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Solid-state devices for quantum-bit computation �qubits� are not perfect isolated two-level systems since
additional higher energy levels always exist. One example is the Josephson flux qubit, which consists on a
mesoscopic superconducting quantum interference device loop with three Josephson junctions operated at or
near a magnetic flux of half quantum. We study intrinsic leakage effects, i.e., direct transitions from the
allowed qubit states to higher excited states of the system during the application of pulses for quantum
computation operations. The system is started in the ground state and rf-magnetic field pulses are applied at the
qubit resonant frequency with pulse intensity fp. A perturbative calculation of the average leakage for small fp

is performed for this case, obtaining that the leakage is quadratic in fp, and that it depends mainly on the matrix
elements of the supercurrent. Numerical simulations of the time-dependent Schrödinger equation correspond-
ing to the full Hamiltonian of this device were also performed. From the simulations we obtain the value of fp

above which the two-level approximation breaks down, and we estimate the maximum Rabi frequency that can
be achieved. We study the leakage as a function of the ratio � among the Josephson energies of the junctions
of the device, obtaining the best value for minimum leakage ���0.85�. The effects of flux noise on the leakage
are also discussed.
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I. INTRODUCTION

In the last decade different devices of mesoscopic Joseph-
son junctions have been studied experimentally as candidates
for the design of quantum bits �qubits�.1–10 A large effort has
been devoted to succeed in the coherent manipulation of
their quantum states in a controllable way.1,3,4,6 One of the
superconductig qubit devices that has been studied in the last
years is the Josephson flux qubit,2,6–10 which consists on a
mesoscopic superconducting quantum interference device
�SQUID� loop with three Josephson junctions operated at or
near a magnetic flux of half quantum.

Real qubit devices, however, are not perfect isolated two-
level systems. First, coupling to the external environment
induces relaxation and dephasing.5,8 Second, additional
higher energy levels always exist in solid-state devices.
Therefore leakage effects, i.e., transitions from the allowed
qubit states to higher excited states of the system can occur
during quantum computation operations.11,12 Indirect leakage
to the higher energy levels produced through the interaction
with the environment has been studied in some cases.13,14

Even neglecting the interaction with the external environ-
ment, intrinsic leakage can occur due to direct transitions
outside the computational subspace during the application of
pulses for computational operations.11,15,16 Due to the impor-
tance of minimizing the gate errors due to leakage, several
optimization strategies to compensate leakage, based on
varying the pulse shapes and pulse sequences, have been
studied recently.17–21

Furthermore, the study of the multilevel dynamics of qu-
bit devices has become of interest by itself in the last
years.22–27 The consideration of the superconducting qubit
devices as artificial atoms, has lead to the study of the dy-
namic effects of their level structure beyond the lowest en-
ergy levels. Effects of strong drive amplitudes on Rabi oscil-

lations have been studied.22–24 Driving the flux qubit with
large amplitude harmonic excitations have also revealed the
higher energy levels through Landau-Zener-Stuckelberg
transitions.25–27 Mach-Zender interferometry25,26 and ampli-
tude spectroscopy27 have been the subject of recent studies
of the flux qubit as an artificial atom. Moreover, it has also
been pointed out that the high energy level structure of the
Josephson flux qubit should show quantum signatures of
classical chaos.28

For quantum computation applications one wants to maxi-
mize the number of quantum-bit operations before gate er-
rors become important. In superconducting qubits, long
pulses are limited by the decoherence due to the environment
and short pulses by leakage out of the qubit computational
subspace. In order to maximize the number of quantum-bit
operations, one has to maximize the ratio tdeph / top, where
tdeph is the dephasing time and top is the time scale for a
single quantum operation. The main approach has been to
improve the design of the qubit devices to increase their
coherence time. In the case of the Josephson flux qubit there
has been an important progress in increasing tdeph, from the
early experiments by Chiorescu et al.6 with tdeph�20 ns to
recent experiments that report tdeph�0.5–2 �s.8 Provided
that one has succeeded to achieve a tdeph as large as possible
for a given device, the following approach is to reduce top. It
is in this later case �top� tdeph� when the effect of leakage is
relevant. The usual strategy for quantum operations is to
drive the qubit with a periodic pulse of intensity fp at a
resonant frequency ��r=E1−E0 with E1−E0 the energy dif-
ference between the two qubit states. In this case, the time
scale for quantum computing operations, top, is proportional
to the period of Rabi oscillations, top�TR. Since the time TR
depends on the pulse strength as TR�1 / fp, to reduce top, one
has to increase fp. Along this line of reasoning, the following
questions will be addressed here: �i� how much is possible to
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increase fp before leakage effects become important and �ii�
for which circuit parameters of the Josephson flux qubit the
intrinsic leakage is minimum?

To this end, in this work we will study the quantum dy-
namics of the Josephson flux qubit solving its time-
dependent Schrödinger equation considering the full Hamil-
tonian of the system. Since we are interested in time scales
such that top� tdeph, the interaction with the environment will
be neglected, and we focus on the calculation of the amount
of intrinsic leakage. We will study the case when the qubit is
driven by an rf pulse in the magnetic field that is resonant
with ��r=E1−E0. The amount of leakage as a function of
the pulse strength fp will be calculated both perturbatively
for small fp and numerically for arbitrary values of fp. The
paper is organized as follows. In Sec. II we introduce the
model Hamiltonian and equations for the Josephson flux qu-
bit. In Sec. III we present a perturbative calculation of the
leakage in the case of a harmonic resonant drive. In Sec. IV
we present our numerical results for the time-dependent
Schrödinger equation, calculating the amount of leakage as a
function of fp. In Sec. V we show results on the dependence
of the leakage with different circuit parameters. In particular,
the optimum value of the circuit parameter � �the ratio
among the Josephson couplings of the junctions of the qubit�
will be computed. In Sec. VI we analyze the effect of a small
amount of noise in the results shown in the previous section.
Finally, Sec. VII contains a summary and a discussion of the
most relevant points of our findings.

II. MODEL FOR THE DEVICE FOR THE JOSEPHSON
FLUX QUBIT

The device used for the Josephson flux qubit2 consists on
a superconducting ring with three Josephson junctions en-
closing a magnetic flux �= f�0, with �0=h /2e, see Fig. 1.

The junctions have gauge-invariant phase differences de-
fined as �1, �2, and �3, respectively, with the sign conven-
tion corresponding to the directions indicated by the arrows
in Fig. 1. Typically the circuit inductance can be neglected
and the phase difference of the third junction is: �3=−�1

+�2−2	f . Therefore the system can be described with two
dynamical variables: �1 and �2. The circuits that are used for
the Josephson flux qubit have two of the junctions with the
same coupling energy, EJ,1=EJ,2=EJ, and capacitance, C1
=C2=C, while the third junction has smaller coupling EJ,3
=�EJ and capacitance C3=�C, with 0.5
�
1. The above
considerations lead to the Hamiltonian2

H =
1

2
P� TM−1P� + EJV��� � , �1�

where the two-dimensional coordinate is �� = ��1 ,�2�. The
potential-energy term is given by the Josephson energy of the
circuit and, in units of EJ, is,

V��� � = 2 + � − cos �1 − cos �2 − � cos�2	f + �1 − �2� .

�2�

The kinetic-energy term is given by the electrostatic energy
of the circuit, where the two-dimensional momentum is

P� = �P1,P2� = M ·
d��

dt

and M is an effective-mass tensor determined by the capaci-
tances of the circuit,

M = C��0

2	
�2

m

with

m = �1 + � − �

− � 1 + �
� .

We neglected in M the on-site capacitances Cg �typically
Cg /C�10−2–10−3�1�. The system modeled with Eqs. �1�
and �2� is analogous to a particle with anisotropic mass M in
a two-dimensional periodic potential V��� �.

In typical junctions, the Josephson energy scale, EJ, is
much larger than the electrostatic energy of electrons, EC
=e2 /2C, and the system is in a classical regime. On the other
hand, mesoscopic junctions �with small area� can have EJ
�EC, and quantum fluctuations become important. In this
case, the quantum momentum operator is defined as

P� → P�̂ = − i��� = − i�� �

��1
,

�

��2
� .

After replacing the above defined operator P�̂ in the Hamil-
tonian of Eq. �1�, the eigenvalue Schrödinger equation be-
comes

�−
�2

2
��

Tm−1�� + V��� ������ � = E���� � , �3�

where we normalized energy by EJ and momentum by
� /	8EC /EJ. We defined in Eq. �3� the parameter �
=	8EC /EJ which plays the role of an effective �.28 Typical
flux qubit experiments have values of � in the range 0.6–0.9
and � in the range 0.1–0.6.6–10,27

In this work, we will study the quantum dynamics of the
Josephson flux qubit. Therefore, we solve the time-

E ,C E ,C
f

Eα Cα

J J

J

3

1 2

FIG. 1. Circuit for the device for the Josephson flux qubit as
described in the text. Josephson junctions 1 and 2 have Josephson
energy EJ and capacitance C, and junction 3 has Josephson energy
and capacitance � times smaller. The arrows indicate the sign con-
vention for defining the gauge-invariant phase differences. The cir-
cuit encloses a magnetic flux �= f�0.
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dependent Schrödinger equation which, with the same nor-
malization as above, is given by

i
����� �

�t
= �−

�2

2
��

Tm−1�� + V��� ������ � , �4�

where we normalized time by tJ=� /EJ.
We integrate numerically Eq. �4� with a second-order

split-operator algorithm,29 using a discretization grid of ��
=2	 /128 and �t=0.1tJ. We use 2	-periodic boundary con-
ditions on �� = ��1 ,�2�. Eigenstates 
�i� and eigenenergies Ei
are also calculated by numerical diagonalization of Eq. �3�
with the same discretization grid and boundary conditions. In
what follows we will consider the case of �=0.48 �i.e.,
EJ /EC=35�, which corresponds to the experiment of
Chiorescu et al.6

III. PERTURBATIVE CALCULATION OF THE INTRINSIC
LEAKAGE

In quantum computation implementations2,6,7 the Joseph-
son flux qubit is operated at magnetic fields near the half-flux
quantum, f =1 /2+�f , with �f�1. For values of ��1 /2, the
potential of Eq. �2� has two well-defined minima. At the
optimal operation point f0=1 /2, the two lowest-energy
eigenstates �
�0� and 
�1�� are symmetric and antisymmetric
superpositions of two states corresponding to macroscopic
persistent currents of opposite sign. A two-level truncation of
the Hilbert space is usually performed.2 In the subspace ex-
panded by 
�0� and 
�1�, the Hamiltonian of Eq. �1� is re-
duced to

H = −
�

2
�̂z −

�

2
�̂x, �5�

where H is written in the qubit basis defined by 
0�= �
�0�
+ 
�1�� /	2 and 
1�= �
�0�− 
�1�� /	2. Here �=E1−E0 is the
two-level splitting at f =1 /2, which increases strongly with
�, and �=4	�EJS01�f �considering that �f�1�, with S01
= ��0
sin�	+�1−�2�
�1�. �For typical values of � and �,
one has S01�0.8.� Most experiments control the system
varying the magnetic field �f = f −1 /2. Recently it has been
shown experimentally that is also possible to manipulate the
value of � by controlling �, replacing the third junction by
an additional SQUID loop.9,10

Most of the experiments on the flux qubit study the pos-
sibility of single bit quantum operations by driving the qubit
with a resonant pulse in the magnetic flux with �f�t�
= fp sin��rt�, at the resonant frequency ��r=E1−E0. If the
system is started in the ground state 
�0�, after the pulse is
applied during a time interval � the populations of the ground
state and the excited state are

P0 = 
�����
�0�
2 = cos2��R�/2� ,

P1 = 
�����
�1�
2 = sin2��R�/2� ,

with the Rabi frequency ��R=�p /2 and �p�4	�EJS01fp.
This result is usually obtained in the rotating-wave approxi-
mation �RWA� �see below�.

In order to check the goodness of the two-level approxi-
mation we are going to evaluate, perturbatively, the popula-

tion of the higher energy levels when a pulse �f�t�
= fp sin��t� is applied, with fp�1. We calculate the leakage
outside of the quantum computational space spanned by the
two lowest levels as

L�t� = 
n=2

�


���t�
�n�
2 = 
n=2

�

Pn�t� ,

where the 
�n� are the eigenstates at f0=1 /2.
We now write the Hamiltonian of Eq. �1� as H=H�f0�

+W��f�t�� with f0=1 /2 and

W��f�t�� = �EJ sin�2	�f�t��sin�	 + �1 − �2�

+ 2�EJ sin2�	�f�t��cos�	 + �1 − �2� , �6�

for small fp we have

W��f�t�� � 2	fp�EJ sin��t�sin�	 + �1 − �2� .

For the perturbative calculations we use the fact that the first
and second states interact strongly with each other but only
weakly with higher states. In this approximation we solve
�see, for example, Ref. 30�

i�
�c0�t�

�t
= W00�t�c0�t� + W01�t�ei�01tc1�t� , �7�

i�
�c1�t�

�t
= W10�t�ei�10tc0�t� + W11�t�c1�t� , �8�

i�
�cn�t�

�t
= Wn0�t�ei�n0tc0�t� + Wn1�t�ei�n1tc1�t� , �9�

with Wij = ��i
W
� j� and �ij = �Ei−Ej� /�.
We rewrite Eqs. �7� and �8� in the form

i
�c0�t�

�t
= �00 sin��t�c0�t� + � sin��t�e−i�10tc1�t� , �10�

i
�c1�t�

�t
= � sin��t�ei�10tc0�t� + �11 sin��t�c1�t� , �11�

where we defined ��ij =2	fp�SijEJ with Sij = ��i
sin�	
+�1−�2�
� j�, and �10=�01=� �for Sij real�. In order to
solve these equations we make the following change in
variables31

bj�t� = cj�t�ei��j j/��cos��t�.

Then

i
�b0�t�

�t
= � sin��t�e−i��10t+ cos��t��b1�t� �12�

and

i
�b1�t�

�t
= � sin��t�ei��10t+ cos��t��b0�t� , �13�

where = ��11−�00� /�. Using the relation
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eix cos � = 
k=−�

�

ikJk�x�ein�,

we obtain

i
�b0�t�

�t
=
�

2i


k

ikJk�− ��e−i��10−�k+1���t − e−i��10−�k−1���t�b1�t� ,

�14�

i
�b1�t�

�t
=
�

2i


k

ikJk���ei��10+�k+1���t − ei��10+�k−1���t�b0�t� ,

�15�

where the Jk are Bessel functions. When ���10 we can use
the RWA �Refs. 31 and 32� and neglect the highly off-
resonant terms obtaining

�b0�t�
�t

= − �e−i��10−��tb1�t� �16�

and

�b1�t�
�t

= �ei��10−��tb0�t� , �17�

where �= �� /2��J0��+J2���. In the exact resonance case
��=�10� the problem has analytic solution.

�b0�t�
�t

= − �b1�t�,
�b1�t�

�t
= �b0�t� . �18�

If the system was initially in the ground state, we obtain

c0�t� = ei��00/���1−cos��t�� cos��t� �19�

and

c1�t� = ei��00/�−��11/��cos��t�� sin��t� . �20�

We see that 
c0�t�
2=cos2��t� and 
c1�t�
2=sin2��t�, which
allows to identify the Rabi frequency as �R=2�, and there-
fore,

�R = ��J0�� + J2��� =
2	fp�S01EJ

�
�J0�� + J2��� ,

�21�

with =
2	fp�EJ

�� �S11−S00�.
Now we must solve Eq. �9� using the two-level solutions

of Eqs. �19� and �20�,

i
�cn�t�

�t
= �n0 sin��t�ei�n0tc0�t� + �n1 sin��t�ei�n1tc1�t� ,

�22�

it is easy to show, using Eqs. �19� and �20�, that

�cn�t�
�t

= ei�00/� 
k=−�

�

ik+1�i�nk0�eiank0
+ t + eibnk0

+ t − eiank0
− t − eibnk0

− t�

+ �nk1�eiank1
+ t + eibnk1

− t − eiank1
− t − eibnk1

+ t�� , �23�

where anki
� =k�+�ni��+�, bnki

� =k�+�ni��−�, and �nki

= ��ni /4�Jk�−�ii /��. We then obtain an expression for the
coefficients

cn�t� = ei�00/� 
k=−�

�

ei�k+1�	/2��nk0� eiank0
+ t

ank0
+ +

eibnk0
+ t

bnk0
+ −

eiank0
− t

ank0
−

−
eibnk0

− t

bnk0
− � + �nk1� eiank1

+ t

ank1
+ +

eibnk1
− t

bnk1
− −

eiank1
− t

ank1
− −

eibnk1
+ t

bnk1
+ ��

+ �nk0 − i�nk1, �24�

where �nk0=�nk0�1 /ank0
− +1 /bnk0

+ −1 /ank0
+ −1 /bnk0

− � and �nk1
=�nk1�1 /ank1

+ +1 /bnk1
− −1 /ank1

− −1 /bnk1
+ �.

The average leakage out of the subspace spanned by the
first two levels is,

L = 
n=2

�


cn�t�
2,

where 
cn�t�
2 means a time average of 
cn�t�
2. From Eq. �24�
we obtain the perturbative result for the average leakage as,

L = 
n=2

�


k=−�

�

�nk0
2 � 1

�ank0
+ �2 +

1

�bnk0
+ �2 +

1

�ank0
− �2 +

1

�bnk0
− �2�

+ �nk1
2 � 1

�ank1
+ �2 +

1

�bnk1
− �2 +

1

�ank1
− �2 +

1

�bnk1
+ �2�

+ � 
k=−�

�

�nk0 cos�k	/2� + �nk1 sin�k	/2��2

+ � 
k=−�

�

�nk0 sin�k	/2� − �nk1 cos�k	/2��2

.

We can simplify the final expression for the leakage tak-
ing into account that �ii��, since the diagonal matrix ele-
ments are 
Sii
�1. In this case the term k=0 of the Bessel
functions is dominant in the expansion. We obtain


cn�t�
2 �
�n0

2

�n0
2 +

�n1
2

�n1
2 �25�

with

1

�ni
2 =

J0
2��ii/��

16
�zni + yni� ,

and

yni = � 1

�ni − � + �
+

1

�ni + � − �
−

1

�ni + � + �

−
1

�ni − � − �
�2

,

zni =
1

��ni − � + ��2 +
1

��ni + � − ��2 +
1

��ni + � + ��2

+
1

��ni − � − ��2 .
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Using that ��ni=2	fp�Sni, with Sni= ��n
sin�	+�1
−�2�
�0�, we finally obtain

L =
4	2fp

2�2

�2 
n=2

� � 
Sn0
2

�n0
2 +


Sn1
2

�n1
2 � . �26�

IV. STRONG DRIVING AND BREAKDOWN OF THE
TWO-LEVEL APPROXIMATION

In this section we solve numerically the time-dependent
Schrödinger equation of the full Hamiltonian for the Joseph-
son flux qubit, as given by Eq. �4�. As a function of time we
calculate the population of the different energy eigenstates
when a resonant pulse is applied. In this way we can evaluate
directly how large is the population of the two lowest energy
levels and the amount of leakage as a function of the pulse
strength.

We first solve numerically the eigenvalue Eq. �3� for f0
=0.5, obtaining the eigenvectors 
�i� and eigenvalues Ei.
Then we solve the corresponding time-dependent
Schrödinger Eq. �4�.

We start the time evolution at the ground state 
�0� for
f0=0.5. We apply a pulse in the magnetic field, f�t�= f0
+�f�t�, during a time interval �. After the pulse is applied,
the wave function has evolved to 
����� and the qubit returns
to f = f0=0.5. We calculate the population Pi of the different
eigenstates 
�i�, obtained at the end of the pulse: Pi���
= 
����� 
�i�
2. The leakage outside of the quantum compu-
tational subspace expanded by the two lowest eigenstates,

�0�, 
�1�, is then obtained as

L��� = 1 − P0��� − P1��� = 
i=2

�

Pi��� .

We consider a resonant rf field pulse, �f�t�= fp sin��rt�,
for 0
 t
�, with the resonant frequency ��r=E1−E0. In the
experimental measurements of Rabi oscillations of Ref. 6,
pulses of intensity in the range 5�10−5� fp�5�10−4 were
used, as it can be deduced from their data. Here we have
calculated the time evolution of the Schrödinger equation in
a wider range of parameters for the pulse strengths: 10−5


 fp
0.1.
In this section of the work we are going to present results

for a typical experimental configuration that corresponds to
the work of Chiorescu et al.6 In Fig. 2 we show L��� as a
function of the pulse length � for three different cases of fp
for �=0.8. We see that L��� has strong oscillations as a
function of � �Ref. 33� since high frequencies enter into place
due to the contribution of several energy levels. At fp
�10−4, a typical value for experiments, the average value of
the leakage is very small, L�10−7, showing that under a
resonant pulse the Josephson flux qubit behaves very closely
as a two-level system. In contrast, a nonresonant pulse can
have a higher leakage for similar pulse strengths, as it has
been shown in Ref. 16 for a constant dc pulse. In our results
in Fig. 2, we see that for increasing values of fp the leakage
L��� increases, reaching values of 10−3, for fp�0.01. A low-
frequency modulation can be clearly observed in Fig. 2�a�.

This corresponds to the Rabi frequency of the approximate
two-level system. The two-level Rabi frequency increases
with fp. Indeed, a “Rabi modulation” of the leakage can also
be seen in Fig. 2�b� at a higher frequency than in Fig. 2�a�.
On the other hand, for fp=0.01 in Fig. 2�c� the expected Rabi
frequency is high enough that it cannot be distinguished from
the other high frequencies contributing to the leakage. As we
will see below, for fp above this case the two-level approxi-
mation is no longer adequate.

To evaluate more quantitatively the effect of strong pulses
in the amount of leakage, we calculate the time-averaged
leakage L as a function of the pulse intensity fp. We show
this result in Fig. 3 for �=0.8. We observe that L grows
quadratically with fp for low pulse strengths. At large values
of fp the dependence of L with fp clearly departs from this
behavior. We compare in Fig. 3 the numerical results with
the perturbative approximation of Eq. �26� �summing up to
the first ten levels�. We find that for fp� fp

� =0.02 the pertur-
bative approximation is very good. For higher values of the
pulse strength, the Eq. �26� no longer describes the behavior
of L�fp�, and the average leakage increases quickly with fp.
In particular, we find that for fp�0.03 the amount of leakage
is important �i.e., near 10%�. From these results, we con-
clude that the two-level approximation cannot be a good de-
scription of the dynamics for pulse strengths fp� fp

�.
We show in Fig. 4 the population of the ground state

P0��� and the first excited state P1���, for the same values of
fp as in Fig. 2. In Fig. 4�a�, for fp=0.0001, we see a clear
Rabi oscillation of the populations of the two levels of the
qubit. A small modulation at high frequencies is also ob-
served which is due to the perturbation of the higher energy

0 5000 10000 15000 20000 25000 30000
0

1×10
-7

2×10
-7

3×10
-7

L

0 5000 10000 15000 20000 25000 30000
0

1×10
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2×10
-5

3×10
-5

L

0 5000 10000 15000 20000 25000 30000
τ

0

0.0005

0.001

0.0015

0.002

L

(a)

(b)

(c)

FIG. 2. Leakage L as a function of the pulse length �, for an rf
field pulse of strength fp at the resonant frequency ��r=E1−E0. �a�
fp=0.0001; �b� fp=0.001; and �c� fp=0.01. Time is normalized by
tJ=� /EJ�0.5 ps.
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levels. In Fig. 4�b�, for fp=0.001, the perturbation of the high
energy levels is more important, but Rabi oscillations can
still be distinguished. In Fig. 4�c�, for fp=0.01, we see that
the behavior of P0��� and P1��� departs clearly from the
simple Rabi oscillation scheme and a more complex oscilla-
tion with two competing frequencies is observed. In this case
the quantum operation of the qubit, if intended, will be more
complex since it needs to be based in the knowledge of the
oscillation pattern.

We now analyze the Fourier power spectrum of the popu-
lations P0��� and P1���. For example, for P0��� we calculate

P̂���=1 /T
�0
Texp�i�t�P0�t�dt
2. We define the dominant fre-

quency of the oscillation from the maximum of the power

spectrum, �osc=max�P̂���. A plot of the obtained �osc as a
function of the pulse strength fp is shown in Fig. 5. We also
plot the Rabi frequency �R given by Eq. �21�, which was
obtained in the rotating-wave approximation. We observe
that �osc is linear with fp in good agreement with Eq. �21�,
i.e., �osc��R for fp� fp

R=0.003. For larger values of fp,
�osc departs from the linear dependence of �R. The rotating-
wave approximation that lead to Eq. �21� is valid if �R

�r= �E1−E0� /�. Indeed, �osc reaches this value at fp

R �we
see that for fp= fp

R=0.003 we have �osc /2	�0.002 while
�E1−E0� /2	=0.002107�. Therefore, for fp� fp

R we do not
expect to find simple sinusoidal Rabi oscillations. Instead,
more complex oscillations are observed, as seen in Fig. 4�c�.

From the above analysis we conclude that for fp� fp
R

=0.003 the possibility of use of the device for quantum op-
erations becomes more difficult due to the lack of Rabi os-
cillations. This implies that the highest possible Rabi fre-
quency that can be obtained is, for �=0.8,

�R
max/2	 � 0.003�EJ/� � 5 GHz

for EJ��2	��300 GHz, and using �R�2	�fpEJ. In the
range fp

�� fp� fp
R, the two-level approximation is still a good

approximation, since the average leakage is relatively small,
but its use for quantum operations would not be as simple as
in the case of fp
 fp

R. For pulse strengths fp� fp
� the intrinsic

leakage is very important �L�0.1� and the device cannot be
treated as a two-level system. Moreover, we see in Fig. 5 that
at fp� fp

�, the dependence of the frequency �osc with fp has a
drastic change, very far apart from a “Rabi regime.”

V. DEPENDENCE OF THE INTRINSIC LEAKAGE WITH
CIRCUIT PARAMETERS

In this section of the paper we are going to study the
behavior of the leakage as a function of the different param-
eters that define the circuit of the flux qubit. A simple argu-
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FIG. 3. Filled circles: time-averaged leakage L as a function of
the pulse strength fp for �=0.8 for an rf field pulses of strength fp

at the resonant frequency ��r=E1−E0. Dash-dotted line: perturba-
tive approximation of Eq. �26�.
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ment is that leakage effects should be small if the energy
difference between the third and the second level is much
larger than the energy difference between the two lowest
levels, i.e., if E2−E1�E1−E0. While this is generally cor-
rect, the magnitude of the matrix elements for the transition
rates to higher energy levels can be even more important, as
we will show in this section. Indeed, from the perturbative
calculation of Eq. �26� we see that, besides an overall factor
proportional to fp

2�2, the average leakage L depends both on
the matrix elements Sni, and the factors �ni �which are basi-
cally dominated by the energy-level differences En−Ei�.

Among the circuit parameters that can be varied either by
external sources or by circuit design are f0, �, and EJ /EC. As
we mentioned before the qubit is operated at a dc magnetic
field near the half-flux quantum with f0�1 /2. In order to see
what happens when we move out of the symmetry point f0
=1 /2 we plot in Fig. 6�a� the time-averaged leakage as a
function of f0 for a fixed value of fp. We can see from this
figure that the leakage grows as we move apart of the sym-
metry point. This issue can be understood with Fig. 6�b�.
Here we can see that if we move out of the symmetry point
the distance between the two lower levels, �10=E1−E0
grows while the third level becomes closer to the second one,
and thus �21=E2−E1 decreases. This basically explains the
increase in the leakage when moving out of the symmetry
point f0=1 /2. Further information can be obtained from Fig.
6�c� where we show the matrix element 
S12
2, which corre-
sponds to the supercurrent sin��1−�2−2	f� taken between
the first excited level and the second excited level. We note
that it has a minimum at f0=0.498. The existence of this
minimum correlates with the fact that the dependence of the
leakage with f0 has a shoulder near this point.

In principle, the amount of leakage will depend also on
the � parameter since this parameter controls the shape of
the effective potential in the Hamiltonian, in particular, the
height of the barrier between the two potential minima. We
have calculated numerically the average leakage L as a func-
tion of � for a fixed pulse strengths fp at f0=1 /2. This is
shown in Fig. 7�a�. We see that L tends to decrease with

increasing �, contrary to what the �2 factor of Eq. �26�
would have suggested. Moreover, we see that there is a mini-
mum value for the leakage at �min�0.85. Therefore, there is
an optimum value of the circuit parameter � for which the
leakage will be minimum and the two-level approximation
more adequate.

We plot in Fig. 7�b� the difference between the three low-
est energy levels as a function of � and in Fig. 7�c� we plot
the matrix element 
S12
2 vs �. The energy distance �10
strongly decreases with � while �21 has a smooth nonmo-
notonous dependence with �. This later result, where
�10 /�21 decreases with � contributes to the general tendency
of the leakage to decrease with increasing �. However, the
important result here is that the minimum leakage at �min
�0.85 is directly correlated with a minimum in the depen-
dence of 
S12
2 with �, as it can be observed in Fig. 7�c�.
Therefore, it is this matrix element, for transitions between
the second and the third level, the factor that dominates the
dependence of the leakage with �.

In Fig. 8 we show the amplitude of the matrix element S12
as a function of � for different values of EJ /EC. We observe
that the minimum for 
S12
2 shown in Fig. 7�c� actually cor-
responds to the fact that S12 crosses zero and therefore it
vanishes at a particular value of �. Furthermore, we find that
for all the cases of EJ /EC analyzed, the matrix element be-
comes zero within the range of 0.83
�
0.89, nearly the
same value of �. In the inset in Fig. 8 we show how the
amount of leakage �for a fixed value of fp, �, etc.� changes
with the ratio EJ /EC. We see that L does not change signifi-
cantly, showing a slight increase for increasing EJ /EC. This
can be understood in the sense the dynamics of the system
becomes more “classical” when increasing EJ /EC, �the effec-
tive � decreases�, the energy-level structure becomes more
crowded, and thus the effect of higher energy levels will tend
to be more relevant.

VI. EFFECTS OF WEAK NOISE ON THE INTRINSIC
LEAKAGE

The results of the previous sections have been obtained in
the ideal case in which the effect of the environment is ne-
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glected. The aim of this section is to analyze how the small
perturbation of a weak noise can affect the calculations of the
intrinsic leakage of the previous sections. In superconducting
qubits various sources of relaxation and decoherence are
present due to the environment. Recent experiments in the
Josephson flux qubit have shown that the dominant source of
decoherence is due to 1 / f noise of the magnetic flux in the
SQUID loop.8 Here we will make the simplification of treat-
ing the noise in the magnetic flux as a classical noise. In fact,
it is usually assumed that for time scales much smaller than
the energy relaxation time, the initial decoherence of the qu-
bit can be described with a classical noise.34 Thus, in the
presence of an rf drive, we take the magnetic flux as

f�t� =
1

2
+ fp sin��t� + �fn�t� . �27�

Here, �fn�t� is the noise source in the magnetic flux with
average ��fn�t��=0 and correlations ��fn�t��fn�t���=A2g�t
− t��.

We now solve numerically the time-dependent
Schrödinger equation, Eq. �4�, when the rf pulse is applied
under the presence of noise, as given by Eq. �27�. We calcu-
late the leakage as in the previous section but now averaging
over 50 realizations of the noise. In Fig. 9 we show the
leakage L���, obtained numerically, as a function of the
pulse length, for a small value of fp, with Gaussian white
noise and with 1 / f noise. In the first case, we have g�t− t��
=��t− t��, and the calculations were done for white noise
intensity Aw�10−5. In the second case the 1 / f noise is de-
fined as the sum of several bistable fluctuators as studied, for
example, in Ref. 34. Here we considered 250 bistable fluc-
tuators with intensity Af �10−5. As a comparison, in the ex-
periments the flux noise intensity is estimated to be on the
order of A�10−6 at frequencies of 1 Hz.8 In the figure we
can see that, besides the oscillations, there is a general linear
increase in the leakage as L�t�� Lt, which probably implies
an exponential dependence at long times as L�t��1−exp�
− Lt�. As we can see in this figure the case of 1 / f noise and
white noise show quite similar behavior in their functional

form. �The intensities of the two noises shown in Fig. 9 have
been chosen such that they result in different leak rates  L
and thus they can be distinguished in the plot.� The expected
difference of the realistic case of 1 / f noise with a short-time
correlated noise could be in the functional form of the de-
pendence of the leakage L�t� for large times �larger than the
time scale used in the present calculation�.

We can calculate analytically an approximate result for
the leakage if we assume that the noise intensity A is small
and that the noise is short-time correlated within a small time
scale �n, such that A2tJ��n�TR, with TR the period of the
Rabi oscillations. In Sec. III we solved the two-level system
without noise in the RWA approximation. Here, we add the
effect of noise as a perturbation within the RWA approxima-
tion. We now write the time-dependent perturbation term of
the Hamiltonian, W��f�t��, for small values of fp and small
noise intensity, as

W��f�t�� � 2	� sin�	 + �1 − �2��fp sin��t� + �fn�t�� .

We then solve Eq. �9� with Wni�t�=2	�SniEJ�fp sin��t�
+�fn�t�� with the coefficients obtained from the two-level
approximation with noise �Eqs. �7� and �8��. Integrating Eq.
�9� and keeping only the terms with A2 and fp

2 we obtain


cn�t�
2 = 
cn
�0��t�
2

+
�2	�A�2

�2�
�Sn0Sn1J0��00/��J0��11/��P�0�sin2��t�

+

Sn0
2J0

2��00/��
4

���P��� + P�− ���t

+ P�0�sin�2�t�� +

Sn1
2J0

2��11/��
4

���P���

+ P�− ���t − P�0�sin�2�t��� , �28�

where cn
�0��t� is the coefficient obtained in absence of noise in

Eq. �24�, and P���=�−�
� ei�tg�t�dt is the noise spectral den-
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sity. We see in Eq. �28� that, besides the oscillating terms,
there are terms that contribute with an increase in 
cn�t�
2
which is linear in t. This will give an overall increase in the
leakage as L�t�=n=2

� 
cn�t�
2� Lt�1−exp�− Lt�, which de-
fines  L as the leak rate. Typically, in the calculation of re-
laxation and dephasing, a 1 / f noise gives a Gaussian decay
law instead of an exponential decay.8 Similarly, one could
expect that the exponential dependence of the leakage in the
presence of short-time correlated noise could be modified to
a different time dependence in the case of 1 / f noise �possi-
bly a quadratic law�, but as we showed above, such a differ-
ence is not distinguished in our numerical calculations.

Then, under the assumption of small short-time correlated
noise, we obtain the leak rate as

 L =
�2	�A�2

2�2 �P��R

2
� + P�− �R

2
��

� �
n=2

�


Sn0
2J0
2��00/�� + 
Sn1
2J0

2��11/��� . �29�

From the numerical results for the white noise, we can make
a linear fit of the time dependence of L�t� to obtain an esti-
mate of the leak rate  L. In the inset of Fig. 10 we show the
numerically obtained  L as a function of the white-noise in-
tensity A. We compare this result with the perturbative cal-
culation of Eq. �29�. As we can see, the agreement is excel-
lent.

Finally, for a small value of the white-noise intensity A,
we plot the leak rate  L as a function of the circuit parameter
�. As we can see in Fig. 10 the leak rate has a minimum near
�=0.85. Therefore we observe that the optimum value of �
for minimum leakage remains the same when a small white
noise is added in the system. We also compare the numerical
result with the perturbative calculation of Eq. �29�. It shows
an overall agreement with the existence of a minimum for
�=0.85. We find a small systematic difference for ��0.8.
This can be attributed to the numerical fit procedure used for

estimating  L, which may need the consideration of larger
time intervals to improve the reliability of the fit.

VII. SUMMARY AND DISCUSSION

We have presented numerical and perturbative calcula-
tions of the intrinsic leakage in the Josephson flux qubit
when the system is driven by a rf resonant pulse. As a func-
tion of the pulse strength fp three regimes have been found:
�i� for fp
 fp

R, the leakage is very small L�0.001 and the
device shows good Rabi oscillations. This is the regime in
which the device can be operated as a qubit in a simple way.
The perturbative calculations based on the rotating-wave ap-
proximation reproduce very well the numerical results in this
case. �ii� For fp

R
 fp
 fp
�, the leakage is still small, L


0.01, and the device responds as a two-level system, but
the response is more complex than simple sinusoidal Rabi
oscillations. �iii� For fp� fp

�, the leakage is important, L
�0.1 and the two-level approximation breaks down. We also
find that the maximum Rabi frequency that can be achieved
with this device, for fp= fp

R, is about �R /2	�5 GHz. This
is a factor of 5–10 times larger than what is usually achieved
in typical experiments, meaning that, in principle, is possible
to use stronger pulses and correspondingly to further reduce
the qubit operation time top.

These results refer to the intrinsic leakage, i.e., the leak-
age due to direct transitions to the higher energy levels, and
therefore the effect of the environment has been neglected.
The interaction with the environment also adds further leak-
age effects due to indirect transitions to higher energy levels,
see, for example, Refs. 13 and 14. Concerning this point, in
Sec. VI we have shown that a weak perturbation of the ex-
ternal world, considered as a small classical noise, does not
change the qualitative dependence with circuit parameters of
the leakage obtained in the previous sections for the ideal
case. These results should be valid as soon as the Rabi period
is much smaller than the decoherence time, which is the
situation analyzed in this paper.

Here we have considered sharp pulses. Several strategies
to reduce leakage varying the pulse shape and the type of
pulse sequences have been discussed recently.17–21 Applying
these strategies the value of the leakage could be further
reduced from the values obtained here. According to our re-
sults, the use of these strategies will be of interest in the
regime of fp
 fp

R, when simple Rabi oscillations can be ob-
served in the Josephson flux qubit.

One important result of this work is the dependence of the
leakage with the � parameter of the device. We have found
that there is an optimum value near ��0.85 for minimum
leakage. This result remains valid when the effect of noise of
small amplitude in the magnetic flux is considered. We have
found in this case that the magnitude of the leakage is domi-
nated by the matrix element of the supercurrent for transi-
tions between the first and the second excited level. When
the amplitude of this matrix element crosses zero, we find
that the leakage is minimum. Moreover, the Fig. 7 shows that
small values of � give large leakage, while the range 0.75
��
1 is more favorable. Of course, the choice of � in the
fabrication of the device should take into account other fac-
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tors as dependence with � of the gap, the relaxation rate, the
decoherence time, etc. Interestingly, the experiment of Ref. 9
shows that the relaxation rate is stronger for small values of
�, which goes in the same direction as what we have ob-
served here for the leakage.

Recently, Lucero et al.21 have used a procedure �called
“Ramsey filtering”� to measure the population of the second
excited level in the superconducting phase qubit. It will be
interesting if a similar procedure could be implemented in
the Josephson flux qubit. In particular, it will be possible to
measure experimentally the dependence of the leakage with
� by using Ramsey filtering in the recently developed circuit
for tuning the gap �i.e., �� of the superconducting flux
qubit.9,10

The results obtained here show quantitatively how the
multilevel dynamics can become relevant for strong driving
amplitudes in the flux qubit, going beyond the two-level ap-
proximation. Indeed, the recent experiments on amplitude
spectroscopy of Ref. 27 show how the use of strong ac driv-
ings can be turned as a tool to reveal the energy-level struc-
ture of the flux qubit device, now studied as a solid-state
artificial atom.
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