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A distributed-memory parallelization strategy for the density matrix renormalization group is proposed
for cases where correlation functions are required. This new strategy has substantial improvements with
respect to previous works. A scalability analysis shows an overall serial fraction of 9.4% and an efficiency
of around 60% considering up to eight nodes. Sources of possible parallel slowdown are pointed out and
solutions to circumvent these issues are brought forward in order to achieve a better performance.
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1. Introduction

The impact of numerical methods in the study of phenom-
ena which are hardly understood by means of analytical machin-
ery has been decisive. Hence, the current algorithms ought to
be constantly assessed regarding the emergence of new concepts
and the increasing computing technology. Nowadays one of the
most successful algorithms dealing with one-dimensional interact-
ing systems is the so-called Density Matrix Renormalization Group
(DMRG) [1]. Although this method is not, strictly speaking, a renor-
malization procedure, the key idea is the decimation of the Hilbert
space by appealing to the concept of the reduced density matrix.
This fundamental concept has permitted implementing the DMRG
to an extensive variety of systems and physical problems such as
small grain physics, classical 2D systems, nuclear physics, quantum
information, quantum chemistry, bosonic and fermionic degrees of
freedom, and spin systems, together with finite temperature and
non-equilibrium problems [2,3].

In most of the interesting physical situations, one has to deal
with very large systems in order to prevent, for instance, finite-
size effects. This fact leads unavoidably to exhaust single-machine
resources. Additionally, as the dimension of the problem increases,
the computational costs become more demanding. Bearing this in
mind, it seems natural to request for a distributed kind of calcula-
tion. Earlier proposals consisted on shared-memory approaches [4]
for the DMRG: this method was based on the multithreaded
API (Application Programming Interface), namely, OpenMP [5].
Distributed-memory versions of DMRG have been recently pro-
posed in several contexts [6–9]. For DMRG calculations in quantum
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chemistry very powerful parallel algorithms have been proposed
with two basic approaches: (i) the clever distribution of the local,
doubly, and triply contracted orbital operators with an almost lin-
ear speedup [6], or (ii) the dynamical scheduling of the sub-blocks
of the orbital operators labeled by their corresponding quantum
numbers [7]. Concerning strongly correlated systems, there have
been a few solutions to handle two-dimensional geometries by
coding a parallelization that converts the superblock vectors into
distributed matrices [8], or a generic version of a one-dimensional
DMRG including a parallelization over symmetry-related matrix
blocks [9].

The main idea behind these methods was to parallelize the
central operation of a ground-state DMRG simulation: the matrix–
vector multiplication in the diagonalization of the superblock
Hamiltonian. However, the scheme does not take into account
calculations of measurements such as expectation values, multiple-
point correlation functions, and structure factors, for which the
most time-consuming part of the algorithm is the huge amount
of matrix–matrix multiplications (i.e. density-matrix rotations) of
the operators one is interested in. In addition, the shared-memory
scheme would already show scalability problems in a large-scale
computation including the calculation of such physical quantities.

In this work, in addition to recoding the ground-state DMRG
in the well-known passing message standard MPI [10] (henceforth
regular parallelization), we propose an improved strategy that takes
into account the heavy rotations associated to the calculation of
the correlation functions; this policy is also implemented in MPI
allowing us to perform genuine high-performance simulations [6].
Two approaches to deal with these rotations are proposed. The first
strategy is based on a pool of tasks in which there is a master
node distributing queues to the rest of the slaves. The second ap-
plication performs a block-fashion single distribution considering
all nodes with an equal amount of work, hereafter the uniform-
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Fig. 1. DMRG block configuration. The superblock is formed with two blocks
(B and B̃) and two (exact) sites. Added sites a and ã are shown as circles. Dashed
lines represent system and environment blocks. The tilde on the right block means
that no reflection symmetry has been assumed.

matrix distribution (UMD) strategy. The latter is easier to implement
and more efficient than the former. We obtain similar results for
the speedup and performance to previously reported ground-state
DMRG simulations with OpenMP. The chosen benchmark was the
one-dimensional Hubbard model [11].

In the forthcoming sections the DMRG algorithm will be briefly
described, then the usual and new parallelization strategies will be
presented and speedup/performance results are analyzed. There-
upon, an application test on the Hubbard model is done to esti-
mate the runtime improvement due to the parallelization ideas of
the previous sections, and we finally summarize significant con-
cepts.

2. The DMRG algorithm

This variational, non-perturbative and highly accurate method
[2] was developed as an attempt to solve the low-lying energy
properties of many-body models that techniques such as exact
and Lanczos diagonalization [12], numerical renormalization group
(NRG) [13] or other analytical tools could not be able to deal
with; moreover this method does not have the sign problem that
emerges in Monte Carlo techniques [14]. It can be considered as
an improved version of Wilson’s NRG for which the states kept
during the decimation procedure are no longer selected regarding
their energy but instead, they are chosen by means of the den-
sity matrix, which naturally gives the most relevant states to be
kept (with respect to, e.g. the lowest-lying eigenstate of the whole
system).

The standard configuration used in the DMRG algorithm is
shown in Fig. 1. We assume the following notation: B(�,m) a
block composed of � sites with a Hilbert space of dimension m
and a(�′,m′) a small added block (usually a single site, e.g., for the
Hubbard model case: �′ = 1 and m′ = 4). Therefore, the superblock
is formed by the union of two blocks and two sites as shown in
Fig. 1. This superblock is built up of two main parts: the system
and the environment composed by a block–site each. B(�,m) is a
vector space with a completeness relation close to but not equal to
1 due to the decimation process.1 On the contrary, the subspace a
is always complete.

The main goal is typically the lowest-energy (ground) state of
the superblock Hamiltonian H which can be written as

|ψ0〉 =
∑

i

∑
j

ψ0,i j|i〉 ⊗ | j〉, (1)

where {|i〉} and {| j〉} stand for the orthonormal basis for the system
and the environment respectively and ψ0,i j = 〈i ⊗ j|ψ0〉. A trunca-
tion procedure should be now established in order to get man-
ageable Hilbert spaces. To this end, DMRG resorts to the reduced
density matrix of the system:

ρii′ =
∑

j

ψ0,i jψ
∗
0,i′ j. (2)

1 For the reader not familiar with DMRG, blocks and sites can be thought of as
vector spaces on which there are certain conditions for well-defined states and op-
erators.
This matrix possesses non-negative eigenvalues wα with eigen-
vectors |wα〉 (ρ|wα〉 = wα |wα〉). It can be shown [3] that these
eigenvalues are proportional to the probability of the system being
in the state |wα〉. Selecting the corresponding eigenstates which
have the largest probabilities wα , we can set a cutoff such that we
have a very efficient decimation formula. This error source can be
quantitative described by defining the truncation error

ερ = 1 −
m∑
α

wα, (3)

where m is the cutoff, a truncation number selected often by hand.
It can be shown [2,3] that the error in the ground state goes as
‖|ψ̄0〉− |ψ0〉‖2 = ερ where |ψ̄0〉 is the DMRG approximation to the
exact ground state. A similar bound can be found for the expecta-
tion values. It is also shown that the energies obtained with DMRG
will be upper bounds on the exact eigenvalues. From Eq. (3) it is
evident that the more states are kept the higher the accuracy of
the calculated energies and observables will be. Another (generally
smaller) source of error in |ψ0〉 is due to the iterative method used
to diagonalize the superblock Hamiltonian. As a consequence of
the Hilbert space truncation there is an environmental error which
has to do with the fact that the bath coupled to the system is not
exact. The environmental error can be reduced by implementing
the so-called finite system algorithm.

The arrangement shown in Fig. 1 is usually used in two ways:
on one hand, the infinite system algorithm in which the superblock
size is grown by adding two new sites in the middle of the chain
at each iteration step. And on the other hand, the finite system al-
gorithm is designed to calculate highly accurate properties of the
superblock at a given lattice length. It consists on moving back
and forward (sweeping) the division between system and environ-
ment (it can be thought of as a thermalization of the system and
environment blocks).

All these steps can be summarized in the following way:

1. Start with left and right blocks as exact single sites.
2. Diagonalize the superblock Hamiltonian H defined on

[B(�,m)aãB̃(�̃,m̃)] to obtain |ψ0〉.
3. Build up all of the block operators related to H and measure-

ments defined on [Ba] .= [B ⊕ a].
4. Define and diagonalize ρ in the system. Find the rotation

matrix R = (|w1〉|w2〉 · · · |wm〉)T formed from the m largest
eigenvalues wα of ρ .

5. Perform the decimation and rotation step [B] ←− R[Ba]R+
for the operators defined in step 3.
Go to step 2.

When the desired system size has been achieved, measure-
ments of the relevant quantities such as structure factors, spin and
charge gaps, binding energies, etc. can be performed.

Since our main concern is the computation of n-point correla-
tion functions for several operators Z , we have to provide a form
for such matrices. This type of simulation can be included in the
standard algorithm just managing those Z operators in the same
way as the superblock Hamiltonian operators are handled, that
is, by doing the transformations of blocking Z[Ba] ←− Z[B⊕a] and
then the rotation and the decimation step Z[B] ←− R Z[Ba]R+ .
All of the operators Z are managed as block matrices instead of
as block–site matrices reducing the consumed computational re-
sources and saving time on I/O operations.

2.1. Benchmark

We have tested the parallel algorithm with a simulation of the
one-dimensional quarter-filled Hubbard model [11]. The Hamilto-
nian of the model reads:
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H = −t
∑
i,σ

(
c+

i+1σ ciσ + c+
iσ ci+1σ

) + U

2

∑
i,σ

c+
iσ ciσ c+

iσ̄ ciσ̄ , (4)

where ciσ (c+
iσ ) denotes an electron annihilation (creation) opera-

tor on site i with spin σ = (↑,↓). Here, ciσ is an m × m matrix.
Regarding storage effects, σ implies two different matrices for ciσ
for each site i. t and U are parameters standing for electron hop-
ping and on-site electron repulsion respectively.

The charge N(q) and spin Sz(q) structure factors

N(q) = 1

L

∑
k, j

eiq(k− j)〈(nk − n)(n j − n)
〉
,

Sz(q) = 1

L

∑
k, j

eiq(k− j)〈Sz
k Sz

j

〉
(5)

were calculated, the number operator is niσ = c+
iσ ciσ , ni = ni↑ +

ni↓ , and n is the charge expectation value. As it can be seen, ob-
taining these two quantities requires the calculation of the expec-
tation values 〈ni〉 and all of the charge–charge 〈nin j〉 and spin–spin
〈Sz

i Sz
j〉 correlation functions.

3. Parallelization

There are two main architecture paradigms in parallel com-
puting: systems with a single address space called shared-memory
systems allowing multiple processors to access the same mem-
ory location (data) and distributed-memory systems in which each
processor has its own address space and therefore its own data
structure. Both paradigms can be successfully applied to the DMRG
method [4,6]. Earlier distribution strategies worked well on a
shared-memory system methodology; nevertheless, this type of
architecture eludes a massively parallel approach. Consequently,
a distributed-memory policy should be developed in order to get
a coarse-grain scheme reaching larger lengths and more states per
block using modest computational resources. Here, in addition of
putting forward a new parallelization scheme, we have changed
the shared-memory (OpenMP) approach to a standard message
passing API (MPI) [10].

As we will show below very similar results are obtained to the
OpenMP case with the possibility of improving scalability prop-
erties. This distributed approach has the advantage of avoiding
collisions (present on MP algorithms) at the presumable cost of
using more resources and larger communications. The calculations
presented in this work were performed using a cluster with Intel®

Xeon 2.50 GHz CPU cores (with a memory of 1 GB per node) ar-
ranged either as a double quad-core system or as single cores in a
star topology network with a nominal bandwidth of 900 Mb/s.

Let us now briefly summarize the analytical apparatus needed
to study the speed of a high-performance realization [15]. The
speedup S p indicates how much faster a parallel code on a p-node
process is with respect to the sequential analogue. S p is explicitly
defined as the fraction

S p = T1

T p
, (6)

where T1 and T p are the wall-clock times of the simulation with 1
and p processors respectively. The ideal speedup should scale lin-
early with p, that is, S ideal

p = p. Another quantity of interest which
illustrates how much the algorithm is exploiting a single processor
is the efficiency which reads

E p = S p

p
. (7)

In the simplest model, the sequential time of a program (normal-
ized to 1) can be split into a serial fraction Σ and a parallel fraction
1 − Σ . With a finite number of nodes p, the parallel fraction gets
reduced by (1 − Σ)/p; based on these considerations we obtain
Amdahl’s law [16] for the relative speedup

S A(p) =
(

Σ + 1 − Σ

p

)−1

, (8)

thus, the maximum speedup achievable (i.e. with p → ∞) would
be S A → 1/Σ . This amount gives us a rough idea of the expected
efficiency in a distributed implementation.2

3.1. Regular parallelization: ground-state DMRG

It is well known that the most time-consuming part in the
ground state DMRG is obtaining the lowest eigenvalue of the su-
perblock Hamiltonian H by means of an iterative procedure (such
as Lanczos [12] or Davidson [17] algorithms). Since H is actually
a sum of terms involving left (system formed by B ⊕ a) and right
(environment formed by ã ⊕ B̃) matrix products, we can readily
write

H =
∑
λ

O λ
B ⊗ O λ

a ⊗ O λ
ã ⊗ O λ

B̃
, (9)

where O λ
X represents a generic operator defined on any of the

blocks (X = B,a, ã, B̃) and λ corresponds to each of the terms in
Eq. (4). Typical terms are for instance, the hopping term between
the left block and left site: c+

B ca ≡ c+
B ⊗ ca ⊗ Iã ⊗ I B̃ or the right

block Hamiltonian: H B̃ ≡ I B ⊗ Ia ⊗ Iã ⊗ H B̃ which should contain
all of the H terms for the sites belonging to B̃ . I X stands for the
identity on the space X .

If the implementation incorporates symmetries, such as particle
number or total magnetization, then H takes the form

H =
∑
λ

∑
θ

O λ
B

(
θ B) ⊗ O λ

a

(
θa) ⊗ O λ

ã

(
θ ã) ⊗ O λ

B̃

(
θ B̃)

, (10)

explicitly showing that the operators O λ
X (θ X ) are labeled by their

quantum numbers. The value θ X is a symmetry index of the X
block, and θ is an index running over the superblock basis formed
by the configurations with the quantum number θ B + θa + θ ã +
θ B̃ fixed. Using symmetries helps to minimize the size of nested
loops. Usually H is a very large matrix (e.g. with dimension M ∼
104–106), thus it is never explicitly constructed but rather consists
of multiplication rules. This means that given a vector |b〉 we get
the H-multiplied result H|b〉.

We shall now get into the aspects of the parallelization idea.
There is a basic tactic without handling the matrix–vector multi-
plication which would be that of distributing only the Hamiltonian
terms mentioned above, that is, the λ index in Eq. (10). Explic-
itly, one node will deal with H B , another node will address the
c+

B ca term, and so on. However, this plan is prone to poor scalabil-
ity showing parallel slowdown already for 6 nodes with a speedup
of only 1.5. This slowdown is perhaps due to load imbalance since
not all of the Hamiltonian terms involve the same number of oper-
ations. The site–site interaction consists only of a few logical rules,
but terms such as block–site or site–block have to iterate over ten-
sor products. Even when we compare these last two terms there
is also an imbalance because of roaming over fast and slow matrix
indices.

A more efficient option consists of the distribution over the
central (θ = 1, . . . , M) loop of the matrix–vector multiplication on
the diagonalization algorithm (Davidson in our case). Each task will

2 This fixed-sized problem law neglects important effects such as overhead, cache
effects, network latency, etc.
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Fig. 2. Speedup scaling of a DMRG calculation for the ground state. Circles corre-
spond to the Davidson algorithm (step 2 in Section 2) performance for the θ index
distribution case (Σ = 8.6(2)%). Triangles correspond to the total DMRG calculation
of the ground state (Σ = 11.5(3)%) with the corresponding Amdahl’s law (full line).
Ideal scaling is included for comparison (dashed line).

apply the full H to �M/p� states and the first mod(M, p) tasks
will handle an extra state.3 We do not distribute the sub-blocks of
the relevant operators labeled by their quantum numbers because
of their dissimilar dimensions. With this strategy, we get values of
speedup of 3.5 in an 8-node process with a serial fraction of 11.5%.
To achieve an even faster realization when distributing over the θ

index, one should also share out all of the linear algebra (daxpy,
ddot, dscal, and dcopy) operations in the Davidson algorithm.
These operations include orthonormalizations, inner products and
the normalizations of the vectors added to the Davidson basis ex-
panding the ground state |ψ0〉. In doing so, we have now moved
up the speedup to 4.9 on 8 nodes (Σ = 8.6%). The scalability prop-
erties of the distributed version of the DMRG calculation for |ψ0〉
are shown in Fig. 2. The load imbalance in this case goes as p/M
which is negligible for actual DMRG simulations.

The performance properties of Davidson parallelization are
strongly affected by the reduction operations of the matrix–vector
multiplication, hence the better the implementation of these the
better the speedup will be. This leading behavior could be dimin-
ished by ordering the superblock basis properly. This way, all of the
reduction calls of order M are optimized by calls of order M/p or
less. To show this, we have used a test block-diagonal matrix that
does not require any reduction calls at all in the application of H .
By doing this, we have obtained a serial fraction of Σ = 0.87(2)%
(down to 20 processors) on the Davidson scheme, whereas when
we consider the Hubbard Hamiltonian, we get a serial fraction of
8.6% as a result.

The most simple distribution one can think of was implemented
in the rotation (decimation) of the operators relevant to H (such
as c↑ , c↓ for the Hubbard model case), that is, a row-distributed
matrix–matrix multiplication. The final result is a serial fraction of
25% for this section of the algorithm. The reader should remember
that Amdahl’s law is a very simplistic proposal on the performance
of a parallelized algorithm; serial fractions allow us to easily un-
derstand the results and what to expect of a distributed version of
the serial code.

In order to better understand the performance obtained, we
now make a comparison between our MPI implementation of the
1D Hubbard model and the shared-memory (OpenMP) version of
the 2D Hubbard model [4]. The whole DMRG performance of the
MPI implementation shows a better behavior than in the shared-
memory version (Σ = 11.5% compared to Σ = 16% [4]) in spite
of the fact that the Davidson algorithm results are not as good
as previous ones (Σ = 8.6% compared to Σ = 6.5% [4]). This im-
proved behavior could be related to the additional parallelization

3 �x/y� meaning the integer division and mod(x, y) stands for the modulo oper-
ation with x and y real numbers.
Table 1
Relative runtimes and serial fractions percentages at different steps of the algorithm.
The unparallelized time (item d) is mainly consumed in building the system (or the
environment), the density matrix and getting its spectrum.

Step Time (%) Σ (%)

a. Davidson algorithm 19.7 9.4(1)
b. Zi and Zi Z j rotations 72.3 8.1(3)
c. H operators rotations 0.1 25(2)
d. Unparallelized sections 0.5 100(0)
e. Measurements 7.4 7.6(7)
f . Total calculation 100 9.4(1)

of the linear algebra operations mentioned above, added to the
absence of collisions (and despite message passing) on the MPI al-
gorithm or better communications originated on newer hardware
improvements. Even though this comparison is not strictly valid
because we are dealing with different geometries (1D versus 2D [4]
Hubbard models), we must remark that our case is the worst case
scenario. In 1D we have fewer Hamiltonian terms, meaning fewer
independent processor operations in comparable Hilbert spaces
with a similar amount of communications. This would suggest that
for a more complex Hamiltonian (e.g. including longer range hop-
pings or different geometries such as 2D) our result for the serial
fraction will be even smaller.

3.2. Novel strategy: correlation operators

If n-point correlations are required, the former distribution
setup turns out to be insufficient because the ground state deter-
mination is not the longest time-consuming part anymore and is
overtaken by the operator decimation and rotation (see Table 1).
Therefore a new approach is mandatory to deal with that issue.
The new strategy should take into account that the most time-
expensive part is in this case the double matrix operation of the
corresponding operators Zi and Zi Z j (e.g. for R Zi R+: Zi R+ and
then R(Zi R+)). Typical correlation functions are the one-point
and two-point functions [2], namely,

〈Zi〉 = 〈ψ0|Zi |ψ0〉,
〈Zi Z j〉 = 〈ψ0|Zi Z j|ψ0〉 (11)

with i, j = 1, . . . , L and L the length of the superblock chain. The
number of (stored) matrices to be rotated (see Section 2, last step)
at a given length calculation is L = �(� + 3)/2 (� matrices coming
from single-site operators Zi and �(� + 1)/2 coming from two-
point correlation functions Zi Z j with i < j), with � being the
number of sites of the system or environment according to for-
ward or backward sweeping. The correlations between the B and
B̃ blocks were calculated as a product of single-site operators in
each block. The specific tasks involved in step 5 (see Section 2)
are: (i) the reading of the current matrix Zi from storage, (ii) the
blocking step Z[Ba] ←− Z[B⊕a] , (iii) the two matrix–matrix prod-
ucts with the rotation matrix R, and (iv) the corresponding saving
of the new matrix Z new

i = R Zi R+ .
We shall show below two ways to address this issue: a pool of

tasks [18] and what we have called a uniform-matrix distribution
(UMD) parallelization. In this latter strategy every node has al-
most the same load (see below) without a master node. The UMD
parallelization seems to have a better output because it has fewer
communications (only at the very beginning of the subroutine) and
takes more advantage of the nodes available during the calcula-
tion (see below). The pool of tasks is a more elegant and common
solution but in practice, a slower option. The speedup results for
these two parallelized DMRG calculations of correlation functions
are shown in Fig. 3. The efficiency for the UMD case is shown in
Fig. 4.
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Fig. 3. Pool of tasks (squares) and UMD parallelization (triangles) performance for
step 5 in Section 2. The values of the serial fractions were Σ = 11.1(2)% and
Σ = 8.1(3)% respectively. The speedup factor corresponding to the total DMRG cal-
culation using the UMD technique for the calculation of the correlation functions
(circles) was Σ = 9.4(1)%. Its corresponding Amdahl’s law is also included (full line)
and the ideal scaling is shown for comparison (dashed line).

Fig. 4. Efficiency plot for the UMD case shown in Fig. 3 with the same symbol con-
vention. The shaded region corresponds to the cases where no speedup is gained
compared to the p = 1 case.

In the pool of tasks paradigm [18], the data to be processed
(the Z matrices) are divided into small units with similar struc-
tures called tasks. All of these tasks form the so-called task pool.
One node, the master process, manages this large amount of tasks,
always sending to idle workers more work to do until all of the
tasks have been executed (empty pool). This model is effective in
situations where the available nodes have very different techni-
cal specifications, because the least loaded or more powerful hosts
do more of the work and all of the hosts stay busy most of the
runtime. The serial fraction obtained in this implementation was
about 11.1% (see Fig. 3). The optimal result depends on the num-
ber of tasks in which the whole job is divided. If this number is
too small, parallel slowdown will already appear. In addition, the
greater the number of tasks the bigger the amount of communica-
tions will be.

Let us now explain the UMD technique. This distribution proves
to be easier to code and more efficient than the pool of tasks. The
key idea is to keep all of the processors on the same working set-
tings so we can take full advantage of the accessible hardware.
The distribution is performed in terms of blocks of contiguous
local and non-local operators. If the number of processors is p
then each processor stores �L/p� operators, except maybe the first
mod (L, p) ones that will store �L/p�+1 matrices. Load imbalance
in this case goes as p/L, which is imperceptible for larger lattice
lengths, i.e. larger L. The serial fraction has now been improved to
Σ = 8.1% (in the double quad-core system) as shown in Fig. 3.

There are many more communications in the pool of tasks com-
pared to the UMD case. These communications are related to pe-
titions coming from the workers involving statuses such as: “task
done” and “ready to work”; and the complementary messages sent
by the master node with the proper information about the task to
be made. On the contrary, the UMD settings just need very few
communications that keep track of the set of operators to be han-
dled by each node. This message passing should be posted at the
beginning of the corresponding iteration.

In both parallelization policies, if a given node demands a spe-
cific set of matrices that is not currently in local storage, an imple-
mented queue manager handles this type of requests by sending
the matching operator. This is done by means of a book-keeping
of the matrices and its current owners throughout the entire cy-
cle. Hence, when all of the desired matrices have been shipped,
a new-owner message should be broadcasted to the rest of the
active processors. The rotation matrix R is replicated along all
of the nodes. This procedure allows each processor to save run-
time by storing the new operators locally. For instance, if at some
point through the simulation a processor, say, number 1 requests
an operator that in an earlier step was assigned to processor, say,
number 2, the queue handler transfers the required matrix from
processor 2 to the corresponding node making an update of the
owner matrix-bookkeeping. This procedure does not affect the task
being performed by processor 2 avoiding synchronization delays.
For the UMD case we have found a serial fraction of Σ = 9.4% in
the star topology network.

The origin of the serial fraction of the presented parallelization
schemes is perhaps due to the following factors: processes con-
tending available cache space, racing conditions linked to the stor-
age of the corresponding matrices, or the transfer of the requested
data between processes. In order to reduce the total serial fraction
of the whole process attention should be paid to the rotations of
the operators (item b in Table 1), the Davidson algorithm (item a),
and the unparallelized sections (item d). The measurements are
discussed below. As for item b, the most time-expensive of all of
the four steps at this point (addressed at the beginning of this sub-
section) would be consecutively: the two matrix–matrix products,
the writing of the outcome to disk, the reading of the input from
disk, the blocking operation and, in the star-topology case, the ma-
trix copying among nodes. Unavoidable points are probably the I/O
operations, the matrix multiplications, and the optimized block-
ing due to the use of symmetries. Therefore the candidate stage
to be improved is the data transfer protocol (ssh-server) for
the networking case. Using a socket-type communication or a re-
mote server will certainly enhance the achieved speedup. As for
the Davidson step, in all of the strategies, one could try to re-
duce the few synchronization calls with the consequence of having
more local operations. And finally, the total serial fraction could be
reduced further if some kind of parallelization scheme is imple-
mented in the unparallelized section of item d.

There is a small discrepancy between the values of the serial
fractions shown in Fig. 2 and Table 1, item a (with and without
correlations) for the Davidson part. This may be due to the ef-
fect of the compilation when correlations are included. However,
the values are compatible within the numerical error. Now, taking
into account the Davidson diagonalization, as well as the Hamilto-
nian operators and the rotation of the operators to be measured,
we should get a weighted average serial fraction of Σtotal = 8.8%
as for the parallelized sections, but due to the unparallelized frac-
tion of the code (item d) the final serial fraction is actually 9.4%.
Finally, the corresponding distribution was done for the measure-
ment part in the same way as for the distribution over the θ index
in Eq. (10), with the exception that the M-size vector reduce
calls have been replaced by single-data reductions associated to
the partial inner products 〈ψ0|Z |ψ0〉. The serial fraction for this
section of the algorithm was Σ = 7.6%. This value is probably re-
lated to the reading of the Z matrices from local or remote storage
depending on the final Z -bookkeeping. It should be mentioned
that this is just a minor optimization compared to the whole cal-
culation, but it is rather straightforward to code this section of
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the DMRG algorithm once that of the Davidson diagonalization has
been implemented.

To estimate the performance of each node as compared to com-
munication times, we show in Fig. 4 the parallel efficiency of the
whole process in the UMD case. This quantity shows a very nice
behavior up to the number of nodes used. For the p = 8 case E p is
around 60% meaning that each processor is actually working more
than half of the total computational time. It also shows the good
reliability of the parallelized algorithm suggested in this work. Par-
allel efficiency of a single-CPU is shown for comparison (continu-
ous line). An improvement in the overall efficiency was observed
when the number of states kept was increased (m = 400–1000),
as expected from a non-fixed-sized parallel problem [19]. For in-
stance, for m = 1000, E p is increased by 20% for p = 8 with an
overall serial fraction of Σ = 5.5%. It should be noticed that the
more operators are measured the more effective this novel strat-
egy will be.

Simulations of ladder-type systems have shown that the ratio
of runtimes between Davidson diagonalization and the rotation
of the operators is not as remarkable as in the one-dimensional
case. However, for long enough systems, the time of the rotation
of the operators will be a significant part of the total time justi-
fying the implementation of the present parallelization strategies.
The change of the Davidson runtime stems from the increasing
number of terms of H as pointed out in the previous subsec-
tion.

Lastly, in order to reproduce well-known results for the Sz(q)

and N(q) structure factors [20], we have performed serial and dis-
tributed numerical simulations for a quarter-filled one-dimensional
Hubbard chain of L = 128 sites with m = 400 states per block and
an interaction parameter U/t = 8. Two sweeps for the finite-size
algorithm and open boundary conditions were imposed in the cal-
culation. The truncation error was ερ ∼ 10−7. The total runtime on
a 1-node process was about 165 hours compared to, for instance,
33 hours on an 8-node process.

4. Conclusions

We have presented an efficient parallelized version of a DMRG
code devoted to the calculation of n-point correlation functions.
Unlike previous approaches, the current strategy was implemented
in a passing message context (MPI) allowing for a better perfor-
mance than for the shared-memory scheme. The overall serial frac-
tion of the whole process was about 9.4% and the efficiency was
around 60% up to eight nodes. In spite of the fact that our paral-
lelization scheme does not scale well to hundreds of nodes it does
allow simulations not reachable by serial coding with a maximum
speedup of 1/Σ = 10.6 according to Amdahl’s law. Causes of paral-
lel slowdown were addressed and possible ways of decreasing the
serial fraction were presented.
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