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Abstract We undertook a field study to determine whether comb cell size affects the

reproductive behavior of Varroa destructor under natural conditions. We examined the

effect of brood cell width on the reproductive behavior of V. destructor in honey bee

colonies, under natural conditions. Drone and worker brood combs were sampled from 11

colonies of Apis mellifera. A Pearson correlation test and a Tukey test were used to

determine whether mite reproduction rate varied with brood cell width. Generalized

additive model analysis showed that infestation rate increased positively and linearly with

the width of worker and drone cells. The reproduction rate for viable mother mites was

0.96 viable female descendants per original invading female. No significant correlation

was observed between brood cell width and number of offspring of V. destructor. Infertile

mother mites were more frequent in narrower brood cells.

Keywords Varroa destructor � Apis mellifera � Brood cell width �
Reproductive behavior � Foundress mother mites � Reproduction rate

M. Maggi (&) � N. Damiani � M. Eguaras
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Introduction

Varroa destructor is an ectoparasitic mite of the Asian honey bee, Apis cerana that has

become an important pest of the western honey bee (Apis mellifera) (De Jong et al. 1982b;

Anderson and Trueman 2000). As this mite reproduces in honey bee brood cells, where

temperature and humidity are tightly regulated by the bees, climate conditions appear

unlikely to influence the life cycle of this parasite. However, Varroa reproduction can be

influenced by host parameters (Ifantidis 1988; Eguaras et al. 1994).

Several studies have shown that the distribution of Varroa mites in brood combs differs

significantly from a mathematical Poisson distribution and that it is aggregative (Donzé

et al. 1996; Floris 1991; Le Conte et al. 1990). The authors of these studies indicated that

aggregation of Varroa female mites in brood cells suggests differences in the chemostimuli

triggering infestation, such as higher production of kairomones from parasitized larvae,

deposition of chemical trails, or emission of an aggregation pheromone by infesting mites.

However, Fuchs (1988) suspected that fluctuations in the infestation rate are the reason for

the non-Poisson distribution. This was later shown by Martin (1995), by controlling for

variations in infestation level. When this influence was removed, he found that the female

mites entered brood cells on a fairly random basis; the resulting clustering can be described

by the Poisson distribution. Based on this result, Martin (1995) suggested that the over-

dispersed distribution of mites found in other studies is likely to be a result of combining

data sets with varying infestation levels.

Varroa mites reproduce and mate only in capped brood cells of bees, but only adult

female mites live outside the brood cells (De Jong et al. 1982a). To infest cells and

reproduce, Varroa mites walk off their adult-bee hosts onto the comb surface and then

walk into cells where mature larvae are located (Boot et al. 1991). Various studies have

investigated factors that could affect the infestation rate of V. destructor, such as local

climate conditions (De Jong et al. 1984; Ritter and De Jong 1984), bee race (Corrêa-

Marques et al. 2002; Moretto et al. 1991), infertility of adult female mites (Corrêa-Marques

et al. 2003), absence of the queen (De Jong 1981) and the rate of removal of infested brood

(Corrêa-Marques and De Jong 1998). In addition, chemical signals related to the invasion

of brood cells have been reported. Le Conte et al. (1989) and Nazzi et al. (2004) identified

putative attractants in extracts of bee larvae that affect the brood cell invasion behavior of

V. destructor. Once mites contact late larval bee instars, they are apparently retained on the

larval cuticle by hexane-extractable hydrocarbons (Rickli et al. 1994). It has also been

demonstrated that physical signs affect brood cell invasion by Varroa mites (Kuenen and

Calderone 2000). The distance from a bee larva to the rim of the brood cell appears to be a

key factor in the process of cell invasion by Varroa (Boot et al. 1995; Goetz and Koeniger

1993). Also, old honey bee brood combs are more infested by Varroa mite than new brood

combs (Piccirillo and De Jong 2004).

Cell size is an important determinant in the invasive behavior of V. destructor; more

parasites per cell were found in worker brood cells that are individually raised above the

surrounding cells (De Jong and Morse 1988; De Ruitjer and Calis 1988). Message and

Gonçalves (1995) observed higher infestation and reproduction rates of V. destructor in

European bee combs, when compared with Africanized combs, associated with their

greater comb cell width. Piccirillo and De Jong (2003) found the same pattern among

combs built by different subspecies of A. mellifera, when compared in the same colony.
However, Taylor et al. (2008) reported that brood cell width had no significant effect on

mite reproduction or infestation rate. These various studies of the effect of comb cell width

were made by manipulating the brood nest, introducing combs with different cell sizes into

Exp Appl Acarol

123



colonies. However, how brood cell width affects the number of foundress mother mites per

cell and its reproduction under natural conditions has not been studied previously.

The choice of a bee brood cell to begin reproduction is an important and critical moment

in the life of the Varroa mite. In addition, the various reports of interaction between cell

size and reproduction of the mite, in the interaction between V. destructor and it host

A. mellifera; provide an excellent opportunity to study how selective pressures physical

cues (in this case variability in cell width) can modify the reproductive behavior of an

ectoparasite. Our objectives were to examine the natural variability in brood cell width in

combs of A. mellifera and to analyze whether this factor affects the number of foundress

mother mites per cell and its reproduction rate under natural conditions. The hypothesis

tested was that brood cell width of A. mellifera is a key factor that affects the reproductive

behavior of V. destructor under natural conditions. This hypothesis would be supported if

infestation or reproduction rates vary with brood cell width.

Materials and methods

The study was conducted at the Laboratorio de Apicultura, J.J. Nágera coastal station

(3881000600S; 5783801000W) and at the Laboratorio de Artrópodos (Facultad de Ciencias

Exactas y Naturales, Universidad Nacional de Mar del Plata in Argentina. Drone cells were

limited during the sampling period because we carried out the sampling during fall and

spring 2007, when cold weather induces the bee colonies to restrict the brood area,

especially the drone brood. Eleven colonies of A. mellifera maintained in Langstroth-type

beehives were used for the experiments.

Population distribution of Varroa destructor

We examined the population distribution of V. destructor within brood cells of A. melli-
fera. One sealed brood comb from each colony was intensively sampled. All of the brood

cells of each comb were opened and the number of foundress mother mites (parasitic

intensity) inside each cell was registered.

Morisita’s index (Brower and Zar 1977) was estimated according to the following

equation:

Is ¼ N
X

X2 �
X

X
� � X

X
� �2

�
X

X

� �� ��

where:

Is = Morisita’s dispersion index

N = Number of cells of A. mellifera inspected.P
X = Sum of the number of V. destructor foundress mother mites found within the

inspected cells.

Based on the characteristics of this dispersion index, if:

Is = 1, the population distribution of V. destructor was adjusted to Poisson.

Is \ 1, the population distribution of V. destructor was normal.

Is [ 1, the population distribution of V. destructor was distributed according to negative

binomial law.
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To evaluate if the value of Is was significantly different from 1, the following equation

was employed:

F0 ¼ Is
X

X
� �

� 1
h i

þ N�
X

X
� �

=N� 1

If the value of F0 was greater than the tabulated F with n - 1 grades of freedom and

95% of confidence, it was concluded that Is was significantly different from 1. Infestation

rate and mite distribution were analyzed for each colony. Infestation rate was estimated

following De Jong (2005).

Brood cell width and its effect on the number of foundress mother mites invading cells

and on its reproduction rate

Six colonies of A. mellifera were used. A drone brood comb was collected from one

colony, while a worker brood comb (with no drone brood) was sampled from the remaining

five colonies. Photographs of each comb were taken with a Kodak Easy Share C340

camera. The inner width of each sealed brood cell (distance between two parallel walls)

was measured in each photograph using Image J software. Diameter distributions of

worker and drone cells were graphed in frequency histograms.

All of the brood cells of each comb were opened and the number of foundress mother mites

inside each cell was registered. To facilitate recording the data, a colored pin of different color

was assigned to each opened cell according to the following criteria: green—zero mites;

yellow—one mite; light blue—two mites; red—three or more mites. The combs were pho-

tographed again with the pins. Using Image J software the two types of photographs (combs

with sealed cells and those with opened cells with pins) were superimposed in order to relate

the width of each sealed cell measured with the number of foundress mother mites and its

reproduction rate. Reproduction rate of V. destructor was estimated only in worker brood

cells. Only worker brood cells invaded by a single mother mite were analyzed, since multiple

infestations can affect mite reproduction (Fuchs and Langenbachs 1989). Whenever possible,

only brood that had been sealed for longer than 230 hours (at least at the yellow thorax stage of

development) was collected. Mite eggs and protonymphs were not sexed, as this cannot be

done reliably using external characteristics (Steiner 1988). Protonymphs and deutonymphs

were distinguished by counting the number of sternal setae, according to Nannelli (1986).

Reproduction rate was calculated for foundress mother mites according to Ifantidis (1984), by

dividing the total progeny of the mites by the number of mites of the parental generation.

To determine whether brood cell width affected the number of V. destructor foundress

mother mites in the brood, a generalized additive model (GAM) (Hastie and Tibshirani

1990; Zuur et al. 2007), which is based on Binomial and Poisson distributions, was used for

both worker and drone cells.

To determine whether brood cell size affected V. destructor reproduction rate, we used

a Pearson’s correlation and a Tukey test to calculate the relationship between the total

number of mites infesting each brood cell (original adult and offspring) and the width of

the brood cell. Each foundress mother mite was classified into one of the following three

categories: (1) viable mother mite (a mother mite that produced live female and male

offspring); (2) inviable mother mite progeny (a mother mite that produced incomplete

offspring due to dead female or male offspring or only a male produced); (3) infertile

mother mite (mother mite did not reproduce). Tukey test was used to compare cell width

means whenever a one-way ANOVA indicated significant differences between cell width

means for the three categories of mother mites.
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Results

Population distribution of Varroa destructor

From the eleven colonies, 6,394 worker brood cells were inspected. The distribution of

V. destructor adjusted to the negative binomial distribution in all colonies. Morisita’s

index was significantly greater than one (P \ 0.05), in all colonies (Table 1). When data

for all colonies were pooled, Morisita’s index was 1.344 and was significantly different

from 1 (F0 = 1.32 [ Ft; P \ 0.001). Infestation rates for each colony varied from 16.1 to

75.6% (Table 1). The mean infestation rate (±standard deviation) for all colonies was

39.6 ± 19.8% Frequency distribution of mean numbers of mites per cell per colony and

standard deviations for pooled data are shown in Fig. 1.

Brood cell width and its effect on the number of foundress mother mites invading cells

and on its reproduction rate

A total of 2,899 worker cells and 552 drone cells from the six colonies were examined. The

mean width of the worker brood cells was 5.26 ± 0.51 mm (range = 4.17–6.86 mm),

while for the drone brood cells it was 6.4 ± 0.5 mm (range = 5.05–8.07 mm). Worker and

drone cell widths overlapped at from 5.5 to 6.8 mm (Figs. 2 and 3). A unimodal distribution

of cell width was observed for both castes, with low relative frequencies for the extreme

values (Figs. 2 and 3). Drone cell mean widths were 1.22 times greater than worker cell

mean widths, although some worker cells were larger than the mean drone cell size.

Parasite intensities were 1.46 ± 0.34 foundress mother mites/worker cell (mean

infestation frequency = 40.87%) and 2.16 ± 0.56 foundress mother mites/drone cell

(mean infestation frequency = 75.36%).

GAM analysis for worker brood cells was significant (v2 = 104.4; df = 2,786;

P \ 2e-16); it explained 5.15% of the deviance. The results presented here showed that the

probability to find parasites inside cells worker brood cells was positively correlated with

worker brood cell width. The relation was sigmoidal: the probability to find parasites inside

worker brood cells increased lineally from cells of 4 mm to 5.9 mm where it became

asymptotic (Fig. 2). GAM analysis for the drone brood cells was significant (v2 = 163.4;

df = 2,399; P \ 2e-16); it explained 14.3% of the deviance. The number of parasites

inside drone cells was positively correlated with cell width. The relation was sigmoidal: the

number of foundress mother mites of V. destructor increased linearly from 5 to 6.8 mm,

after which it became asymptotic (Fig. 3).

Table 1 Number of inspected cells, parasitized cells, infestation rate and Morisita’s index for each colony
sampled

Colony

1 2 3 4 5 6 7 8 9 10 11a

Total of inspected cells 809 917 304 443 470 536 641 685 442 585 552

Cells containing one or more mites 507 510 49 115 223 171 117 170 226 156 417

Infestation rate 62.7 55.6 16.1 25.9 47.4 32 18.2 24.4 51.2 26.7 75.6

Morisita’s index 1.55 1.43 1.22 1.26 1.3 1.29 1.23 1.27 1.4 1.26 1.6

a In colony 11 a drone brood comb was sampled. Colonies from 6 to 11 were used to relate brood cell width
with its effect on the number of foundress mother mites per cell and its reproduction rate
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Foundress mother mites per cell varied with the proportion of available worker and

drone brood cells (Figs. 2 and 3). The number of mites per cell increased positively and

linearly with the width of worker and drone cells, until it became constant due to a decrease

in the availability of wider cells.

Ninety-five of the 2,899 worker brood cells that we examined contained a single mother

mite (3.3% single infestation). No significant correlation (r = 0.25; P = 0.2) was observed

between cell width and the number of V. destructor offspring. Fifty-eight percent of the

Fig. 1 Frequency distribution of mean numbers of Varroa mites per cell per colony and standard deviations
for all Apis mellifera colonies sampled

Fig. 2 Relative frequency distribution of worker brood cells width of Apis mellifera by means of class
intervals and its relation with the probability to find a foundress mother mite inside them. Generalized
additive modelling using a Binomial distribution (v2 = 104.4; df = 2,786; P \ 2e-16). Upper and lower
lines represent superior and inferior fiducial limits, respectively (n = 2,899)
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singly-infested worker cells had viable offspring, 26% had inviable offspring and 16%

contained infertile mother mites. The rate of increase for viable mother mites was 0.96

viable female descendants. Mean cell width was significantly different among the cate-

gories of mother mite progeny (ANOVA, F = 6.343, P = 0.003); the mean widths of cells

with infertile females, and viable and inviable progeny were 4.92, 5.4 and 5.38 mm,

respectively.

Discussion

According to Poulin (1998), parasite habitats are not spatially continuous; they consist of

discrete cells or ‘‘islands’’. Hosts constitute patches of suitable habitat in an otherwise

inhospitable environment. In addition, parasites are aggregated among available hosts,

such that most hosts harbor no or few parasites and few hosts harbor many parasites. The

tendency towards parasite aggregation suggests that similar processes may be acting to

generate the same pattern in different host-parasite systems, i.e., reproduction of parasites

within hosts, density-dependent parasite mortality and parasite-induced host mortality

(Anderson and Gordon 1982).

We found the population distribution of V. destructor within brood combs of

A. mellifera to be aggregated; it was explained partially by the distribution of cell widths.

Other studies have shown that the distribution of Varroa mites in cells differs significantly

from a random distribution and that it is aggregative (Donzé et al. 1996; Floris 1991; Le

Conte et al. 1990). These authors indicated that the aggregation of Varroa female mites in

brood cells suggests differences in the chemostimuli triggering infestation, such as higher

production of kairomones by parasitized larvae, deposition of chemical trails, and pro-

duction of an aggregation pheromone by infesting mites. However, brood cell dimensions

also play an important role in the cell invasion of V. destructor (De Jong and Morse 1988;

De Ruitjer and Calis 1988; Message and Gonçalves 1995; Piccirillo and De Jong 2003).

We found that the distribution of cell widths among worker and drone cells in a brood

comb of A. mellifera under natural conditions is not uniform and that it is highly variable,

resulting in habitat patches that can be preferentially colonized by V. destructor. We found

Fig. 3 Relative frequency distribution of drone brood cells width of Apis mellifera by means of class
intervals and its relation with the number of foundress mother mites inside them. Generalized additive
modelling using a Poisson distribution (v2 = 163.4; df = 2,399; P \ 2e-16). Upper and lower lines
represent superior and inferior fiducial limits, respectively (n = 552)
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the variability in the width of cells to have a direct effect on the aggregation of

V. destructor within brood combs. Although Martin (1995) concluded that the overdi-

spersed distribution of mites is likely to be a result of combining data sets with varying

infestation rates, we found that all our colonies had overdispersed mite distributions,

independent of the infestation rates. Moreover, it was only used data from one brood for

each colony, so it was impossible that the overdispersed distribution found in this study

was the result of combining data sets. There is controversy about which factors, including

physical and chemical elements, are important in triggering the invasion of brood cells by

V. destructor and consequently affect its aggregation. Calderone and Lin (2001) proposed

four V. destructor invasion models based on physical interactions, chemical interactions,

both physical and chemical interaction, or due to passive mechanisms (Message and

Gonçalves 1995). Kuenen and Calderone (2000) proposed that physical factors are the

most important. Among physical factors, brood cell size has been well studied; it has been

documented that this factor can affect the invasion and reproduction rates of Varroa mites.

Higher parasite infestations were found to occur in worker cells that were individually

raised above the surrounding brood cells (De Jong and Morse 1988; De Ruitjer and Calis

1988). Piccirillo and De Jong (2003) found that when comparisons were made within the

same colony, the largest category of brood cells, which were Carniolan bee combs (mean

width of 5.3 mm), were about 38% more infested than Italian comb brood cells (mean

width 5.15 mm), which in turn were about 13% more infested than the self-built Afri-

canized combs (mean width of 4.8 mm). Message and Gonçalves (1995) found similar

results when infestation rates of V. destructor were compared between European and

Africanized honey bee combs in colonies of Africanized bees. Worker brood that develops

in large cells should receive more visits from nurse workers, increasing the probability of

the mites transferring to the cells to infest the brood. These factors could increase the

probabilities of the female mites entering into the cells, and in turn such cells would

contain a larger bee larva and consequently offer more food to the mite.

We found that brood cell width in A. mellifera colonies affected the invasion and

reproduction rate of V. destructor under natural conditions. The parasite invasion rate

increased positively and linearly with the width of worker and drone brood cells (probably

because brood developed in large cells will receive more visits from nurse workers,

increasing the probability of the mites transferring to the cells to infest the brood), until it

became constant when it reached a certain cell width. Moreover, it was found that infertile

mother mites were more common in the smaller cells. Earlier studies had reported that

larger cells promoted higher parasite reproductive success than smaller ones (Fuchs and

Langenbach 1989; Message and Gonçalves 1995; Schulz 1984), but there are no reports

that cell width can stop Varroa mite reproduction. Taylor et al. (2008) found that brood cell

width had no significant effect on mite reproduction and they concluded that factors that

are attributable to the race of bee, in combination with small brood cells, reduce the mite

infestation and production of offspring. We found no correlation between cell width and

the number of offspring of V. destructor. Nevertheless, cells with infertile mother mites

(without offspring) were significantly smaller than cells with viable and unviable offspring.

These results showed that cell width can drastically influence the invasion and the

reproduction rates of the mites. Donzé and Guerin (1994) reported that V. destructor had

several behavioral adaptations to ensure its reproduction inside brood cells, because the

free space inside the cells is continually changing during the bee’s metamorphosis. In

addition, Martin and Kryger (2002) showed that a reduced space between the bee pupa and

the cell wall in worker brood cells negatively impacts on the reproductive success of

the mite because it can not move normally inside cells. Cell width plus a stress effect
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(e.g., nutrition effect) could be the connection between the lack of mite reproduction and

the size of the cell that we found. Previous researches have reported that the nutrition

quality improves mite reproduction (Rodriguez et al., 1961; Steiner et al., 1995). It was

reported that Varroa mite reproduction can be suppressed under stress conditions due to

severe reproductive competition, which can result in egg resorption by the foundress

mother mite (Steiner et al., 1995). Also, Alberti and Hanel (1986) showed that mites that

had not laid eggs often had problems with prosperm maturation in the reproductive tract of

the female mites. Like egg resorption, problems with prosperm maturation could be due to

stress conditions. Tewarson (1983) reported that reproduction of this parasite occurs only

after intake of a number of blood meals; some bee hemolymph proteins are absorbed

without digestion. Steiner et al. (1995) demonstrated that oogenesis is faster in drone brood

cells than in worker brood cells, probably due to greater food availability for the foundress

mother mite. Based on this line of reasoning, the smaller cells could contain smaller larvae,

which would provide a smaller quantity of nutritients for the initiation of mite reproduc-

tion. Harris and Harbo (1999) suggested that mites that had not laid eggs had problems

with mating or a failure of the prosperm to mature in the reproductive tract of the female

mites. However, they were not able to distinguish between nonmating and failure of sperm

maturation.

If the cell width distributions found in this study (where bigger cells are less numerous)

are considered, there could be a trade-off between the time necessary to search for optimal

cells and the higher reproductive success obtained in such cells: Varroa females try to find

bigger cells because they do not reproduce as efficiently in the small ones (probably

because of a food stress factor); although finding big brood cells would insure better

conditions for parasite reproduction, the associated costs with searching for infrequent cells

would not be compensated by the benefits of finding such cells, making this strategy

inefficient (Optimal Foraging, Charnov 1976). This hypothesis is supported by the evi-

dence presented by Boot et al. (1994), who found that the invasion rate increases with the

number of brood cells available. Moreover, to search for bigger cells, with the higher

number of foundress mother mites inside, as we report here, could result in a reduction in

the reproductive success of Varroa female mites because of a negative density-dependent

effect (Eguaras et al. 1994; Fuchs and Langenbach 1989). These hypotheses could be

tested in future experiments.

This study is the first report that cell width can restrict the reproduction of V. destructor.
Moreover, we demonstrated that an aspect of the physical environment can modulate the

reproductive behavior of this parasite, resulting in new hypotheses on relations between

nutrition and reproductive success of the mites.
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De Jong D, De Jong PH, Gonçalves LS (1982a) Weight loss and other damage to developing worker
honeybees from infestation with Varroa jacobsoni. J Apic Res 21:165–167

De Jong D, Morse RA, Eickwort GE (1982b) Mites pests of honey bees. Annu Rev Entomol 27:229–252
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