation mk of the form
mk = 2γ (1)nk = 2γ (k)n with γ (k) = 1/(2k−1L). Now the parameter τ(δ(k), γ (k)) relative to values
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δ(k), γ (k) used in the kth recursive call of G toHG is related to the parameter τ(δ(1), γ (1)) relative to
values δ(1), γ (1) used in the first recursive call of G toHG, via the inequality

n τ(δ(k), γ (k)) ≥ nk τ(δ(1), γ (1)).

On the other hand, the density ψ (k) of the input pair is close to the initial density, with an
approximation factor described in Theorem 2, relative to δ = 1 − 2−k. Then, all the previous study
performed for the first recursive call can be applied to the k-th recursive call, as soon as n is replaced
by nk. Then, the bit-complexity Bk,L of the k-th recursive call is, with Theorems 2 and 6,

En,ψ [Bk,L] = Θ
(
L
log L

)
nk(log nk)2 a(nk) ·

[
1+ O

(
1
a(nk)

)]
·

[
1+ O

(
2−nτ(1−(1/2)

k)

2−k

)]
(26)

with the same constants involved as in Theorem 6.

4.3. End of the recursion

We stop calling the algorithmsHG inside the G algorithm when the naive gcd algorithm becomes
competitive, with a complexity P1(n) = Θ(n log2 n). Then, the level of recursionM is defined by

n2M = n log
2 n so that nM =

n
2M
=
√
n log n, M = (1/2)(log n).

Then, the hypothesis needed in Theorem 5(d) is fulfilled (see the remark after Theorem 5) and the
total cost G of the G Algorithm satisfies

En,ψ [G] =
M∑
k=1

En,ψ [Bk,L] = Θ
(
L
log L

)
n (log n)2 a(n) ·

[
1+ O

(
1

a(
√
n log n)

)]
where the constants in the Θ-term are equal to two times the constants of Theorem 6. Finally, we
have proven the following:

Theorem 7. Consider the HG algorithm defined in Fig. 6, relative to a parameter L which satisfies L >
(2/σ) − 1, and involves σ := max(σ , 1/2), where σ is a strictly positive lower bound for the US strip.
Suppose that the algorithm uses a fast multiplication of type (3).
Then, the mean bit-complexity GL of the G algorithm on the setΩn endowed with the densityψ defined

in (2) satisfies

En,ψ [GL] = Θ
(
L
log L

)
n (log n)2 a(n) ·

[
1+ O

(
1

a(
√
n log n)

)]
.

Here, the constants in theΘ-term can be chosen asmin(14A1, 8A1+3A3),max(14A2, 8A2+3A4), where
A1, A2 are the constants related to the fast multiplication and A3, A4 are the constants related to the fast
division. The mean bit-complexity GL of the G algorithm on the setΩn endowed with any density f of class
C1 satisfies

En,f [GL] = Θ
(
L
log L

)
n (log n)2 a(n) ·

[
1+ O

(
1

a(
√
n log n)

)]
.

Here, the constants in theΘ-term can be chosen as

min f
maxψ

min(14A1, 8A1 + 3A3), and
max f
minψ

max(14A2, 8A2 + 3A4),

where A1, A2 are the constants related to the fast multiplication and A3, A4 are the constants related to the
fast division.
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5. Description of the dynamical analysis method

Here, we present the main tools which will be used in the proof of Theorems 1 and 2. These tools
come from analysis of algorithms (generating functions, here of Dirichlet types, described in 5.1) or
dynamical systems theory (mainly transfer operators Hs, described in 5.3 and 5.4). We introduce the
main costs C of interest (in 5.2), and their related Dirichlet series, for which we provide an alternative
expression with the transfer operator (in 5.5). For obtaining the asymptotic estimates of Theorems 1
and 2, we extract coefficients from these Dirichlet series, in a ‘‘uniform way’’. Then, Property US
(already described in 1.3) is crucial here for applying with success the Perron Formula, as in previous
results of Baladi and Vallée (2005).

5.1. Dirichlet series

For analysing a cost C , we deal with the generating Dirichlet series of the cost C . We recall that we
deal with the setsΩ, Ω̃ of all possible inputs, and their subsets Ω̃n,Ωn which gather the inputs (u, v)
with `(v) = n defined in (18). We will explain later why it is easier and also sufficient to deal with
inputs of Ω̃ (which is, from the algorithmic point of view, the set of trivial inputs. . . ). We consider
these sets endowed with probability Pn,f or P̃n,f defined from a positive function f of the interval I as

Pn,f (u, v) :=
1
|Ωn|f

f
(u
v

)
, P̃n,f (u, v) :=

1
|Ω̃n|f

f
(u
v

)
, for any (u, v) ∈ Ωn,

where

|Ωn|f :=
∑

(u,v)∈Ωn

f
(u
v

)
, |Ω̃n|f :=

∑
(u,v)∈Ω̃n

f
(u
v

)
are the total f -weights of the setsΩn, Ω̃n.
To any cost C , defined onΩ (or Ω̃), we associate Dirichlet series

FC (s) =
∑

(u,v)∈Ω

1
v2s
C(u, v) f

(u
v

)
, F̃C (s) =

∑
(u,v)∈Ω̃

1
v2s
C(u, v) f

(u
v

)
,

whose alternative expressions are

FC (s) =
∑
v≥1

cv
v2s
, F̃C (s) =

∑
v≥1

c̃v
v2s
,

where cv , c̃v denote the cumulative costs of C on ωv := {(u, v) ∈ Ω}, ω̃v := {(u, v) ∈ Ω̃}, namely,

cv =
∑

(u,v)∈ωv

C(u, v) f
(u
v

)
, c̃v =

∑
(u,v)∈ω̃v

C(u, v) f
(u
v

)
.

For the trivial cost (C ≡ 1), the corresponding cumulative costs av or ãv are just the f -weights of
subsets ωv, ω̃v , namely

av =
∑

(u,v)∈ωv

f
(u
v

)
, ãv =

∑
(u,v)∈ω̃v

f
(u
v

)
.

The mean values of the cost C onΩn, Ω̃n are then given by the ratio of partial sums,

En,f [C] =

∑
`(v)=n

cv∑
`(v)=n

av
, Ẽn,f [C] =

∑
`(v)=n

c̃v∑
`(v)=n

ãv
. (27)

We are mainly interested by some particular costs C .
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5.2. Costs of interest

Wenowdescribe themain costs that intervene in this paper, defined on the setΩ of all the possible
inputs. For each theorem, we consider two costs, the deterministic cost that we wish to study and
the probabilistic cost (underlined) that we succeed to study. For Theorem 1, we consider the costs
C1 := Pδ, C1 = Pδ for δ ∈ [0, 1], defined by the relation (11). This means that

Pδ(u, v) = k iff lg uk ≤ (1− δ)`(u0) < lg uk−1.

For Theorem 2, we consider the cost C2 (which depends on the interval J),5

C2 = [[x〈δ〉 ∈ J]] with x〈δ〉 :=
uk+1
uk

for k = Pδ, and C2 := [[x〈δ〉 ∈ J]].

Finally, for Theorem 4, we consider the cost C4 (which depends on the interval J),

C4(u, v) = Qδ(u, v) =
Pδ(u,v)∑

i=Pδ(u,v)−2

`(qi), and C4(u, v) :=
Pδ(u,v)∑

i=Pδ(u,v)−2

`(qi)

and, for Theorem 5, the costs C5 = `(u〈δ〉), C5 := `(u〈δ〉).
We first provide alternative expressions for Dirichlet series F̃C (s), as a function of the transfer

operator Hs relative to the Euclidean dynamical system. We first recall some basic facts about
dynamical systems and transfer operators.

5.3. The Euclidean dynamical system

When computing the gcd of the integer-pair (u, v), Euclid’s algorithm performs a sequence of
divisions. A division v = uq + r replaces the pair (u, v) with the new pair (r, u). If we consider
now rationals instead of integer pairs, there exists a map T which replaces the (old) rational u/v by
the (new) rational r/u, defined as

T (x) =
1
x
−

⌊
1
x

⌋
, T (0) = 0.

When extended to the real interval I = [0, 1], the pair (I, T ) defines the dynamical system relative to
Euclid algorithm. We denote byH the set of the inverse branches of T ,

H =

{
h[q] : x→

1
q+ x

; q ≥ 1
}
,

and, more generally, byHp the set of inverse branches of depth p (i.e., the set of inverse branches of
T p), namelyHp

= {h = h1 ◦ · · · ◦ hp; hi ∈ H,∀i}.WithH0
:= {Id}, the setH?

:= ∪p≥0H
p is the set

of all the possible inverse branches of any depth. Then, the Euclid algorithm on the input (u, v) builds
a continued fraction

u
v
= h(0) with h = h1 ◦ h2 ◦ · · · ◦ hp ∈ Hp. (28)

One then associates with each execution of the algorithm a unique LFT6 h ∈ H? whose depth is
exactly the number p of divisions performed. Remark that the i-th LFT hi used by the algorithm is
exactly the LFT relative to matrix Qi of Section 2.1, so that the LFT h1 ◦ h2 ◦ · · · ◦ hi is relative to
matrixM(i) of Section 2.1. Then, the CF-expansion (28) of u/v, when split at depth i, creates two LFT’s
bi := h1 ◦ h2 ◦ · · · ◦ hi−1 and ei := hi ◦ · · · ◦ hp, defining each a rational number: the ‘‘beginning’’

5 The symbol [[B]] is known as the Iverson bracket and denotes a Boolean which equals 1 iff B is true.
6 LFT is a compact notation for linear fractional transformation.
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rational bi(0), and the ‘‘ending’’ rational ei(0). The ‘‘ending’’ rational ei(0) can be expressed with the
remainder sequence (ui)

ei(0) := hi+1 ◦ hi+2 ◦ · · · ◦ hp(0) =
ui+1
ui
,

while the ‘‘beginning’’ rational bi(0) can be expressed with the two sequences (pi), (ri) related to
coefficients of matrixM(i) defined in (7),

bi(0) := h1 ◦ h2 ◦ · · · ◦ hi−1(0) =
|pi|
|ri|
.

Themain parameters of interest of the Euclid Algorithm involve the denominators sequences ui, ri,
which are called the continuants. The continuants are closely related to derivatives of LFT’s, as we now
explain. For any LFT h, the derivative h′(x) can be expressed with the denominator function D: if the
function D is defined by

D[g](x) = cx+ d, for g(x) =
ax+ b
cx+ d

with gcd(a, b, c, d) = 1,

then

h′(x) =
det h
D[h](x)2

, with det h := ad− bc. (29)

Finally, since any LFT h ∈ H? has a determinant of absolute value equal to 1, one has:

ui = |b′i(0)|
−1/2, ri = |e′i(0)|

−1/2. (30)

5.4. Transfer operators

One of the main tools in dynamical systems theory is the transfer operator (Ruelle, 1978), denoted
by Hs. It generalises the density transformer H that describes the evolution of the density: if f = f0
denotes the initial density on I , and f1 the density on I after one iteration of T , then f1 can be written
as f1 = H[f0], where H is defined by

H[f ](x) =
∑
h∈H

|h′(x)| f ◦ h(x). (31)

It is useful to introduce a more general operator that depends on a complex parameter s,

Hs[f ](x) =
∑
h∈H

|h′(x)|s f ◦ h(x) =
∑
m≥1

1
(m+ x)2s

f
(

1
m+ x

)
,

and multiplicative properties of derivatives entail that

Hps [f ](x) =
∑
h∈Hp
|h′(x)|s f ◦ h(x), (I − Hs)−1[f ](x) =

∑
h∈H?

|h′(x)|s f ◦ h(x).

Now, relation (29) between the denominator and the derivative of a LFT, and the fact that any element
ofH? has a determinant equal to±1, entail an alternative expression for the transfer operator,

Hps [f ](x) =
∑
h∈Hp

1
D[h](x)2s

f ◦ h(x), (I − Hs)−1[f ](x) =
∑
h∈Hn

1
D[h](x)2s

f ◦ h(x),

which will show, with (30) that the transfer operator can be viewed as a generating operator for
denominator sequences ui, ri. This is the main idea on which is based the dynamical analyses. We
now explain the relation between Dirichlet series and transfer operators.
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5.5. The Dirichlet series FC (s)

We describe alternative expression of the Dirichlet series F̃C (s), F̃C (s), as a function of operator Hs.
Let us begin with the trivial cost:
Cost C0 ≡ 1. The Euclid algorithm writes each rational u/v ∈ Ω̃ in a unique way as u/v = h(0)

with h ∈ H?. Then,

F̃0(2s) :=
∑

(u,v)∈Ω̃

1
v2s
f
(u
v

)
=

∑
k≥0

∑
h∈Hk
|h′(0)|s · f ◦ h(0) = (I − Hs)−1[f ](0),

from which we deduce an alternative expression of F0(2s), with the help of the Riemann ζ function:

F0(2s) =
∑
d≥1

∑
(u,v)∈Ω̃

1
(dv)2s

f
(
du
dv

)
= ζ (2s) F̃0(2s) = ζ (2s) (I − Hs)−1[f ](0).

All the studies of the paper are based on refinements of the (simple) equality.
Cost C1, C1 for Theorem 1.Wewill show in Section 6.4 that a main tool for studying the second cost

Pδ onΩ , via its moment generating function En,f [exp(wPδ)], is the Dirichlet series G(2s, 2t, w)which
depends on three parameters s, t, w and is equal to

G(2s, 2t, w) = ewζ (2s+ 2t) (I − Hs+t)−1 ◦ (Hs − Hs+t) ◦ (I − ewHs)−1[f ](0).

Cost C2, C2 for Theorem 2.Wewill show in Section 6.1 that a main tool for studying the distribution
of x〈δ〉 onΩ (via the estimate of Pn,f [x〈δ〉 ∈ J]) is the Dirichlet series which depends on two parameters
s, t , together with the interval J ,

F(2s, 2t, J) = ζ (2s+ 2t) (I − Hs+t)−1
[
1J · (Hs − Hs+t) ◦ (I − Hs)−1[f ]

]
(0).

Cost C4, C4 for Theorem 4.Wewill show in Section 6.7 that a main tool for studying the mean value
of Qδ is the Dirichlet series which depends on two parameters s, t ,

ζ (2s+ 2t)(I − Hs+t)−1(Hs − Hs+t) ◦
(
∂

∂w
H3s,w,[`]

)
w=0
◦ (I − Hs)−1[f ](0),

and involves the weighted transfer operator Hs,w,[`] relative to the binary size ` and defined as

Hs,w,[`][f ](x) :=
∑
m≥1

exp(w`(m))
(m+ x)2s

f
(

1
m+ x

)
. (32)

Cost C5, C5 for Theorem 5.Wewill show in Section 6.8 that a main tool for studying the mean value
of `(u〈δ〉) is the Dirichlet series which depends on two parameters s, t ,

ζ (2s+ 2t)(I − Hs+t)−1 ◦ H′s+t ◦ (I − Hs+t)−1 ◦ (Hs+t − Hs) ◦ (I − Hs)−1[f ](0),

and involves the operator H′s := d/(ds)Hs defined as

H′s[f ](x) := −2
∑
m≥1

log(m+ x)
(m+ x)2s

f
(

1
m+ x

)
. (33)

With alternative expressions of these Dirichlet series at hand, we now perform the second step:
we find the dominant singularities of these Dirichlet series and their nature, and then transfer this
information for obtaining asymptotic expressions of their coefficients. All the expressions previously
obtained in this subsection involve the quasi-inverse (I − Hs)−1. This explains why the singularities
of the Dirichlet series will be related to the dominant spectral objects of the transfer operator Hs. A
precise study of these spectral properties will lead to the asymptotic study of the coefficients of these
Dirichlet series.
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5.6. Spectral properties of the transfer operator Hs

Wenowrecall themain properties of the transfer operatorHs and its quasi-inverse (I−Hs)−1. These
properties depend on the Banach space where the operator acts. Here, the Banach space is C1(I), and
we recall now the main properties of the operator Hs, when acting on this functional space.
For <(s) > 1/2, the operator Hs acts on C1(I) and the map s → Hs is analytic. For s = 1,

the operator is quasi-compact: there exists a spectral gap between the unique dominant eigenvalue
(that equals 1, since the operator is a density transformer) and the remainder of the spectrum. By
perturbation theory, these facts – existence of a dominant eigenvalue λ(s) and of a spectral gap –
remain true in a complex neighborhood V of s = 1. There, the operator splits into two parts: the
part relative to the dominant eigensubspace, denoted Ps, and the part relative to the remainder of the
spectrum, denoted Ns, whose spectral radius is strictly less than η|λ(s)| (with η < 1). This leads to
the following spectral decomposition

Hs[f ](x) = λ(s)Ps[f ](x)+ Ns[f ](x),

which extends to the powers Hns of the operator

Hns [f ](x) = λ
n(s)Ps[f ](x)+ Nns [f ](x), (34)

and finally to the quasi-inverse (I− Hs)−1

(I − Hs)−1[f ](x) =
λ(s)
1− λ(s)

Ps[f ](x)+ (I− Ns)−1[f ](x). (35)

The first term on the right admits a pole (of order 1) at s = 1, while the second term is analytic on the
half-plane {<(s) > 1}. The dominant eigenvalue λ(s) is analytic in a neighborhood of s = 1, and the
pressure functionΛ(s) := log λ(s) plays an important rôle. In particular, near s = 1, one has

(I − Hs)−1[f ](x) ∼
−1
λ′(1)

ϕ(x)
∫
I
f (t)dt, (36)

where −λ′(1) is the entropy of the system, equal to π2/(6 log 2) and ϕ is the Gauss density, already
mentioned in (1).
For Theorem 2, the Dirichlet series (1/t)F(2s, 2t, J) defined in Section 5.5 can be viewed as a

perturbation of

F1(2s, J) := −(I − Hs)−1[1J · H′s ◦ (I − Hs)−1[f ]](0),

for small t . This Dirichlet series F1(2s, J) involves the operator H′s := (d/ds)Hs, has a pôle of order 2
at s = 1, and satisfies for s close to 1, with (36)

F1(2s, J) ∼
−1

(s− 1)2

(
1

λ′(1)

)2
ϕ(0)

(∫
J
H′[ϕ](t)dt

)
,

where H′ := H′1 and ϕ is the Gauss density defined in (1). This explains whyψ = H′[ϕ] introduced in
(2) plays a central rôle in our analyses.

5.7. US Property for the Dirichlet series FC (s)

We have obtained a first information about the singularities of the quasi-inverse (I − Hs)−1 and
an alternative expression of F̃C (s) as a function of this quasi-inverse. We now wish to perform the
second step and transfer this information for obtaining asymptotic expressions of the coefficients of
the Dirichlet series. As a main tool, we rely on convenient ‘‘extractors’’ which express coefficients of
series as a function of the series itself. There exist an easy ‘‘extractor’’ for Dirichlet series: the (plain)
Tauberian Theorems. However, they do not provide remainder terms, and they are not adapted for
our study, since we wish to obtain uniform estimates with respect to auxiliary parameters δ,w, t, J .
We then adopt the Perron Formula, whichmay provide remainder terms, as soon as we have a precise
knowledge of F̃C (s) on vertical strips.



Author's personal copy

752 E. Cesaratto et al. / Journal of Symbolic Computation 44 (2009) 726–767

The Perron Formula of order two (see Ellison and Ellison (1985)) is valid for a Dirichlet series
F(s) =

∑
n≥1

an
n2s
and a vertical line<s = D > 0 inside the convergence domain of F ,

Ψ (T ) :=
∑
n≤T

an(T − n) =
1
2iπ

∫ D+i∞

D−i∞
F(s)

T 2s+1

s(2s+ 1)
ds. (37)

It is next natural to modify the integration contour <s = D into a contour which contains a unique
pole of F(s), and it is thus useful to know that the PropertyUS [Uniform Estimates on Strips] holds.We
have already described this Property in an informal way in Section 1.3. It is now necessary to describe
it more precisely.

Theorem A (US Property for the Euclidean Dynamical System (Dolgopyat, 1998; Baladi and Vallée, 2005)).
When the transfer operator Hs relative to the Euclidean dynamical system acts on the functional space
C1(I) of functions with a continuous derivative on the unit interval I := [0, 1], there exists α > 0 for
which the following holds on the strip S := {s, 1− α ≤ <s ≤ 1}.

(i) The quasi-inverse (I −Hs)−1 has a unique pôle in the vertical strip S := {s, |<s− 1| ≤ α}, located at
s = 1.

(ii) There exist t0 > 0, ξ < 1/5, C > 0, such that, on the truncated strip {s, |<s − 1| ≤ α, |=s| ≥ t0},
letting t := =s,

‖(I − Hs)−1‖1,t = O
(
|=s|ξ

)
with ‖f ‖1,t := sup |f | + (1/t) sup |f ′|.

Fromworks of Dolgopyat (1998) and Baladi and Vallée (2005), we know that (I−Hs)−1 satisfies the
US Property, with a strip of width α > 0. With this US-Property, we can shift the integration contour
in (37). If, for instance

F(s) = (1− Hs+t)−1[g](0) :=
∑
n≥1

an(t)
n2s

,

we obtain

Ψ (T ) :=
∑
n≤T

an(T − n) = Ress=1−t

(
T 2s+1

s(2s+ 1)
F(s)

)
+
1
2iπ

∫
<s=1−t−α

F(s)
T 2s+1

s(2s+ 1)
ds.

Finally, if the pole is simple, the residue is not zero, and the following estimate shows the importance
of the parameter σ , defined as a lower bound for this width α, since it intervenes in the remainder
term, as

Ψ (T ) =
T 3−2t

(1− t)(3− 2t)
Ress=1−tF(s)

[
1+ O(T−2σ )

]
. (38)

The real σ mentioned in all our Theorems 1–7 is a lower bound for this width α.

6. Proofs of Theorems 1 and 2

Here, we provide the complete proofs of Theorems 1 and 2. We first recall some notations. On an
input (u, v), the Euclid algorithm builds a sequence of remainders (uk) and a sequence of rationals
xk = uk+1/uk.
We recall that Pδ(u, v) is the smallest integer k for which lg uk is less than (1 − δ)`(u0). We are

interested in describing the position of the rational

x〈δ〉 := xk when Pδ(u, v) = k.

6.1. Proof of Theorem 2 — Step 1. The Dirichlet series of interest

We here provide an estimate of the distribution of the rational x
〈δ〉, which is a probabilistic version

of the rational x〈δ〉.
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We first deal with intermediate sets V(k)
N,M(J), U

(k)
N,M(J), defined as

V
(k)
N,M(J) := {(u, v) ∈ Ω; v = N, uk+1 = M, xk+1 ∈ J}

U
(k)
N,M(J) := {(u, v) ∈ Ω, v = N, uk = M, xk+1 ∈ J}

and the set7

AN(W , J) :=
∑
k≥0

[(∑
M≤W

V
(k)
N,M(J)

)∖(∑
M≤W

U
(k)
N,M(J)

)]
(39)

gathers the pairs (u, v) of Ω with v = N for which the following is true: ‘‘if k denotes the smallest
index for which the remainder uk has a denominator at most W , the rational xk belongs to J ’’. This
shows that these intermediate sets will be closely related to our problem.
We now observe two facts: The f -weights ũ(k)N,M(J), ṽ

(k)
N,M(J) of the tilded version of the intermediate

sets

Ṽ
(k)
N,M(J) := V

(k)
N,M(J) ∩ Ω̃, Ũ

(k)
N,M(J) := U

(k)
N,M(J) ∩ Ω̃

are easily generated by the transfer operator, since the two following equalities hold

Ũ(2s, 2t, J, k) :=
∑
N≥1

∑
M≥1

ũ(k)N,M(J)

N2sM2t
= (I − Hs+t)−1

[
1J · Hs+t ◦ Hks [f ]

]
(0) (40)

Ṽ (2s, 2t, J, k) :=
∑
N≥1

∑
M≥1

ṽ
(k)
N,M(J)

N2sM2t
= (I − Hs+t)−1

[
1J · Hk+1s [f ]

]
(0). (41)

On the other hand, there are nice relations betweenV
(k)
N,M(J), U

(k)
N,M(J) and their tilded versions, as

we now explain. Each of these two sets V(k)
N,M(J), U

(k)
N,M(J) decomposes as a disjoint union

V
(k)
N,M(J) =

∑
d≥1

(
V
(k)
N,M(J) ∩Ω[d]

)
, U

(k)
N,M(J) =

∑
d≥1

(
U
(k)
N,M(J) ∩Ω[d]

)
,

which involves the setΩ[d] of pairs (u, v) ofΩ for which gcd(u, v) = d; the map (u, v) 7→ (du, dv)
defines two bijections which preserve the f -weights,

– first from Ṽ
(k)
N,M(J) onto

(
V
(k)
dN,dM(J) ∩Ω[d]

)
,

– second from Ũ
(k)
N,M(J) onto

(
U
(k)
dN,dM(J) ∩Ω[d]

)
.

Then, the Dirichlet series U, V and their tilded versions Ũ, Ṽ are related via the Riemann ζ function,
as follows:

U(s, t, J, k) :=
∑
N≥1

∑
M≥1

u(k)N,M(J)

N sM t
= ζ (s+ t) Ũ(s, t, J, k), (42)

V (s, t, J, k) :=
∑
N≥1

∑
M≥1

v
(k)
N,M(J)

N sM t
= ζ (s+ t) Ṽ (s, t, J, k). (43)

Finally, the series F(s, t, J) defined as

F(s, t, J) :=
∑
k≥0

[V (s, t, J, k)− U(s, t, J, k)] (44)

7 The sum A+ B between sets A, B replaces the union A ∪ Bwhen A and B are disjoint.
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admits with (42), (43), (40) and (41) the alternative expression which involves the ζ function and the
transfer operator Hs

F(2s, 2t, J) := ζ (2s+ 2t)(I − Hs+t)−1
[
1J · (Hs − Hs+t) ◦ (I − Hs)−1[f ]

]
(0). (45)

On the other hand, F(s, t, J) is a Dirichlet series of the form

F(s, t, J) =
∑
N≥1

∑
M≥1

aN,M(J)
N sM t

whose coefficient aN,M(J) satisfies the following, with the definition of F given in (44),∑
M≤W

aN,M(J) =
∑
M≤W

∑
k≥0

(
v
(k)
N,M(J)− u

(k)
N,M(J)

)
=

∑
k≥0

[(∑
M≤W

v
(k)
N,M(J)

)
−

(∑
M≤W

u(k)N,M(J)

)]
,

and the last expression is exactly the f -weight of the setAN(W , J) defined in (39). Finally, the equality

2n∑
N=2n−1

AN(2(1−δ)n, J) = {(u, v) ∈ Ωn; x〈δ〉 ∈ J}

holds and entails the equality

Pn,f [x〈δ〉 ∈ J] =
1
|Ωn|f

2n−1∑
N=2n−1

∑
M≤2(1−δ)n

aN,M(J),

where |Ωn|f is just the f -weight ofΩn. Comparing the Riemann sum with the integral entails

|Ωn|f :=
∑

(u,v)∈Ωn

f
(u
v

)
=

2n−1∑
v=2n−1

∑
u<v

f
(u
v

)
= |Ωn|

[
1+ 2−nO(‖f ‖1)

]
.

For studying the I(δ) probabilistic version x
〈δ〉, we are led to evaluate the expression

Pn,f [x〈δ〉 ∈ J] =
1
|Ωn|f

2n−1∑
N=2n−1

1
|In(δ)|

∑
W1∈In(δ)

∑
M≤W1

aN,M(J).

Since |Ωn| = (3/4)22n, we have finally to evaluate

1
|In(δ)|

2n−1∑
N=2n−1

∑
W1∈In(δ)

∑
M≤W1

aN,M(J),

which is a particular case of

E0(T ,W ,W−) :=
1

W −W−

T∑
N=T/2

W∑
W1=W−

∑
M≤W1

aN,M(J), (46)

where T andW are polynomially related.
It is then sufficient to extract coefficients from the Dirichlet series F(s, t, J) given in (45). However,

it is not possible to directly deal with the characteristic function of the interval J , since it does not
belong to the ‘‘convenient’’ functional space C1(I)where the Property US holds. Then, for a function ε
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positive which satisfies ε(x) ≤ x, we replace the function 1J by two functionsψ+(J,ε) andψ
−

(J,ε) of C
1(I)

which are good approximations of 1J , and satisfy ψ−(J,ε) ≤ 1J ≤ ψ+(J,ε),∥∥∥ψ±(J,ε)∥∥∥1 ≤ 1
ε(|J])

, (47)∫
I

∣∣∣ψ±(J,ε)∣∣∣(u) du ≤ |J| + ε(|J|), ∫
I

∣∣∣ψ+(J,ε) − ψ−(J,ε)∣∣∣(u) du ≤ ε(|J|).
We replace the Dirichlet series F(s, t, J) by the series F+(s, t, J, ε), F−(s, t, J, ε) defined as

F±(2s, 2t, J, ε) = ζ (2s+ 2t)(I − Hs+t)−1
[
ψ±(J,ε) · (Hs − Hs+t) ◦ (I − Hs)−1[f ]

]
(0). (48)

The coefficients of these series, denoted by a±N,M(J, ε), have the following combinatorial sense: The
sum of these coefficients∑

M≤W

a±N,M(J, ε) (49)

equals the sum, taken over all pairs (u, v) with v = N , of the quantities f (xk) · ψ±(J,ε)(xk), where xk is
the rational relative to the smallest index k for which uk is less thanW .
We have introduced several objects X for which there exist related objects X+, X−, for instance,

the Dirichlet series F(s, t, J), the coefficients aN,M(J, ε), etc. We denote by X∆ the difference X+− X−
and by X♦ any element of the set {X+, X−, X∆}. Then, the inequalities∑

M≤W

a−N,M(J, ε) ≤
∑
M≤W

aN,M(J) ≤
∑
M≤W

a+N,M(J, ε) (50)

show that our main object of interest E0(T ,W ,W−) defined in (46) can be evaluated with the help of
the various E♦0 (T ,W ,W−), via the relation

E0(T ,W ,W−) = E−0 (T ,W ,W−)+ O
(
E∆0 (T ,W ,W−)

)
. (51)

It is then sufficient to deal with the series F♦(s, t, J, ε), defined in (48).

6.2. Proof of Theorem 2 — Step 2. Extraction via the Perron Formula

The series F♦ defined in (48) depends on two complex variables s and t (with J and ε as parameters).
We will use the Perron Formula, two times.
First, suppose that the complex s is fixed, satisfies<s > 1 and consider the Dirichlet series F♦ as a

function of t , which has an only pôle at t = 1− s in the strip 1− α < <(s+ t) < 1+ α. Then, with
the Perron formula (see Section 5.7)∑

W1≤W

∑
M≤W1

∑
N≥1

a♦N,M(J, ε)

N2s
= ζ (2)

W 2(1−s)+1

(3− 2s)
ϕ(0)
λ′(1)

∫
I
ψ
♦

(J,ε)(u)

×

[(
Hs − H1
s− 1

)
◦ (1− Hs)−1[f ]

]
(u)du

+
1
2iπ

∫
<(s+t)=1−α

W 2t+1

t(2t + 1)
F♦(2s, 2t, J, ε)dt.

This is now a Dirichlet series with respect to s, which has an only pôle at s = 1 in the strip
1 − β < <s < 1 + β , and using again the Perron Formula for extracting coefficients, we finally
obtain four terms for the sum of coefficients

E♦1 (T ,W ) :=
∑
T1≤T

∑
N≤T1

∑
W1≤W

∑
M≤W1

a♦N,M(J, ε),
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namely, defining domains Γ0 = {s ∈ C | <s = 1 − β}, Γ1 = {t ∈ C | <t = −α} and
Γ2 = {(s, t) ∈ C2 | <t = β − α and<s = 1− β},

−ζ (2)
ϕ(0)
λ′(1)2

T 3

3
W
∫
I
ψ
♦

(J,ε)(u)H
′
[ϕ](u)du

−
ζ (2)ϕ(0)
2iπλ′(1)

∫
Γ0

T 2s+1

s(2s+ 1)
W 2(1−s)+1

(3− 2s)(1− s)

(∫
I
ψ
♦

(J,ε)(u) · (Hs − H1) ◦ (I − Hs)−1[f ](u)du
)
ds

+
1
2iπ
T 3

3

∫
Γ1

ζ (2+ 2t)
W 2t+1

t(2t + 1)
(I − H1+t)−1

[
ψ
♦

(J,ε) · (H1 − H1+t)
[

ϕ

−λ′(1)

]]
(0) dt

−

∫
Γ2

ζ (2s+ 2t)
4π2

T 2s+1

s(2s+ 1)
W 2t+1

t(2t + 1)
(I − Hs+t)−1

×

[
ψ
♦

(J,ε) · (Hs − Hs+t) ◦ (I − Hs)−1[f ]
]
(0)ds dt.

If we choose α = β , it seems that the fourth term has a pôle at t = 0, but this is not a ‘‘true’’ pôle, since
there is an occurrence of a secant operator, of the form (1/t)(Hs+t − Hs)which tends to the operator
H′s when t → 0. We then choose α = β , and, for reasons which will appear later, due in particular to
possible applications of Proposition A (see Appendix), we choose α = β = σ := min(σ , 1/2).
The first term will provide the main term. For E±1 (T , w), it is Θ(T

3W ), more precisely equivalent
to

a(J)
T 3

3
W with a(J) =

1
λ′(1)

∫
J
H′[ϕ](t)dt =

∫
J
ψ(t)dt. (52)

(For the computation of the constant a(J), we used the equality ζ (2) = −λ′(1) log 2which comes from
spectral properties at s = 1 described in Section 5.6). Then Theorem A (Section 5.7) entails estimates
for the four terms of E♦1 (T ,W ). Furthermore, the constants involved in the O-terms depend only on J
and ε, but not in the sameway for all the terms: in the first two terms, the interval J intervenes via the
integral of the function ψ♦(J,ε), whereas, in the last two terms, the interval J intervenes via the norm
‖ · ‖1,1 of the function ψ

♦

(J,ε). Finally, with Theorem A, and (47), each E
♦

1 (T ,W ) can be written as

E♦1 (T ,W ) = a(J)
T 3

3
W ·

[
4∑
i=1

A♦j (T ,W )

]
with

A±1 (T ,W ) = 1+ O
(
ε(|J|)
|J|

)
, A∆1 (T ,W ) = O

(
ε(|J|)
|J|

)
,

A♦3 (T ,W ) = O
(

1
|J|ε(|J|)

)
W−2σ , A♦4 (T ,W ) = O

(
1

|J|ε(|J|)

)
T−2σ , (53)

A±2 (T ,W ) = O
(
1+

ε(|J|)
|J|

)(
T
W

)−2σ
, A∆2 (T ,W ) = O

(
ε(|J|)
|J|

)(
T
W

)−2σ
.

Remark that A♦1 does not depend on (T ,W )while A
♦

2 depends only on (T/W ) and A
♦

3 only depends on
W . Moreover, in view of applying propositions of the Appendix, we remark the following: since there
is a polynomial of degree 4 in the denominator of the integral that defines the term A♦2 , it is possible
to take the derivative two times, and this defines a function (T ,W ) 7→ A♦2 (T ,W ) of class C2. Finally,
the terms

F♦1 (T ,W ) :=
3∑
i=1

A♦j (T ,W ), H♦1 (T ,W ) :=
2∑
i=1

A♦j (T ,W )
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define a function T 7→ F♦1 (T ,W ) of class C
2, and a functionW 7→ H♦1 (T ,W ) of class C

2. Moreover, if
we consider the notion of uniform order given at the beginning of Section 7, it is clear that each term
Ai is of uniform order with respect to the convenient variables, and, each of the two derivatives of A2
is of uniform order.

6.3. Proof of Theorem 2 — Step 3. Final estimates for variable x
〈δ〉 onΩ

This step can be decomposed into three sub-steps.
Step 3 (a): The triple (W , J, ε) is fixed, the variable is T . The sums

∑
M≤W a

♦

N,M(J, ε) are positive, so
that the functions

T 7→ E♦2 (T ,W ) :=
∑
N≤T

∑
W1≤W

∑
M≤W1

a♦N,M(J, ε)

are increasing. Then, it is possible to transform in E♦1 (T ,W ) the double sum over indices N into a
simple sumwith Proposition B of the Appendix and deduce from the estimates of E♦1 (T ,W ) estimates
for the sums

E♦2 (T ,W ) = a(J) T
2W

[
F♦2 (T ,W )+ O(T

−σ )
]
,

with F♦2 (T ,W ) := F
♦

1 (T ,W ) + (T/3)(d/dT )F
♦

1 (T ,W ). We will be interested in the following by
E♦(T ,W ) := E♦2 (T ,W )− E

♦

2 (T/2,W ) for which we get the estimate

E♦(T ,W ) =
3
4
a(J) T 2W

[
F♦(T ,W )+ O(T−σ )

]
, (54)

where F♦(T ,W ) := (4/3)F♦2 (T ,W ) − (1/3)F
♦

2 (T/2,W ) defines a function T 7→ F♦(T ,W ) of class
C1. Applying now Proposition A of Section 7 in case (WB), with the choice (T − T−)/T = Θ(T−x)
(always, for each value of the triple (W , J, ε) fixed) provides the estimate

E♦(T ,W )− E♦(T−,W )
T − T−

=
3
2
a(J) TW (55)

×

[
A♦1 + O(W

−2σ )+ O

((
T
W

)−2σ)
+ O(T−σ+x)+ O(T−x)

]
.

Step 3 (b): The pair (J, ε) is fixed, T and W are polynomially related.We let T = W ν . Then, ν and our
initial parameter δ are related via the equality 1/ν = 1−δ, and the parameter ν ≥ 1 is unbounded for
δ ∈]0, 1]. We wish to obtain an estimate of our main object of interest E♦0 (W

ν,W ,W−), (uniformly
with respect to ν),

E♦0 (W
ν,W ,W−) =

E♦(W ν,W )− E♦(W ν,W−)
W −W−

.

First, observe the following decomposition of E♦(W ν,W )− E♦(W ν,W−) as[
E♦(W ν,W )− E♦(W ν

−
,W−)

]
−
[
E♦(W ν,W−)− E♦(W ν

−
,W−)

]
. (56)

For the first term of (56), relation (54) entails the estimate

E♦(W ν,W ) =
3
4
a(J)W 2ν+1

[
H♦(W )+ O(W−2σ )+ O(W−νσ )

]
,

where H♦(W ) ‘‘comes from’’ H♦1 (W
ν,W ) after transforming it in the same way which transforms

F1 into F . Then, W 7→ H♦(W ) is of class C1. Applying Proposition A in case (WU) with the choice
(W −W−)/W := (1/ν)Θ(W−y) provides the estimate

E♦(W ν,W )− E♦(W ν
−
,W−)

W −W−
=
3
4
(2ν + 1) a(J)W 2ν

×

[
A♦1 + O(W

−2(ν−1)σ )+ O
(
W−y

)
+ O

(
W−2σ+y

)
+ O(W−νσ+y)

]
. (57)
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For the second term of (56), we take the same choice for (W −W−)/W , which leads to the choice

T − T−
T−

=
W ν
−W ν

−

W ν
−

= ν
W −W−
W

[1+ O(W−y)] = Θ
(
W−y

)
.

Using now (55) with T−x = W−y (i.e., y = νx) leads to an estimate for

E♦(W ν,W−)− E♦(W ν
−
,W−)

W −W−

of the form
3
2
a(J)W ν+1 [νW ν−1] [A♦1 + O(W−2σ )+ O(W−2(ν−1)σ )+ O(W−νσ+y)+ O(W−y)] . (58)

Finally, using (56)–(58) and choosing

y =
1
2
σ min (ν, 2) ,

W −W−
W

=
1
ν
Θ(W−y), T = W ν, (59)

together with the precise estimates of terms A♦i (T ,W ) given in (53) leads to the final estimates for
E♦0 (T ,W ,W−), namely

E±0 (T ,W ,W−) =
3
4
a(J)W 2ν

[
1+ νO

(
R±(W )

)]
E∆0 (T ,W ,W−) =

3ν
4
a(J)W 2ν O

(
R∆(W )

)
,

with

R±(W ) = max
(
ε(|J|)
|J|

,W−2(ν−1)σ ,
1

|J|ε(|J|)
W−y

)
R∆(W ) = max

(
ε(|J|)
|J|

,
1

|J|ε(|J|)
W−y

)
.

This entails the final estimate for the ‘‘true’’ E0(T ,W ,W−) for T = W ν and (W −W−)/W as in (59),

E0(T ,W ,W−) =
3
4
a(J)W 2ν

[
1+ νO

(
ε(|J|)
|J|

,
1

|J|ε(|J|)
W−y,W−2(ν−1)σ

)]
. (60)

Step 3 (c): (T ,W , J, ε) are polynomially related. We now consider the case when the function ε
(which quantifies the approximation of the characteristic function 1J ) is a power function, of the form
x 7→ x1+θ .We suppose that all our parameters X ∈ {|J|, ε(|J|), T ,W } have an exponential dependence
on n (now J and ε vary), and we fix their exponents e(X) := n−1 lg X as

e(T ) = 1, e(W ) = (1− δ) =
1
ν
, e(|J|) = −2γ , e(ε(|J|)) = −2γ (1+ θ).

Then, the exponents of the three terms in the remainder term of (60) are at least equal to

τ := min
(
2γ θ, ρ(δ)− 2γ (θ + 2), 2σδ

)
, with ρ(δ) := σ min

(
1
2
, 1− δ

)
.

We first choose the exponent of the function ε : x 7→ x1+θ in order to equalise the first two exponents.
Since the exponent θ must be strictly positive, this is only possible for γ < (1/4)ρ(δ) and, in this case,
the best choice of θ leads to

τ = τ1(δ, γ ) := min
(
1
2
ρ(δ)− 2γ , 2σδ

)
.
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Consider now the case when the interval J is large enough (with respect to σ , and the fraction (1−δ)),
so that the exponent −e(|J|) satisfies −e(|J|) = 2γ < (1/4)ρ(δ). Then, there is a lower bound τ(δ)
for τ1(δ, γ ), which depends only on σ and δ, with

τ(δ) := σ min
(
1
8
,
1− δ
4

, 2δ
)
. (61)

Step 3 (d): Conclusion. We return to our initial problem, andwith (60), together with the definition
of the interval

In(δ) :=
[
2(1−δ)n

(
1− (1− δ)2−ρ(δ)n

)
, 2(1−δ)n

]
, with ρ(δ) := σ min

(
1
2
, 1− δ

)
,

the definition of τ(δ) given in (61) and the expression of a(J) in (52), we obtain an estimate for

2n−1∑
N=2n−1

1
|In(δ)|

∑
W∈In(δ)

∑
M≤W

aN,M(J) =
(
3
4
22n
)(∫

J
ψ(t)dt

)[
1+

1
1− δ

O(2−nτ(δ))
]
.

Since all our estimates are uniform with respect to δ, it is then possible to obtain the same results for
a sequence δn (which may depend on the size n). Since the first term equals the cardinality ofΩn, this
leads (as we already explained in Section 6.1) to the estimate of the probability

Pn,f [x〈δ〉 ∈ J] =
1
|Ωn|f

2n−1∑
N=2n−1

1
|In(δ)|

∑
W∈In(δ)

∑
M≤W

aN,M(J).

Here, the variable x
〈δ〉 is the I(δ) probabilistic variant of the variable x〈δ〉, whose definition is now

recalled: consider, for a given size n, the interval In(δ) and choose an integer W uniformly in this
interval. Denote by x

〈δ〉 the rational xk associated to the first index k for which lg uk is less than W .
Since, in any interval ]A/2, A], there are at most two elements of the sequence xk, then, for n large
enough, there are only three possible values for x

〈δ〉, namely x〈δ〉+i with 0 ≤ i ≤ 2.

6.4. Proof of Theorem 3

It uses both Theorem 1 and Lemma 2, so that the best choice of the remainder term τ(δ, γ ) is given
by

τ(0, γ ) = 2γ , τ (δ, γ ) = min (τ1(δ, γ ), 2γ , ) = min
(
2γ ,

1
2
ρ(δ)− 2γ , 2σδ

)
.

6.5. Proof of Theorem 1— Step 1. The Dirichlet series of interest

We study, in the same vein as before, a probabilistic version Pδ of Pδ . We prove that it follows an
asymptotic Gaussian law onΩ , from which it will be easy to deduce an asymptotic Gaussian law for
the deterministic version Pδ onΩ .
We wish to use the Quasi-Powers Theorem which provides sufficient conditions, which entail an

asymptotic Gaussian behaviour.

Theorem B (Quasi-Powers Theorem (Hwang, 1998)). Assume that the moment generating functions
En,f [exp(wR)] for a cost R are analytic in a complex neighbourhoodW ofw = 0, and satisfy

En,f [exp(wR)] = exp[βnC(w)+ D(w)]
(
1+ O(κ−1n )

)
, (62)

with βn, κn →∞ as n→∞, C(w), D(w) analytic onW and the O-term uniform inW . Then, the mean
and the variance satisfy

En,f [R] = C ′′(0) · βn + D′(0)+ O(κ−1n ), V[Rn] = C ′′(0) · βn + D′′(0)+ O(κ−1n ).
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Furthermore, if C ′′(0) 6= 0, the distribution of R is asymptotically Gaussian on Ωn with speed of
convergence O(κ−1n + β

−1/2
n ),

Pn,f

[
x
∣∣ R(x)− C ′(0)βn√

C ′′(0)βn
≤ Y

]
=

1
√
2π

∫ Y

−∞

e−y
2/2 dy+ O(κ−1n + β

−1/2
n ).

We shall show that Theorem B can be applied to our framework, with

βn = δn n, κn =
1

1− δn
2−ñτ(δn), C(w) = 2 log 2(ξ(w)− 1),

where τ̃ (δ) is defined in Fig. 5 and ξ(w) is the solution of the equation Λ(s) = −w which involves
the pressure functionΛ(s) := log λ(s). This will entail Theorem 1.
We first wish to estimate the generating function En,f (exp[wPδ]), as a quasi-power. We deal with

the function G(s, t, w) := ζ (s+ t) G̃(s, t, w)with

G̃(2s, 2t, w) = ew (I − Hs+t)−1(Hs − Hs+t) ◦ (I − ewHs)−1[f ](0).
The series G can be written as a Dirichlet series which depends on two variables s, t , together with a
parameterw,

G(s, t, w) =
∑
k≥0

ew(k+1)
∑
N≥1

∑
M≥1

b(k)N,M
N sM t

=

∑
k≥0

ewk[V (s, t, I, k)− U(s, t, I, k)], (63)

where the functions U and V are defined in (42) and (43). Here, the coefficient
∑
M≤W b

(k)
N,M equals the

f -weight of pairs (u, v)with v = N for which uk+1 is at mostW , while uk is greater thanW . Then, the
quantity

2n∑
N=2n−1

∑
M≤2(1−δ)n

b(k)N,M

equals the f -weight of the subset of pairs (u, v) of size n for which Pδ equals k+1, and the expression
2n∑

N=2n−1

∑
M≤2(1−δ)n

∑
k≥0

ew(k+1)b(k)N,M

is the cumulative generating function of parameter Pδ on Ωn. As previously, it is then sufficient to
extract coefficients from the Dirichlet series G(s, t, w).

6.6. Proof of Theorem 1 — Step 2. Extraction with the Perron Formula

This series G defined in (63) depends of two complex variables s and t (withw as a parameter). We
will use the Perron Formula, two times.
We proceed in two steps, as previously. We first consider the Dirichlet series as a function of t ,

which has an only pôle at t = 1− s in the vertical strip in the strip 1− α < <(s+ t) < 1+ α. Then∑
W1≤W

∑
M≤W1

∑
N≥1

∑
k≥0

etk
b(k)N,M
N2s
= ζ (2)

W 2(1−s)+1

(3− 2s)
ϕ(0)
λ′(1)

∫
I

(
H1 − Hs
1− s

)
◦ (I − ewHs)−1[f ](u)du

+
1
2iπ

∫
<(s+t)=1−α

W 2t+1

t(2t + 1)
G(2s, 2t, w) dt.

This is now a Dirichlet series with respect to s, which has an only pôle at s = ξ(w) in the vertical strip
1 − β < <s < 1 + β , where s = ξ(w) is the solution of the equation Λ(s) = −w. Using again the
Perron Formula for extracting coefficients, we obtain finally four terms for this sum of coefficients

e−wD(T ,W , w) :=
∑
T1≤T

∑
N≤T1

∑
W1≤W

∑
M≤W1

∑
k≥0

ewkb(k)N,M , (64)
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namely, defining domains Γ0 = {s ∈ C | <(s− ξ(w)) = −β}, Γ1 = {t ∈ C | <(ξ(w)+ t) = 1− α}
and Γ2 = {(s, t) ∈ C2 | <(t + ξ(w)) = 1+ β − α and<(s− ξ(w)) = −β},

ζ (2)
νξ(w)[f ]

λ′(1)λ′(ξ(w))
W 3−2ξ(w)

(3− 2ξ(w))
T 2ξ(w)+1

ξ(w)(2ξ(w)+ 1)

∫
I

(
Hξ(w) − Hs
1− ξ(w)

)
[ϕξ(w)](u)du

+
ζ (2)ϕ(0)
2iπ λ′(1)

∫
Γ0

T 2s+1

s(2s+ 1)
W 2(1−s)+1

(3− 2s)(1− s)

(∫
I
(Hs − H1) ◦ (I − ewHs)−1[f ](u)du

)
ds

+Cw[f ] T 2ξ(w)+1
∫
Γ1

W 2t+1

t(2t + 1)
(I − Hξ(w)+t)−1 ◦

(
Hξ(w) − Hξ(w)+t

) [ ϕw

−λ′(ξ(w))

]
(0) dt

−

∫
Γ2

ζ (2s+ 2t)
4π2

T 2s+1

s(2s+ 1)
W 2t+1

t(2t + 1)
(I − Hs+t)−1 ◦ (Hs − Hs+t) ◦ (I − ewHs)−1[f ](0) ds dt.

Here, the first term involves the dominant eigenfunction ϕs of Hs and the dominant eigenmeasure νs
of the dual H?s at s = ξ(w) and the second term involves

Cw[f ] :=
ζ (2ξ(w)+ 2)

2iπξ(w)(2ξ(w)+ 1)
νξ(w)[f ].

We first choose, as in Theorem 2, α = β = σ . The first term will provide the main term, which is
of the form A(w)W 3−2ξ(w)T 2ξ(w)+1. Applying Theorem A entails estimate for the other three terms, so
that D(T ,W , w) is written as

D(T ,W , w) = R(w)W 3−2ξ(w) T 2ξ(w)+1
[
1+

4∑
i=2

Aj(T ,W , w)

]
.

Here, R(w) is analytic and not zero whenw ∈ W and the following estimates hold

A2(T ,W , w) = O
(
T
W

)−2σ
, A3(T ,W , w) = O(W−2σ ), A4(T ,W , w) = O(T−2σ ),

where the constants involved in the O-terms are uniform when w is near 0. Moreover, the term
A2 defines a function (T ,W ) 7→ A2(T ,W , w) of class C2 which depends only on T/W (with w as
a parameter), whereas the term A3 depends only on W (with w as a parameter). Finally, the term
F1(T ,W , w) := A2(T ,W , w)+ A3(T ,W , w) defines a function T 7→ F1(T ,W , w) of class C2.

6.7. Proof of Theorem 1 — Step 3. Final estimates for variable Pδ onΩ

We now follow the same lines as in the proof of Theorem 2. We first consider W as fixed. For
transforming the double sum over indices N into a simple sum, it is possible to apply Proposition D
of Appendix, and transform the double sum over indices N into a simple sum. We deduce from the
estimate of D1(T ,W , w) in (64) an estimate for the sum

D(T ,W , w) :=
T∑

N=T/2

∑
W1≤W

∑
M≤W1

∑
k≥0

ewkb(k)N,M

= R1(w) T 2ξ(w)W 3−2ξ(w))
[
1+ F(T ,W , w)+ O(T−σ/2)

]
,

where T 7→ F(T ,W , w) defines a function of class C1.
Then, as in Section 6.3, we consider that T and W are polynomially related, and use two times

Proposition A as in Section 6.3, in cases (WB) and (WU). Due to the change of the exponent in
Proposition C, we slightly change definition for ρ(δ), I(δ) and τ(δ) and define

ρ̃(δ) := σ min
(
1
4
, 1− δ

)
, Ĩn(δ) :=

[
2(1−δ)n

(
1− (1− δ)2−ρ̃(δ)n

)
, 2(1−δ)n

]
,

τ̃ (δ) := σ min
(
1
4
, 1− δ, 2δ

)
.
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We then obtain an estimate for the moment generating function of the Ĩ(δ)-probabilistic variant Pδ
onΩn, namely

En,f [exp(wPδ)] =
1
|Ωn|f

2n−1∑
N=2n−1

1

|̃In(δ)|

∑
W ∈̃In(δ)

∑
M≤W

∑
k≥0

ewkb(k)N,M

= d(w)22nδ(ξ(w)−1)
[
1+

1
1− δ

O(2−ñτ(δ))
]
,

with a constant in the O-term uniform with respect to w ∈ W . As in the proof of Theorem 2, all our
estimates are uniform with respect to δ, so that we can consider a sequence δn which may depend on
the size n. Then, the Quasi-Powers Theorem, applied with

C(w) := 2 log 2(ξ(w)− 1), D(w) := lg d(w)
entails an asymptotic Gaussian law for the probabilistic variant Pδ onΩn, with a speed of convergence
given by

max
(
(δnn)−1/2,

2−nρ̃(δn)

1− δn

)
.

Furthermore, we have already remarked that, in any interval ]A/2, A], there are at most two elements
of the sequence xk. Then, for n large enough, the two variables – the probabilistic variable Pδ and its
deterministic version Pδ – are closely related since they satisfy |Pδ − Pδ| ≤ 2.
Finally, Proposition 1 of the paper of Lhote and Vallée (2008), together with the inequality |Pδ −

Pδ| ≤ 2 proves that the asymptotic Gaussian law also holds for Pδ onΩ , with a speed of convergence
of order

max
(
(δnn)−1/3,

2−nρ̃(δn)

1− δn

)
.

6.8. Proof of Theorem 4. Sketch

We study here the parameter Qδ and introduce the Dirichlet series which depends on two
parameters s, t ,

H(2s, 2t) := ζ (2s+ 2t)(I − Hs+t)−1(Hs+t − Hs) ◦
(
∂

∂w
H3s,w,[`]

)
w=0
◦ (I − Hs)−1[f ](0).

It involves the weighted transfer operator Hs,w,[`] relative to the binary size ` and already defined
in (32)

Hs,w,[`][f ](x) :=
∑
m≥1

exp(w`(m))
(m+ x)2s

f
(

1
m+ x

)
.

Applying the same principles as in Sections 6.1 and 6.4 proves that it is well adapted to the study of
cost Q

δ
.

6.9. Proof of Theorem 5. Sketch

We study here the parameter `(U〈δ〉) and introduce the Dirichlet series which depends on two
parameters s, t ,

L(2s, 2t) := ζ (2s+ 2t)(I − Hs+t)−1 ◦ H′s+t ◦ (I − Hs+t)−1 ◦ (Hs+t − Hs) ◦ (I − Hs)−1[f ](0).
It involves the derivative of the operator Hs. Applying the same principles as in Sections 6.1 and 6.4
proves that it is well adapted to the study of cost `(U

〈δ〉).

7. Conclusion

This paper provides the first average-case analysis of a subquadratic gcd algorithm. We therefore
extend the domain of applicability of dynamical analysis techniques, and show that such methods
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are also efficient for studying more complex Euclidean algorithms. The type of analysis performed
here requires a precise study of the interrupted algorithms, and a precise description of the evolution
of the distribution during the execution of the algorithm. This uses heavily the powerful tools of
distributional analysis provided by Baladi and Vallée (2005) and Lhote and Vallée (2008).
It would be also interesting to adapt the methodology developed here to other subquadratic gcd

algorithms. We have in mind the algorithm recently designed by Stehlé and Zimmermann (2004),
based on a division using the least significant bits of the integers. The analysis of the plain gcd
algorithm using this division is done in Daireaux et al. (2005). This is clearly a first step in that
direction; however, a complete analysis of the SZ Algorithmwould use Property US, and this Property
is not known to hold in the context of the dynamical system related to this gcd using the least
significant bits.
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Appendix. Propositions A–D

We are interested in finding estimates for partial sums of coefficients, of the form

Φw(N) :=
∑
k≤N

ck(w).

However, Perron’s formula of order two provide estimates only for double sums,

Ψw(T ) :=
∑
N≤T

Φw(N) =
∑
N≤T

∑
k≤N

ck(w)

in the following general framework where the double sum Ψw(T ) is of type (P), as it will be defined
soon. We first need a definition:

Definition (Uniform Order). A function T → Hw(T ) is of uniform order O(T−d) for w ∈ W if
Hw(αT ) = O(T−d)with a O-term uniform for all α ∈ [1/2, 2] andw ∈ W .

We then state our main definition of type (P):

Definition (Type (P)). A function T 7→ Ψw(T ) is of type (P) if the estimate

Ψw(T ) = Fw(T ) [Gw(T )+ Hw(T )] , T →∞, w ∈ W (65)

holds, with

Fw(T ) = b(w)T a(w), Gw(T ) = c(w)+ O(T−d), Hw(T ) = O(T−2σ ), σ ≤ 1/2,

and O-error terms uniform forw ∈ W . The four terms |a(w)|, |b(w)|, |c(w)|, |a(w)− 1| admit strictly
positive lower bounds onW and the function Hw is of uniform order O(T−2σ ). Furthermore,

(i) The function T 7→ Gw(T ) satisfies one of the two following properties:
(W )[Weak Form] Gw is of class C1 and G′w is of uniform order O(T

−d−1).
(S) [Strong Form] Gw is of class C2 and G′′w is of uniform order O(T

−d−2).
(ii) The functionw 7→ a(w) satisfies one of the two following properties:

(B) [Bounded] |a(w)| admits an upper bound onW .
(U) [Unbounded] |a(w)| is not bounded onW .

The data of such a function Ψw is described by (a, b, c, d, σ ) or more precisely by (a, b,G, σ ).
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In such a general framework, the main question is as follows:
From estimates on Ψw(N), is it possible to deduce estimates forΦw(N)?

It proves useful to introduce intermediate objects: for two indices N− and N+ which satisfy N− <
N < N+, consider the two averages

Φ+w (N) :=
Ψw(N+)− Ψw(N)

N+ − N
=

1
N+ − N

N+∑
k=N+1

Φw(k)

Φ−w (N) :=
Ψw(N)− Ψw(N−)

N − N−
=

1
N − N−

N∑
k=N−+1

Φw(k).

The following of the appendix is devoted to the three main steps:

(a) It is always possible to deduce from (65) estimates for Φ±w (N), as soon as N− and N+ are well-
chosen. This is the aim of Proposition A.

(b) Then, if the coefficients cn(w) are positive, these estimates can be transferred into estimates for
Φw(N). This is the aim of Proposition B.

(c) Finally, if the coefficients cn(w) are dominated by ĉn(w) (i.e. |cn(w)| ≤ ĉn(w)), and if estimates for
Ψ̂w(T ) of the same vein as Ψw(T ) hold, then it is possible to obtain estimates for Φw(N). This is
the aim of Proposition C. Furthermore, this proposition naturally applies to a ‘‘moment generating
function’’ setting described in Proposition D.

A.1. Statements of the propositions

We now describe the three results in a more formal way.

Proposition A (Basic Versions). Consider a function T 7→ Ψw(T ) which satisfies (P) onW with the data
(a, b,G, σ ), where G is described by the pair (c, d). Then, the following holds forΦ±w (N) defined by

Φ+w (N) :=
Ψw(N+)− Ψw(N)

N+ − N
, Φ−w (N) :=

Ψw(N)− Ψw(N−)
N − N−

[Case (WB)] For N− = N − bN1−xc,N+ = N + bN1−xc, the sumsΦ±w (N) satisfy

Φ±w (N) = a(w) b(w)N
a(w)−1

· [c(w)+ O(N−2σ+x)+ O(N−x)+ O(N−d)],

where the constants in the O-terms are uniform onW . With the optimal choice x = σ , one has

Φ±w (N) = a(w) b(w)N
a(w)−1

· [c(w)+ O(N−σ )+ O(N−d)],

where the constants in the O-terms are uniform onW .
[Case (WU)] For N− = N − b 1

a(w) N
1−x
c, N+ = N + b 1

a(w) N
1−x
c, the sumsΦ±w (N) satisfy

Φ±w (N) = a(w)b(w)N
a(w)−1

·
[
c(w)+ O

(
N−2σ+x

)
+ O(N−x)+ O(N−d)

]
,

where the constants in the O-terms are uniform onW . With the optimal choice x = σ , one has

Φ±w (N) = a(w)b(w)N
a(w)−1

·
[
c(w)+ O(N−σ )+ O(N−d)

]
,

where the constants in the O-terms are uniform onW .
[Case (SB)] For N− = N − bN1−σ c,N+ = N + bN1−σ c, the sumsΦ±w (N) satisfy

Φ±w (N) = a(w) b(w)N
a(w)−1

·

[
Gw(N)+

N
a(w)

G′w(N)+ O(N
−σ )

]
,

where the constant in the O-term is uniform onW .
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Proposition B (Positive Coefficients). Consider a function Ψ̂w related to a sequence of positive functions

ĉn : W → C which satisfies (P), (SB) onW with the data (̂a, b̂, Ĝ, σ̂ ). Then the sum Φ̂w(N) satisfies

Φ̂w(N) := â(w) b̂(w)N â(w)−1 ·
[̂
Gw(N)+

N
â(w)

Ĝ′w(N)+ O(N
−σ̂ )

]
,

where the constant in the O-term is uniform onW .
Proposition C (Domination). Consider two functions Ψw, Ψ̂w related to two sequences of functions cn :
W → C, ĉn : W → R+, which satisfy (P)(SB) onW with the respective data (a, b,G, σ ) and (̂a, b̂, Ĝ, σ̂ ).
Suppose furthermore, that the following holds:
(i) ĉn dominates cn, i.e., |cn(w)| ≤ ĉn(w),∀w ∈ W .
(ii) The two functions a(w), â(w) satisfy : ∃α < σ̂/2,∀w ∈ W, |<a(w)− <̂a(w)| ≤ α.
Then, the sumΦw(T ) satisfies, for anyw ∈ W ,

Φw(T ) :=
∑
n≤T

cn(w) = a(w) b(w)Na(w)−1 ·
[
Gw(N)+

N
a(w)

G′w(N)+ O(N
−β)

]
,

with β := min(σ , σ̂ − 2α) and a constant in the O-term uniform onW .
Proposition D (Particular Case of Proposition C). Consider the case when W is a neighbourhood of 0,
cn : W ∩ R → R, and |cn(w)| ≤ cn(<w). We let in this case ĉn(w) := cn(<w). Then, if Ψ satisfies
(P), (SU)with the data (a, b,G, σ ), the function a(w) is real as soon asw is real, and Ψ̂w satisfies (P), (SU)
with the data (a(<w), b(<w),G<w, σ ). If, moreover, the function w 7→ a(w) is continuous, then the
difference <a(w) − â(w) = <a(w) − a(<w) is less than σ/4 on a small enough neighbourhood of
w = 0. And, it is possible to apply Proposition C, with β = σ/2.
This framework arises in a natural way whenwe studymoment generating functions, since, in this case,

the coefficient cn(w) is a sum of terms of the form aj,n exp[wbj,n], with reals aj,n ≥ 0, bj,n.

A.2. Proof of Proposition A

For (T − T−)/T := T−x, with x > 0, the estimate of Ψw(T ) entails

Ψw(T )− Ψw(T−) = (Fw(T )− Fw(T−))Gw(T )+ (Gw(T )− Gw(T−)) Fw(T )+ O
(
Fw(T )T−2σ

)
.

There are two main cases: If T 7→ Gw(T ) is only of class C1, then

1
T − T−

[Ψw(T )− Ψw(T−)] = F ′w(T )
[
Gw(T )+ G′w (̃T )

Fw(T )
F ′w(T )

]
+
T − T−
T

O
(
TF ′′w(T )
F ′w(T )

Gw(T )
)
+

T
T − T−

O
(
T−2σ

Fw(T )
TF ′w(T )

)
. (66)

If T 7→ Gw(T ) is of class C2, then

1
T − T−

[Ψw(T )− Ψw(T−)] = F ′w(T )
[
Gw(T )+ G′w(T )

Fw(T )
F ′w(T )

]
+
T − T−
T

O
(
TF ′′w(T )
F ′w(T )

Gw(T ),
TFw(T )
F ′w(T )

G′′w(T )
)
+

T
T − T−

O
(
T−2σ

Fw(T )
TF ′w(T )

)
. (67)

In both cases, our assumptions on Fw(T ) imply that the two terms in (66) or (67) are both
T − T−
T

c(w)(a(w)− 1)O (1) = (a(w)− 1)O(T−x)

T
T − T−

1
a(w)

O
(
T−2σ

)
=

1
a(w)

O(T−2σ+x).

In case (B), the optimal choice is then given by x = σ . In case (U), the optimal choice is given by the
equality a(w)T−x = [1/a(w)]T−2σ+x. Moreover, if we wish to transfer theses estimates on integer
parts, we need the condition σ ≤ 1/2.
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A.3. Proof of Propositions B and C

In the case where (SB) holds, we compare Φ̂±w (N) and Φ̂w(N). We have

Φ̂w(N) = Φ̂−w (N)+
1

N − N−

N∑
k=N−+1

(Φ̂w(N)− Φ̂w(k))

Φ̂w(N) = Φ̂+w (N)+
1

N+ − N

N+∑
k=N+1

(Φ̂w(N)− Φ̂w(k)).

If the coefficients ĉn(w) are real positive, the sequence k 7→ Φ̂w(k) is increasing, and the inequalities

Φ̂−w (N) ≤ Φ̂w(N) ≤ Φ̂
+

w (N)

entail that Φ̂w(N) has the same estimate as Φ̂±w (N), namely

Φ̂w(N) = â(w) b̂(w)N â(w)−1 ·
[̂
Gw(T )+

N
â(w)

Ĝ′w(N)+ O(N
−σ̂ )

]
∣∣Φ̂w(N)− Φ̂−w (N)∣∣ = O(N â(w)−1−σ̂ ).

This provides the proof of Proposition B.
We now prove Proposition C. If the series no longer has positive coefficients, but is dominated, we

observe that, for k ≤ N ,

|Φw(N)− Φw(k)| =

∣∣∣∣∣ N∑
n=k+1

cn(w)

∣∣∣∣∣ ≤ N∑
n=k+1

ĉn(w) = Φ̂w(N)− Φ̂w(k),

which entails the inequality∣∣Φw(N)− Φ−w (N)∣∣ ≤ ∣∣Φ̂w(N)− Φ̂−w (N)∣∣.
We apply the arguments of Proposition B which prove that∣∣Φ̂w(N)− Φ̂−w (N)∣∣ = O(N â(w)−1−σ̂ ),
together with the estimate forΦ−w (N) obtained in Proposition A, and finally

Φw(N) = a(w) b(w)Na(w)−1 ·
[
Gw(N)+

N
a(w)

G′w(N)+ O(N
−σ )+ O(N â(w)−a(w)−σ̂ )

]
= a(w) b(w)Na(w)−1

[
Gw(N)+

N
a(w)

G′w(N)+ O
(
N−β

)]
,

with β := min(σ , σ̂ − 2α). This proves Proposition C.
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