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In this paper we investigate the sequence of subvarieties SDHn of De Morgan Heyting algebras characterized
by the identity xn (′∗) ≈ x(n +1)(′∗) . We obtain necessary and sufficient conditions for a De Morgan Heyting
algebra to be in SDH1 by means of its space of prime filters, and we characterize subdirectly irreducible and
simple algebras in SDH1 . We extend these results for finite algebras in the general case SDHn .
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1 Introduction and preliminaries

The De Morgan Heyting algebras were first studied by Monteiro in a paper of paramount importance titled Sur
les Algèbres de Heyting symétriques, and they are the algebraic counterpart of the symmetric modal propositional
calculus of Moisil (see [4, p. 60]). They were later deeply investigated by Sankappanavar in [5].

A De Morgan Heyting algebra is an algebra 〈L,∧,∨,→, ′, 0, 1〉 of type (2, 2, 2, 1, 0, 0) such that the structure
〈L,∧,∨,→, 0, 1〉 is a Heyting algebra and 〈L,∧,∨, ′, 0, 1〉 is a De Morgan algebra (see [1]), that is, the following
identities are satisfied:

(1) x ∧ (x → y) ≈ x ∧ y,

(2) x ∧ (y → z) ≈ x ∧ ((x ∧ y) → (x ∧ z)),
(3) (x ∧ y) → x ≈ 1,

(4) (x ∨ y)′ ≈ x′ ∧ y′,

(5) (x ∧ y)′ ≈ x′ ∨ y′,

(6) 0′ ≈ 1 and 1′ ≈ 0,

(7) x′′ ≈ x.

We denote this variety by DH.
In [5], Sankappanavar introduced a sequence SDHn of subvarieties of the variety DH, starting with SDH0

which is the variety of Boolean algebras, and defined within DH by the identity xn(′∗) ≈ x(n+1)(′∗) . He char-
acterizes the finite simple algebras in the variety SDH1 and he poses the problem of investigating the lattice of
subvarieties of SDH1 .

The present paper is devoted to the investigation of the sequence of subvarieties SDHn . We obtain necessary
and sufficient conditions for an algebra A ∈ DH (finite or not) to be in SDH1 by means of its space of prime
filters, and we characterize subdirectly irreducible and simple algebras in SDH1 . Finally we extend these result
for finite algebras in the general case SDHn .

The main tool we use in this paper is a duality between the category of De Morgan Heyting algebras and
certain topological spaces, based on the duality developed by Priestley. Next we give a brief summary of the
necessary required facts; for further information (see [7] and [8]).

∗ Corresponding author: e-mail: cvaleria@gmail.com
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For a poset (partially ordered set) X and P ⊆ X , let P d = {x ∈ X : x ≤ y for some y ∈ P} and
P i = {x ∈ X : x ≥ y for some y ∈ P}. If P = {x} we write xi and xd instead of {x}i and {x}d respectively.
P is decreasing if P = P d and P is increasing if P = P i .

A triple (X;≤, τ) is a totally order disconnected topological space if (X,≤) is a poset, τ is a topology on X ,
and for x, y ∈ X , if x �≤ y, then there exists a clopen increasing V ⊆ X such that x ∈ V and y /∈ V . A compact
totally order disconnected space is called a Priestley space.

In [6] and [7], Priestley showed that the category of bounded distributive lattices and (0, 1)–lattice homomor-
phisms is dually equivalent to the category of Priestley spaces and order preserving continuous functions (see
also the survey paper [8]).

If X is a Priestley space, then 〈D(X),∩,∪, ∅,X〉 is the lattice of clopen increasing subsets of X . If the
function f : X −→ X ′ is a continuous order preserving map, then the map D(f) : D(X ′) −→ D(X) defined by
D(f)(V ) = f−1(V ) is a (0, 1)–lattice homomorphism. Conversely, if L is a bounded distributive lattice, then the
set of prime filters of L, denoted by X(L), is a Priestley space, ordered by set inclusion and with the topology
having as a sub-basis the sets ηL (a) = {P ∈ X(L) : a ∈ P} and X(L) \ ηL (a) for a ∈ L. If h : L −→ L′ is
a (0, 1)–lattice homomorphism, then X(h) : X(L′) −→ X(L) defined by X(h)(P ) = h−1(P ) is a continuous
order preserving map. In addition, ηL : L −→ D(X(L)) is a lattice isomorphism, and εX : X −→ X(D(X))
defined by εX (x) = {V ∈ D(X) : x ∈ V } is a homeomorphism and an order isomorphism.

Since Heyting algebras are bounded distributive lattices, the category of Heyting algebras is isomorphic to a
subcategory of bounded distributive lattices. A Heyting space is a Priestley space (X,≤, τ) such that Y d is clopen
for every clopen Y ⊆ X . If X and X ′ are Heyting spaces, a (Heyting) morphism is a continuous order-preserving
map ϕ : X −→ X ′ for which ϕ(xi) = ϕ(x)i . For a Heyting algebra H and a ∈ H , η(a) = Va denotes the clopen
increasing set that represents a. If a, b ∈ H , then, under the duality given above, a → b corresponds to the clopen

increasing set
((

Va ∩ V c
b

)d)c
, where Y c denotes the complement of Y . As a consequence, Priestley’s duality

leads us to the following fact: the functors X and D establish a dual equivalence between the category of Heyting
algebras and the category of Heyting spaces (see [8]).

If X is a Priestley space and ϕ : X −→ X is an order reversing involutive (ϕ = ϕ−1) homeomorphism, then
(X,ϕ) is called a De Morgan space [3]. If 〈M,∧,∨,′ , 0, 1〉 is a De Morgan algebra and ϕ : X(M) −→ X(M)
is given by ϕ(P ) = P ′c , where P ′ = {a′ ∈ M : a ∈ P}, then (X(M), ϕ) is a De Morgan space. ϕ is
called the Birula-Rasiowa transformation. If η(a) = Va denotes the clopen increasing set that represents a ∈ M ,
then under the duality given above, a′ corresponds to the clopen increasing set ϕ(Va)c = X(M) \ ϕ(Va). Con-
versely, if (X,ϕ) is a De Morgan space, 〈D(X),∩,∪,′ , ∅,X〉 is a De Morgan algebra where for V ∈ D(X),
V ′ = ϕ(V )c . The category whose objects are De Morgan spaces with order preserving continuous functions
f : X1 −→ X2 such that f ◦ ϕ1 = ϕ2 ◦ f as morphisms is dually equivalent to the category of De Morgan
algebras and (De Morgan) homomorphisms.

2 Characterization of algebras in SDH1

In this section we give necessary and sufficient conditions for a De Morgan Heyting algebra L to be in SDH1 by
means of the space of its prime filters.

A De Morgan Heyting space is a system (X;≤, τ, ϕ) which is both a Heyting space and a De Morgan space.
Morphisms in the category of De Morgan Heyting spaces will be functions f : X −→ X ′ which are morphisms
in the category of Heyting spaces and in the category of De Morgan spaces.

From the observations at the end of Section 1, it is immediate that the category of De Morgan Heyting spaces
and the category of De Morgan Heyting algebras are dually equivalent.

Here and subsequently, ϕ denotes the Birula-Rasiowa transformation.

Lemma 2.1 Let L be a De Morgan Heyting algebra. For every M ⊆ X(L) the following properties hold:

(1) ϕ(M c) = ϕ(M)c ,

(2) ϕ(Md) = ϕ(M)i ,

(3) ϕ(M i) = ϕ(M)d .
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238 V. Castaño and M. Muñoz Santis: SDHn -algebras

P r o o f. Let us prove (3). If Q ∈ ϕ(M i), then Q = ϕ(R) with P ⊆ R for some P ∈ M . Therefore
Q = ϕ(R) ⊆ ϕ(P ), and consequently, Q ∈ ϕ(M)d . Conversely, if Q ∈ ϕ(M)d , then Q ⊆ ϕ(P ), with P ∈ M .
So P ⊆ ϕ(Q), that is, ϕ(Q) ∈ M i , or equivalently, Q ∈ ϕ(M i).

Lemma 2.2 A De Morgan Heyting algebra L belongs to SDH1 if and only if for every clopen increasing set
V ∈ X(L), V d = ϕ(V d)d .

P r o o f. Let L ∈ SDH1 . According to the definitions given above and using that the map ′ is an involutive
anti-isomorphism and that D(X(L)) ∼= L it follows that

V ′∗ = V 2(′∗) for every V ∈ D(X(L)) is equivalent to V dc = ϕ(V dc)cdc for every V ∈ D(X(L)).

Since ϕ(V c) = ϕ(V )c , the expression before can be written as

(1) V d = ϕ(V d)d .

Taking into account that X(D(X)) ∼= X , it is immediate that a De Morgan Heyting algebra associated with a De
Morgan Heyting space (X, g) that satisfies V d = ϕ(V d)d with V ∈ D(X) belongs to SDH1 , and conversely,
the De Morgan Heyting space associated with L ∈ SDH1 satisfies the condition (1).

The following results characterize the space associated with an algebra in SDH1 .
Proposition 2.3 Each L ∈ SDH1 satisfies:

(1) If P ∈ X(L), then there exists a unique ultrafilter U of L such that P ⊆ U .

(2) If P ∈ X(L) and P ⊆ U , where U is an ultrafilter of L, then ϕ(P ) ⊆ U .

P r o o f. Let P ∈ X(L). By Zorn’s Lemma there exists a maximal element U ∈ X(L) such that P ⊆ U and
a minimal element M in X(L) such that M ⊆ P . Suppose that P is contained in two different ultrafilters, that
is, P ⊆ U1 and P ⊆ U2 , and U1 �= U2 . Let M be a minimal prime filter in X(L) such that M ⊆ P . Then
M ⊆ U1 and M ⊆ U2 . Since M is a minimal filter then ϕ(M) is an ultrafilter. Therefore, ϕ(M) �= U1 or
ϕ(M) �= U2 . Without loss of generality we can assume that ϕ(M) �= U1 . Then U1 �⊆ ϕ(M) and since X(L)
is totally order-disconnected, there exists a clopen increasing set V in X(L) such that U1 ∈ V but ϕ(M) �∈ V .
Clearly ϕ(M) �∈ V d , since ϕ(M) �∈ V and ϕ(M) is an ultrafilter.

We will now show that ϕ(M) ∈ ϕ(V d)d , contradicting (1). We have that U1 ∈ V . So ϕ
(
Ud

1
)
⊆ ϕ(V d) and

thus ϕ
(
Ud

1
)d ⊆ ϕ(V d)d . In addition, M ⊆ U1 implies ϕ(M) ∈ (ϕ(U1)i)d = ϕ

(
Ud

1
)d

, by Lemma 2.1. Hence
ϕ(M) ∈ ϕ(V d)d .

In order to prove (2) assume that P is a prime filter such that P ⊆ U , U an ultrafilter but ϕ(P ) �⊆ U . We
will show that there exists a clopen increasing set V in X(L) that does not verify (1), that is, L �∈ SDH1 .
Since ϕ(P ) �⊆ U , there exists a clopen increasing set V in X(L) such that ϕ(P ) ∈ V , but U �∈ V . Obviously,
ϕ(P ) ∈ V d . If we suppose that ϕ(P ) ∈ (ϕ(V d))d , then ϕ(P ) ⊆ ϕ(Q) with Q ⊆ R and R ∈ V . Therefore, we
have Q ⊆ P ⊆ U and Q ⊆ R. Since by (1) Q is contained in a unique ultrafilter U , then necessarily R ⊆ U .
Consequently U ∈ V , which is impossible. This completes the proof.

Proposition 2.4 Let L be a De Morgan Heyting algebra with the following properties:

1. If P ∈ X(L), then there exists a unique ultrafilter U of L such that P ⊆ U .

2. If P ∈ X(L) and P ⊆ U , where U is an ultrafilter of L, then ϕ(P ) ⊆ U .

Then L ∈ SDH1 .

P r o o f. Let L be a De Morgan Heyting algebra under the hypotheses of this proposition and let us prove that
V d = ϕ(V d)d for every V ∈ D(X(L)).

Let P ∈ V d , for P ∈ X(L) and V ∈ D(X(L)). Then there exists Q ∈ V such that P ⊆ Q. By condition 2.,
there exists a unique ultrafilter U satisfying Q ⊆ U and ϕ(Q) ⊆ U . Since Q ∈ V and ϕ(Q) ⊆ U , we have that
ϕ(U) ⊆ Q, that is, ϕ(U) ∈ V d . In addition, since P ⊆ Q ⊆ U , we obtain that P ⊆ U = ϕ(ϕ(U)) and then
P ∈ ϕ(V d)d , which establishes V d ⊆ ϕ(V d)d .
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In order to prove the opposite inclusion, suppose that P ∈ ϕ(V d)d . Then P ⊆ ϕ(R), R ∈ V d , that is,
R ⊆ Q with Q ∈ V . Let U be the unique ultrafilter which contains Q and ϕ(Q). By condition 2., it follows that
R ⊆ Q ⊆ U and ϕ(R) ⊆ U . Finally, P ⊆ ϕ(R) implies P ⊆ U . But U ∈ V since Q ∈ V and V is increasing,
so we have that P ∈ V d .

3 Subdirectly irreducible and simple SDH1-algebras

In this section we give a characterization of subdirectly irreducible and simple algebras in SDH1 by means of
its space of prime filters. This result was first proved in a different way by Sankappanavar in [5] and just for the
finite case.

It is well known that there exists an anti-isomorphism between the lattice of congruences on a Heyting algebra
H and the lattice of closed increasing sets in X(H) (see [8]).

Similarly, there exists an anti-isomorphism between the lattice of congruences on a De Morgan algebra M and
the lattice of closed involutive sets in (X(M), ϕ), where a set Y is involutive if Y satisfies ϕ(Y ) = Y (see [3]).

Taking into account these results the following proposition is immediate.

Proposition 3.1 Let L be a DH-algebra. There exists an anti-isomorphism θ between the lattice of congru-
ences on L and the lattice of closed increasing involutive sets in X(L) given by Y �−→ θ(Y ), where

(a, b) ∈ θ(Y ) ⇐⇒ ((∀P ∈ Y )(a ∈ P ⇔ b ∈ P )).

Lemma 3.2 Let L be an SDH1-algebra and U an ultrafilter in L. Then Y = ϕ(U)i is an increasing closed
and involutive set.

P r o o f. Let U be an ultrafilter of L. Clearly Y = ϕ(U)i is an increasing and closed set.
In order to prove that Y is an involutive set, we note that by Lemma 2.1, we have that

ϕ(Y ) = Y ⇔ ϕ(ϕ(U)i) = ϕ(U)i ⇔ ϕ(ϕ(U))d = ϕ(U)i ⇔ Ud = ϕ(U)i.

Suppose that P ∈ ϕ(U)i , then ϕ(U) ⊆ P , that is, ϕ(P ) ⊆ U . Hence by condition 2. of Proposition 2.4 we have
ϕ(ϕ(P )) = P ⊆ U . Therefore P ∈ Ud .

If P ∈ Ud , P ⊆ U , and again by condition 2. of Proposition 2.4 we obtain ϕ(U) ⊆ P , that is P ∈ ϕ(U)i .

Theorem 3.3 Let L be an algebra in SDH1 . If L is subdirectly irreducible, then L has a unique ultrafilter.

P r o o f. Let {Ui}i∈I be the set of all ultrafilters in L. By Lemma 3.2 we know that Yi = ϕ(Ui)i is a closed
increasing and involutive set for each i ∈ I . Then, according to Proposition 3.1, for each Yi there exists a
congruence θ(Yi) on L.

We consider the set

Y =
⋃

i∈I Yi.

Observe that Y = X(L). Then Y is a closed increasing and involutive set and θ(Y ) = Δ, where Δ denotes the
identity congruence on L.

Finally, since θ is an anti-isomorphism, we have that

θ(
⋃

i∈I Yi) =
⋂

i∈I θ(Yi) = Δ.

This contradicts our assumption that L is subdirectly irreducible.

Theorem 3.4 If an algebra L ∈ SDH1 has a unique ultrafilter, then L is simple.

P r o o f. Let L be an algebra in SDH1 and suppose that L has only one ultrafilter U . Suppose that θ is a
congruence on L and θ �= ∇, where ∇ denotes the greatest element in the lattice of congruences on L. Then, by
Proposition 3.1, there exists a closed increasing and involutive set Y ⊆ X(L), such that θ(Y ) = θ. Let us see that
Y = X(L).

Given Q ∈ X(L), by Proposition 2.4, Q,ϕ(Q) ⊆ U , that is, ϕ(U) ⊆ Q. Therefore, taking into account that
Y is an involutive increasing set, it follows that ϕ(U) ∈ Y , and hence Q ∈ Y . This shows that Y = X(L) and
consequently, θ = Δ, which completes the proof.
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240 V. Castaño and M. Muñoz Santis: SDHn -algebras

Corollary 3.5 L ∈ SDH1 is subdirectly irreducible if and only if L is simple if and only if L has a unique
ultrafilter.

Corollary 3.6 A finite algebra L ∈ SDH1 is subdirectly irreducible if and only if L has a unique atom.

4 Application: Generation by finite members

In this section, we shall apply the characterization of subdirectly irreducible SDH1-algebras given in the previous
section to show that the variety SDH1 is generated by its finite members. The proof proceeds through a standard
filtration argument.

Lemma 4.1 If 〈L,∧,∨, ′,→, 0, 1〉 is a simple SDH1-algebra and N = {e1 , . . . , en} a finite set contained
in L, then there exists a finite part L1 of L and an operation →1 with the following properties:

(a) 〈L1 ,∧,∨, ′,→1 , 0, 1〉 is a finite simple SDH1-algebra,

(b) N ⊆ L1 ,

(c) if a, b ∈ L1 and a → b ∈ L1 , then a →1 b = a → b.

P r o o f. Let L1 be the De Morgan algebra generated by N . Of course, N ⊆ L1 , and since the variety of De
Morgan algebras is locally finite, L1 is finite. Thus, it is possible to define an implication →1 on L1 such that
〈L1 ,∧,∨, ′,→1 , 0, 1〉 is a De Morgan Heyting algebra. Let us see that L1 ∈ SDH1 .

Since L is simple, L has only one ultrafilter U . We will prove that L1 has only one ultrafilter too, that is, L1 has
a unique atom. Suppose that there exist two distinct atoms a and b in L1 and let F (a) and F (b) denote the filters
generated by a and b in L1 . Consider the filters of L: Ua = {x ∈ L : x ≥ a} and Ub = {x ∈ L : x ≥ b}. Ua and
Ub are contained in the unique ultrafilter U in L, so a, b ∈ U . Then we have that a ∧ b = 0 ∈ U . This contradicts
the fact that U is an ultrafilter. Therefore, L1 has a unique atom and, by Proposition 2.4 we can conclude that L1
is a simple SDH1-algebra.

In order to prove (c), let →1 be the implication defined on L1 and suppose that a, b ∈ L1 and a → b ∈ L1 .
Recall that the operations → and →1 have the following properties:
(I) If a, b ∈ L, then for all x ∈ L, the conditions a ∧ x ≤ b and x ≤ a → b are equivalent.
(I1) If a, b ∈ L1 , then for all x ∈ L1 the conditions a ∧ x ≤ b and x ≤ a →1 b are equivalent.
Since a → b ≤ a → b, by (I), we have a ∧ (a → b) ≤ b. By (I1) and a → b ∈ L1 we have a → b ≤ a →1 b.
A similar argument shows that a →1 b ≤ a → b. Thus, a →1 b = a → b.

Theorem 4.2 The variety SDH1 is generated by its finite members.

P r o o f. Suppose we have a term ψ such that S � ψ ≈ 1 but SDH1 �� ψ ≈ 1 where S is the set of all
finite and simple algebras in SDH1 . Then there exists a simple algebra L ∈ SDH1 with L �� ψ ≈ 1. Let Σ(ψ)
be the set of all subterms of ψ, and let a = (a1 , . . . , an ) ∈ Ln be such that ψL (a) �= 1. Further, let N stand
for {σ(a) : σ ∈ Σ(ψ)} and let L1 be the finite simple algebra in SDH1 of Lemma 4.1. Then we have that
L1 �� ψ ≈ 1. This contradicts our assumption.

5 Subdirectly irreducible algebras in SDHn

In this section we characterize the spaces of prime filters of finite subdirectly irreducible algebras in SDHn , for
every n < ω.

Let R be a poset. Recall that an (n + 1)-fence is a poset F = {f0 , . . . , fn} ⊆ R such that

f0 > f1 , f1 < f2 , f2 > f3 , . . . , fn−1 < fn or f0 < f1 , f1 > f2 , f2 < f3 , . . . , fn−1 > fn

if n is even, respectively

f0 < f1 , f1 > f2 , f2 < f3 , . . . , fn−1 < fn or f0 > f1 , f1 < f2 , f2 > f3 , . . . , fn−1 > fn

if n is odd, and such that these are all comparabilities between the points. The length of the fence is n. The points
f0 and fn are called endpoints of the fence (see [2] and [9]).
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Pictures of fences

Fences (1) and (2) are the two nonisomorphic fences with an odd number of elements, (3) is the unique (up to
isomorphism) fence with an even number of elements.

For a given poset R, let Max(R) and Min(R) respectively denote the set of maximal and minimal elements
of R. Let F

U,n denotes the set-theoretical union of all fences in Max(R)∪Min(R) of length n with starting point
U ∈ Max(R), that is, F

U,n consists of those P ∈ Max(R) ∪ Min(R) such that there exists a fence of length n
with starting point U and containing P .

If L is an algebra in DH and U is an ultrafilter of L, consider the following fences of length n with starting
point U in the poset Max(X(L)) ∪ Min(X(L)):

{U0 = U,M1 , U2 ,M3 , U4 ,M5 , . . . ,Mn−1 , Un} or {U0 = U,M1 , U2 ,M3 , U4 ,M5 , . . . , Un−1 ,Mn}

where Ui ∈ Max(X(L)), Mi ∈ Min(X(L)).
In the first of these two fences n is even and its picture is as (1) in the figure and in the second one, n is odd

and its picture looks like (3). We will also consider {U0} as a fence of length 0.
Recall that by means of the isomorphism between L ∈ DH and D(X(L)), the operations ′ and ∗ on L have

translations as V ′ = ϕ(V )c and V ∗ = (V d)c , for V ∈ D(X(L)).
For every subset V of a poset R, we inductively define V 0(di) = V and V (n+1)(di) = (V n(di))di .

Lemma 5.1 For every V ∈ D(X(L)), we have

V k(∗′) =

⎧
⎨

⎩

ϕ
(
V

k −1
2 (di)d

)
if k is odd,

V
k
2 (di) if k is even.

P r o o f. The proof is by induction on k. If k = 1, by Lemma 2.1 we have V ∗′ = ϕ(V dc)c = ϕ(V d). Suppose
that the property holds for k. If k is even, then V k(∗′) = V

k
2 (di) . So

V (k+1)(∗′) =
(
V

k
2 (di))∗′ = ϕ

((
V

k
2 (di))d)

.

If k is odd, V k(∗′) = ϕ(V
k −1

2 (di)d), thus

V (k+1)(∗′)=
(
ϕ
(
V

k −1
2 (di)d))∗′=ϕ

(
ϕ
(
V

k −1
2 (di)d)d)

=
(
ϕ
(
ϕ
(
V

k −1
2 (di)d)))i = V

k −1
2 (di)di = V

k + 1
2 (di) .

So the property holds for every k.

Lemma 5.2 Let L ∈ DH. Then L ∈ SDHn if and only if for every V ∈ D(X(L)) the following condition
holds:

ϕ
(
V

n −1
2 (di)d)

= V
n + 1

2 (di) if n is odd, and ϕ
(
V

n
2 (di)) = V

n
2 (di)d if n is even.
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P r o o f. We know that L ∈ SDHn if and only if in D(X(L)), V n(′∗) = V (n+1)(′∗) . Taking into account that ′

is an involution, this equality is equivalent to:

(2) V (n−1)(∗′)∗ = V n(∗′)∗.

By the previous lemma and the properties of ϕ we obtain:

If n is even, V (n−1)(∗′)∗ = ϕ
(
V

n −2
2 (di)d

)dc = ϕ
(
V

n −2
2 (di)di

)c = ϕ
(
V

n
2 (di)

)c
, and V n(∗′)∗ =

(
V

n
2 (di)

)dc
,

so by (2) we get ϕ
(
V

n
2 (di)

)
= V

n
2 (di)d .

If n is odd, V (n−1)(∗′)∗ =
(
V

n −1
2 (di)

)dc
, and V n(∗′)∗ =ϕ

(
V

n −1
2 (di)d

)dc = ϕ
(
V

n −1
2 (di)di

)c = ϕ
(
V

n + 1
2 (di)

)c
.

Thus by (2), ϕ
(
V

n −1
2 (di)d

)
= V

n + 1
2 (di) .

Using the above result it is easy to see that there exist finite DH-algebras that are not SDHn -algebras for any
n < ω. For example, the algebra L whose De Morgan Heyting space is

�

�

�

�

U1 U2

ϕ(U2) = M1 M2 = ϕ(U1)

does not belong to SDHn for any n < ω.
In order to give a characterization of finite subdirectly irreducible algebras in SDHn we will use the following

results whose proofs can be found in [4].

Theorem 5.3 Let L be a finite De Morgan algebra and let (X(L), ϕ) be its associated De Morgan space. Let
S1 + S2 + · · · + Sn be the decomposition of X(L) in connected components. Then if P ∈ Si and ϕ(P ) ∈ Sj we
have ϕ(Si) ⊆ Sj .

Let X(L) = S1 +S2 + · · ·+Sn be the decomposition of X(L) in connected components. If ϕ(Si) ⊆ Sj , then
it is easily seen that ϕ(Si) = Sj and ϕ(Sj ) = Si , and consequently, ϕ(Si + Sj ) = Si + Sj . In that case we say
that Si +Sj is a ϕ-connected component of X(L) when i �= j. If ϕ(Si) = Si , then Si is a ϕ-connected component
of X(L). We say that X(L) is ϕ-connected when X(L) is connected or X(L) = Si + Sj , with ϕ(Si) ⊆ Sj , i �= j.

Theorem 5.4 Let L be a finite De Morgan algebra. L is directly indecomposable if and only if X(L) is ϕ-
connected.

For finite algebras in SDHn we have the following stronger results.

Lemma 5.5 Let L ∈ SDHn a finite algebra. If X(L) is ϕ-connected, then X(L) is connected.

P r o o f. Suppose that X(L) is ϕ-connected and that X(L) = S1 +S2 , where S1 and S2 are nonempty connec-
ted components such that ϕ(S1) = S2 . Let U ∈ S1 such that U is an ultrafilter of L and let us consider the clopen
increasing set V = {U}. Then we have V m (di) ⊆ S1 for all m, however ϕ

(
V m (di)

)
⊆ S2 . This shows that

D(X(L)) is not an SDHn−algebra for any n, a contradiction. Therefore, X(L) = S, where S is connected.

Proposition 5.6 Let L be a finite algebra in SDHn . Then L is directly indecomposable if and only if X(L) is
connected.

P r o o f. Let L be a directly indecomposable algebra in SDHn and suppose that X(L) = S1 + S2 + · · ·+ Sr ,
where Si is a connected component for all i. By Lemma 5.5, ϕ(Si) ⊆ Si for all i. Let Li be the De Morgan
Heyting algebra associated with each Si . We know that L = L1 × · · · × Ln , where L is considered as a DH-
algebra. Since Li is a finite algebra, Li is a Heyting algebra. In addition, since L ∈ SDHn , we obtain that
Li ∈ SDHn . Then, L is not a directly indecomposable algebra, a contradiction.

On the other hand, suppose that L ∈ SDHn and X(L) is a connected space. Therefore X(L) is ϕ-connected,
and consequently, L is a directly indecomposable De Morgan algebra, so it is a directly indecomposable SDHn -
algebra.
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Proposition 5.7 Let L be a finite algebra in DH. If X(L) is connected, then L is simple.

P r o o f. Suppose that L is not a simple algebra. Then there exists a not trivial congruence θ on L. By Proposi-
tion 3.1, there exists an increasing and closed set Y ⊆ X(L) such that θ(Y ) = θ. Taking into account that θ �= Δ
and θ �= ∇ we have that Y �= X(L) and Y �= ∅. So Y is an increasing and involutive clopen set, that is, X(L) is
not a connected component.

Proposition 5.8 Let L be a finite algebra in SDHn . If L is subdirectly irreducible, then X(L) is connected.

P r o o f. Let L be a subdirectly irreducible algebra in SDHn and suppose that X(L) = S1 + S2 + · · · +
Sr , where Si is a connected component for all i. Clearly, Si is an increasing and closed subset. Moreover, by
Lemma 5.5, Si is an involutive subset for all i. Then, according to Proposition 3.1, for each Si , there exists a
congruence θ(Si) on L.

We have that X(L) =
⋃

i∈I Si and θ(X(L)) = Δ. Since θ is an anti-isomorphism, it follows that:

θ(
⋃

i∈I Si) =
⋂

i∈I θ(Si) = Δ.

This contradicts our assumption that L is subdirectly irreducible.

Corollary 5.9 Let L be a finite SDHn -algebra. L is subdirectly irreducible if and only if X(L) is connected.

In what follows, given a poset R, let R denote the set Max(R) ∪ Min(R).

Lemma 5.10 Let R be a poset, U ∈ Max(R) and consider V = {U}. Then

V n(di) =
⋃2n

i=0 F
U,i .

P r o o f. The proof is by induction on n. For n = 0, V 0(di) = {U} and
⋃0

i=0 F
U,i = F

U,0 = {U}. Suppose

that V n(di) =
⋃2n

i=0 F
U,i and let us prove that V (n+1)(di) =

⋃2(n+1)
i=0 F

U,i . Let P ∈ V (n+1)(di) = (V n(di))di .

If P is maximal, then there exists M ∈ V n(di)d , M minimal such that M ⊆ P . So there exists S ∈ V n(di) ,
S maximal such that M ⊆ S. Since by hypothesis V n(di) =

⋃2n
i=0 F

U,i , there exists a fence of length t ≤ 2n
of the form UM1U2M3 . . . Mt−1Ut = S. Consequently the sequence UM1U2M3 . . . Mt−1SMP is a fence of
length t + 2 ≤ 2n + 2 = 2(n + 1). Thus P ∈

⋃2(n+1)
i=0 F

U,i . If P is minimal, then P ∈ V n(di)d , that is,

there exists S ∈ V n(di) , S maximal such that P ⊆ S. Since V n(di) =
⋃2n

i=0 F
U,i , there exists a fence of length

t ≤ 2n of the form UM1U2M3 . . . Mt−1Ut = S. Then the sequence UM1U2M3 . . .Mt−1SP is a fence of length
t + 1 ≤ 2(n + 1). Thus P ∈

⋃2(n+1)
i=0 F

U,i , that is, V (n+1)(di) ⊆
⋃2(n+1)

i=0 F
U,i .

For the opposite inclusion, suppose that P ∈
⋃2(n+1)

i=0 F
U,i . If P is maximal, then there exists a fence of

the form UM1U2M3 . . . Ut−2Mt−1Ut = P with t ≤ 2n + 2. Hence UM1U2M3 . . . Ut−2 is a sequence of
length t − 2 ≤ 2n. By hypothesis Ut−2 ∈ V n(di) , which implies that Mt−1 ∈ V n(di)d and consequently
Ut = P ∈ V (n+1)(di) . If P is minimal, then there exists a fence of the form UM1U2M3 . . . Ut−1Mt = P, with
t ≤ 2(n+1). Now, t is odd since the sequence ends in a minimal element, so t < 2(n+1) and then, the sequence
UM1U2M3 . . . Ut−1 is a fence of length t ≤ 2n. By hypothesis we have that Ut−1 ∈ V n(di) and since P ⊆ Ut−1

it follows that P ∈ V n(di)d ⊆ V (n+1)(di) .

The following proposition gives necessary and sufficient conditions on X(L) for a finite algebra L ∈ DH to
be in SDHn .

Theorem 5.11 Let L be a finite algebra in DH whose space X(L) is connected. Then L ∈ SDHn if and only
if for every ultrafilter U of L

Max(X(L)) ⊆
⋃n−1

i=0 F
U,i , if n is odd, and Min(X(L)) ⊆

⋃n−1
i=0 F

U,i , if n is even.

P r o o f. Let L be a finite algebra in DH whose space X(L) is connected. Suppose that L ∈ SDHn . Observe
that since X(L) is finite and connected, if W is a decreasing subset of X(L) and W �= X(L), then |W | < |W i|,
and consequently, |ϕ(W )| < |W i|.
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So if n is odd, U an ultrafilter and we consider the clopen increasing subset V = {U}, then V
n −1

2 (di)d = X(L)
since otherwise we would have ϕ

(
V

n −1
2 (di)d

)
�= V

n + 1
2 (di) , a contradiction as L ∈ SDHn (Lemma 5.2). If we

suppose that there exists a maximal U1 such that U1 �∈
⋃n−1

i=0 F
U,i , then by Lemma 5.10, U1 �∈ V

n −1
2 (di) , that is,

U1 �∈ V
n −1

2 (di)d which is a contradiction. Hence, Max(X(L)) ⊆
⋃n−1

i=0 F
U,i

Similarly, now suppose n is even, U an ultrafilter and we consider the clopen increasing subset V = {U},
then V

n
2 (di) = X(L) since otherwise we would have ϕ

(
V

n
2 (di)

)
�= V

n
2 (di)d , a contradiction as L ∈ SDHn

(Lemma 5.2). If we suppose that there exists ϕ(U0) ∈ Min(X(L)) such that ϕ(U0) �∈
⋃n−1

i=0 F
U,i , then ϕ(U0) �∈⋃n

i=0 F
U,i since n is even and by Lemma 5.10 it follows that ϕ(U0) �∈ V

n
2 (di) , a contradiction. Hence,

Min(X(L)) ⊆
⋃n−1

i=0 F
U,i .

For the converse, suppose that Max(X(L)) ⊆
⋃n−1

i=0 F
U,i if n is odd and Min(X(L)) ⊆

⋃n−1
i=0 F

U,i if n is
even. Let V be a clopen increasing nonempty subset of X(L) and let U ∈ V , U an ultrafilter. Consider the clopen
increasing subset V ′ = {U}.

If n is odd, by Lemma 5.10 we have that V ′ n −1
2 (di) =

⋃n−1
i=1 F

U,i , and Max(X(L)) ⊆ V ′ n −1
2 (di) , by hypothe-

sis. Since V ′ ⊆ V we have V
n −1

2 (di)d = X(L). So ϕ(V
n −1

2 (di)d) = V
n + 1

2 (di) , consequently, L ∈ SDHn .

If n is even, then V ′ n
2 (di) =

⋃n
j=0 F

U,j , and by hypothesis we have Min(X(L)) ⊆
⋃n−1

i=0 F
U,i . Therefore

Max(X(L)) ∪ Min(X(L)) ⊆
⋃n

j=0 F
U,j , that is, V

n
2 (di) = X(L). So ϕ

(
V

n
2 (di)

)
= V

n
2 (di)d , and then L is an

element of SDHn .

For example, let L be a De Morgan Heyting algebra with space X(L) such that Max(X(L)) ∪ Min(X(L)) is
given by the following figure:

� � �

� � �

�
�

�

������

�
�

�
M1 M2 M3

U1 U2 U3

Fences of length 0:

� � �

U1 U2 U3

Fences of length 1:

� � � � � �

� � � � � �

M1 M2 M3 M2 M3 M3

U1 U1 U1 U2 U2 U3

Fences of length 2:

� �

�

� �

�

� �

�

� �

�

� �

�

� �

�

� �

�

� �

�

�
�
�

�
�

�

�
�
�

�
�

�

�
�
�

�
�

�

�
�
�

�
�

�

�
�
�

�
�

�

�
�
�

�
�

�

�
�
�

�
�

�

�
�
�

�
�

�

U1 U2 U1 U2 U1 U3 U2 U1 U2 U1 U2 U3 U3 U2 U3 U1

M2 M3 M3 M2 M3 M3 M3 M3

F
U1 ,0 = {U1}, F

U1 ,1 = {U1 ,M1 ,M2 ,M3}, F
U1 ,2 = {U1 , U2 , U3 ,M2 ,M3}

F
U2 ,0 = {U2}, F

U2 ,1 = {U2 ,M2 ,M3}, F
U2 ,2 = {U1 , U2 , U3 ,M2 ,M3}

F
U3 ,0 = {U3}, F

U3 ,1 = {U3 ,M3}, F
U3 ,2 = {U1 , U2 , U3 ,M3}
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Then

⋃0
i=0 F

U1 ,i = {U1},
⋃1

i=0 F
U3 ,i = {U3 ,M3},

⋃2
i=0 F

U1 ,i = X(L),
⋃2

i=0 F
U2 ,i = {U1 , U2 , U3 ,M2 ,M3},

⋃2
i=0 F

U3 ,i = {U1 , U2 , U3 ,M3}.

Therefore L /∈ SDH1 , L /∈ SDH2 but L ∈ SDH3 , and consequently, L ∈ SDHn for n ≥ 3.
Corollaries 5.12 and 5.13 provide a quite simple characterization for finite subdirectly irreducible algebras in

SDH2 and SDH3 .

Corollary 5.12 Let L be a finite algebra in DH such that X(L) is connected. Then L ∈ SDH2 if and only if
Max(X(L)) ∪ Min(X(L)) is a complete bipartite graph, that is, ϕ(U1) ⊆ U2 for all ultrafilters U1 , U2 of L.

P r o o f. Suppose that L ∈ SDH2 and let U1 , U2 ultrafilters of L. We know that Min(X(L)) ⊆ F
U2 ,0 ∪ F

U2 ,1

by Theorem 5.11. Since ϕ(U1) ∈ Min(X(L)), we have ϕ(U1) ∈ F
U2 ,0 or ϕ(U1) ∈ F

U2 ,1 , that is, ϕ(U1) ∈ F
U2 ,1 .

Therefore, ϕ(U1) ⊆ U2 .
Conversely, let U2 be an ultrafilter of L and M ∈ Min(X(L)). Then M = ϕ(U1) where U1 is an ultrafilter.

By hypothesis, ϕ(U1) ⊆ U2 . This shows that ϕ(U1) ∈ F
U2 ,1 , so Min(X(L)) ⊆ F

U2 ,0 ∪ F
U2 ,1 .

Corollary 5.13 Let L be a finite algebra in DH whose dual space is connected. Then L ∈ SDH3 if and only
if for every pair U1 , U2 ∈ Max(X(L)) there exists M ∈ Min(X(L)) such that M ⊆ U1 and M ⊆ U2 .

P r o o f. Suppose that L ∈ SDH3 and let U1 , U2 distinct ultrafilters of L. By Theorem 5.11, Max(X(L)) is a
subset of F

U2 ,0 ∪ F
U2 ,1 ∪ F

U2 ,2 . Then U1 ∈ F
U2 ,0 ∪ F

U2 ,1 ∪ F
U2 ,2 . Since U1 is an ultrafilter, U1 ∈ F

U2 ,2 . That
is, there exists a fence {U2 ,M,U1} where M ⊆ U2 and M ⊆ U1 .

Conversely, let U be an ultrafilter of L. If Max(X(L)) = {U}, then L ∈ SDH1 and, in particular, L ∈ SDH3 .
Suppose that there exists U1 ∈ Max(X(L)), U1 �= U . By hypothesis there exists M ∈ Min(X(L)) such that
M ⊆ U and M ⊆ U1 . Thus, U1 ∈ F

U,2 , so Max(X(L)) ⊆ F
U,0 ∪ F

U,1 ∪ F
U,2 . This finishes the proof.
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