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Abstract

The main scope of this work is to carry out a mathematical framework and its corresponding finite element (FE) discretization for
the partially saturated soil consolidation modelling in presence of an immiscible pollutant. A multiphase system with the interstitial
voids in the grain matrix filled with water (liquid phase), water vapour and dry air (gas phase) and with pollutant substances,
is assumed. The mathematical model addressed in this work was developed in the framework of mixture theory considering the
pollutant saturation–suction coupling effects. The ensuing mathematical model involves equations of momentum balance, energy
balance and mass balance of the whole multiphase system. Encouraging outcomes were achieved in several different examples.
© 2010 IMACS. Published by Elsevier B.V. All rights reserved.
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1. Introduction

Environmental geomechanics spans a wide number of engineering problems where the geomaterials mechanical
equations are usually coupled with flux and mass transport equations. This area generally deals with pollutant transport
problems through aquifers, especially when partially saturated media is involved, because, under these circumstances,
the solid phase usually undergoes large deformation and displacement due to the proper soil nature or due to the capillary
pressure effect. Another relevant aspect of the environmental geomechanics science is to design safe containers free
of toxic and/or nuclear wastes or pollutant leftovers [1]. For this reason, it is a matter of prior importance in industrial
societies.

Different authors have taken over this issue from several standpoints regarding different aspects or hypothesis. An
early view of the problem may be found in Li and Zienkiewicz [16]. In this work, the fluid transport through porous
media is simultaneously presented in one or two phases separated by an interface. No chemical reactions or components
interchange between the phases are regarded and the capillary pressure is given in series form. In Schrefler [20], a
mathematical framework assuming a multiphase porous system with voids filled with water, water vapour, dry air
and pollutant along with a finite element (FE) discretization according to the mixture theory, is presented. Here, the
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pollutants may be mixed with the fluid phase or they may not, in which case, a new phase wherein this pollutants flow
(immiscible phase) is considered. Similarly to the previous work, no chemical reaction between pollutant and the other
phases is allowed.

Sheng and Smith [23] presented a two-dimensional FE solution for various contaminants considering
advection–dispersion transport, which is based on a previous work [22]. Juncosa et al. [10] assert the basic postu-
lated for a mathematical framework for non-isothermal multiphase flux with reactive transport and the solution for this
problem is undertaken. The media constituent mass balance (water, air and solute), the energy conservation principle
and the equilibrium equations, describe a partial derivative system of equations that may be integrated using various
approaches. In Klubertanz et al. [12], the mathematical framework for the analysis of the miscible and immiscible flux
through porous media, based on continuum mechanics, was presented.

Finally, in Schrefler [20] and later on in Schrefler and Pesavento [21], relying on Hassanizadeh and Gray averaging
theories [7–9], the analysis of isothermal flux transport was further extended to non-isothermal flux, bearing in mind the
thermodynamics properties of the interface between the different porous media constituents [15]. In fact, the interface
surface tension holds the immiscibility between porous fluids. A null value of the surface tension implies in a null
value of the capillary pressure as well, bringing on a constant fluid pressure.

In the present work, the analysis of immiscible pollutant transport through partially saturated soils, coupled with
the mechanical behaviour, is undertaken. A mathematical framework assuming a multiphase porous media, where the
interstitial voids of the solid matrix are filled with water, dry air and pollutant, is addressed and the solution of the
partial difference equation system is solved using the FE method. The numerical model involves momentum, energy
and mass balance equations. Some numerical examples are also included in order to validate the model.

2. Representative elemental volume

In classical mechanics, a continuum distribution of particles (fluids or solids), for which the balance laws and
constitutive relationships are valid, is taken for granted. The phenomena to be studied here, occurs in domains occupied
by different phases. There is an omnipresent phase, i.e., the solid skeleton, whose voids are taken to be filled with
fluid (gas or liquid) separated by a membrane called interface. The difference between constituents and phases should
be emphasised here: the phases are chemically homogeneous portions of the multiphase system, which mechanical
behaviour is assumed to be uniform. On the other hand, the constituents are the individual parts that yield the phases
but acting each one independently; the gaseous phase may be constituted by a gas mix, with several constituents.

There are two possible levels to describe the multiphase media intergranular configuration: the macroscopic and
the microscopic level. At the microscopic level, the real porous media structure is regarded (see Fig. 1). The governing
equations are established considering each constituent separately, giving rise to a complicated solution. Furthermore,
the microscopic properties are usually awkward to assess. Considering the aforementioned reasons and adding that a
microscopic description is far beyond the civil engineering goals, for the present work, a macroscopic description is
adopted. One noteworthy feature of the macroscopic description is the fact that at each material point all the phases
are assumed to be simultaneously present. In a volume fraction, the following elements may be found:

Fig. 1. Multiphase medium: representative elemental volume at microscopic level.
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• Solid phase: ηs = 1 − n, being n = (dvw + dvg + dvπ)/dv the porosity and dvi the differential volume of the i
constituent.

• Liquid phase: ηw = nSw, being Sw = dvw/(dvw + dvg + dvπ) the water saturation degree.
• Gaseous phase: ηg = nSg, being Sg = dvg/(dvw + dvg + dvπ) the air saturation degree.
• Pollutant phase: ηπ = nSπ, being Sπ = dvπ/(dvw + dvg + dvπ) the pollutant saturation degree.

The aforesaid equations yields:

Sw + Sg + Sπ = 1 (1)

and the multiphase media density is given by

ρ = ρs + ρw + ρg + ρπ = (1 − n)ρs + nSwρ
w + nSgρ

g + nSπρ
π (2)

Within this condition, and provided that the medium is constituted by different phases, any of them may be described
relatively to any other previously defined, for example the solid phase. Thereby, relative velocities of the liquid, gaseous
and pollutant may be addressed as follows:

vws = vw − vs, vgs = vg − vs, vπs = vπ − vs (3)

3. Governing equations

3.1. Microscopic balance equations

The classical continuum mechanic balance equations will be taken into account in order to obtain the microscopic
behaviour of an individual phase. For any thermodynamic attribute ψ, the general conservation equation for a single
phase may be written as follows:

∂ρψ

∂t
+ div(ρψṙ) − div i − ρ b = ρG (4)

where ṙ is the phase local velocity in a fixed spatial point, ρ is the density, b is the external supply, i is the associated
flux vector and G is the internal net production of ψ.

To set up balance equations for a certain thermodynamic attribute, ψ and the state variables i, b and G must been
alternatively modified. For the specific case of the mass balance equation they are given by:

ψ = 1; i = 0; b = 0; G = 0 (5)

Introducing these values in Eq. (4), the microscopic mass balance equation is given by:

∂ρ

∂t
+ div(ρṙ) = 0 (6)

3.2. Macroscopic balance equations

The macroscopic balance equations are obtained by the systematic application of the pioneer work of Hassanizadeh
and Gray [9] to the microscopic balance equation, Eq. (4), in which for each constituent, the thermodynamic variable
is substituted by the appropriate microscopic property [15]. The pollutant behaviour may be depicted in two different
forms, depending on its mixing capability with the fluid or with the gaseous phase. In the most general situation, i.e.,
with immiscible pollutants, the behaviour may be described as another fluid phase, whereas with a soluble pollutant,
three possible transport processes must be considered: advection, diffusion and dispersion.

3.2.1. Solid phase
From Eq. (6) and recalling the material time derivative of any differentiable function fα, given in its spatial description

and refering to a moving particle of the α phase,

∂υfα

∂t
= ∂αfα

∂t
+ gradfα · vυα (7)
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the mass balance expression for the solid phase is obtained:

∂sρs

∂t
+ ρs div vs = 0 (8)

where vs is the solid skeleton velocity and

div(ρsv
s) = ρs div vs + grad ρs · vs (9)

Taking into account Eqs. (2) and (9), it is obtained:

(1 − n)

ρs

∂sρs

∂t
− ∂sn

∂t
+ (1 − n) div vs = 0 (10)

3.2.2. Liquid phase
The microscopic mass balance equation for the liquid phase is tantamount to the corresponding one for the solid

phase being G /= 0 due to the possibility of transforming water into vapour and conversely.
Then, taking into account Eq. (6), with ρG = −ṁ in Eq. (5), the following expression is obtained:

∂wρw

∂t
+ ρw div vw = −ṁ (11)

where vw is the liquid phase mass velocity and −ṁ is the amount of water per unit volume transformed into vapour.
Taking into account Eq. (2), it leads us to:

∂(nSwρw)

∂t
+ nSwρ

w div vw = −ṁ (12)

Working with the above expression, after some algebra, considering Eqs. (3), (7) and (9) and adding the result to Eq.
(10), the following expression is arrived:

(1 − n)

ρs

∂sρs

∂t
+ div vs + n

ρw

∂sρw

∂t
+ n

Sw

∂sSw

∂t
+ 1

Swρw
div(nSwρ

w · vws) = − ṁ

Swρw
(13)

3.2.3. Gaseous phase
The gaseous phase is considered as composed by two constituents: dry air (ga) and water vapour (gw). Since both

elements are miscible and their physical behaviour are similar, they may be treated as a single phase occupying the same
differential volume, nSg. Regardless of the internal mass production due to self-chemical reactions, the microscopic
balance equation for this phase is once more given by Eq. (6).

∂

∂t
(nSgρ

ga) + div(nSgρ
gavga) = 0 (14)

Likewise, making use of the gw superscript, the vapour balance equation is obtained:

∂

∂t
(nSgρ

gw) + div(nSgρ
gwvgw) = ṁ (15)

Clearly, given expressions (14) and (15), the mass balance equation for the dry air and water vapour mixture will be:

∂

∂t
(nSgρ

g) + div(nSgρ
gvg) = ṁ (16)

with ρg = ρga + ρgw and vg = 1/ρg(ρgavga + ρgwvgw).
Working with Eq. (16), a similar expression to Eq. (12) is obtained:

∂g(nSgρg)

∂t
+ nSgρ

g div vg = ṁ (17)

Once more, after some algebraic manipulation of the above expression, taking into account Eqs. (3), (7) and (9) and
adding the remainder to Eq. (10), the subsequent relationship is arrived:

(1 − n)

ρs

∂sρs

∂t
+ div vs + n

Sg

∂sSg

∂t
+ n

ρg

∂sρg

∂t
+ 1

Sgρg
div(nSgρ

g · vgs) = ṁ

Sgρg
(18)
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3.2.4. Immiscible pollutant
When the pollutant existing in the porous media has no miscible property with any of the non-solids phases, it is

clearly taking part of a new phase, π. One way to handle with this phenomenon is to consider the pollutant behaviour
similar to the liquid phase [20], whereby it is possible to yield the conservation equations for the pollutant as it was
done for the liquid phase. Therefore, the mass balance equation for immiscible pollutants will be likewise Eq. (13),
but without the internal production term (source), i.e., ṁ = 0.

(1 − n)

ρs

∂sρs

∂t
+ div vs + n

ρπ

∂sρπ

∂t
+ n

Sπ

∂sSπ

∂t
+ 1

Sπρπ
div(nSπρ

π · vπs) = 0 (19)

From now on, if no extra explanation is given, all time derivatives will be following the solid phase.

3.3. Constitutive and state relationships

To provide a complete description of the mechanical behaviour, constitutive equations are required. The balance
equations developed in the previous section take into account elaborate constitutive theories, especially when these
equations are valid at the interfaces [9].

3.3.1. Fluid phase stress tensor
By the application of the second law of thermodynamics to the porous media [8], the stress tensor for the fluid phase

may be written as

tγ = −ηγpγI (20)

being I the unit tensor, pγ is pressure of the phase γ and ηγ is the phase volume fraction of the same phase. It may be
clearly noticed that no deviatoric stresses are present in the fluid phase stress tensor.

3.3.2. Solid phase stress tensor
As in the previous section, by means of the use of the second law of thermodynamics for the porous media [9], the

stress tensor for the solid phase is given by

ts = (1 − n)(tse − Ips) (21)

while the solid phase pressure and the effective stress tensor are, respectively, expressed by:

ps = Swp
w + Sgp

g + Sπp
π (22)

and

σ′ = (1 − n)tse (23)

Introducing Eq. (22) in Eq. (21), the following expression for the solid phase stress tensor is obtained:

ts = (1 − n)[tse − I(Swp
w + Sgp

g + Sπp
π)] (24)

The volume fraction (1 − n) points out that ts is the stress exerted over the solid phase. In order to obtain the total stress,
σ, the expressions derived for the liquid and the gaseous phases in Eq. (24) must be added to Eq. (20), giving:

σ = ts + tw + tg + tπ = (1 − n)[tse − I(Swp
w + Sgp

g + Sπp
π)] − nSwp

wI − nSgp
gI − nSπp

πI

= (1 − n)tse − I(Swp
w + Sgp

g + Sπp
π) (25)

Eq. (25) may be arranged in order to obtain the most well known form in soil mechanics [13]:

σ = σ′ + I(pwSw + pgSg + pπSπ) (26)
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3.3.3. Solid mass density
Considering a compressible solid mass, an expression for the time derivative of the solid mass density may be

obtained from the mass conservation differential equation

∂s(ρsV s)

∂t
= 0 (27)

Assuming that the solid mass density is function of ps, Eq. (22), of the temperature and of the first effective stress
tensor invariant, it is obatined:

1

ρs

∂sρs

∂t
= − 1

Vs

∂sVs

∂t
= 1

Ks

∂sps

∂t
− βs

∂sT

∂t
− 1

3(n− 1)Ks

∂s(trσ′)
∂t

(28)

where the following expressions were regarded:

1

ρs

∂sρs

∂ps
= 1

Ks
(29)

1

ρs

∂sρs

∂T
= −βs (30)

1

ρs

∂sρs

∂(trσ′)
= − 1

3(n− 1)Ks
(31)

being, Ks the grain compressibility coefficient, βs the grain thermal expansion and trσ′ the first invariant of the stress
tensor. Having in mind the constitutive relationship for the first invariant of the effective stress tensor, the following
expression is valid:

∂strσ′

∂t
= 3KT

(
divvs + 1

Ks

∂sps

∂t
− βs

∂sT

∂t

)
(32)

where, KT, is the skeleton bulk modulus. Considering the Biot constant definition [2], given by:

1 − α = KT

Ks
(33)

and expressions (32) and (28), it is obtained:

1

ρs

∂sρs

∂t
= 1

1 − n

[
(α− n)

1

Ks

∂sps

∂t
− βs(α− n)

∂sT

∂t
− (1 − α) div vs

]
(34)

The incompressible grain condition, i.e., 1 / Ks = 0 and α= 1, do not indicate whatsoever a rigid or incompressible
skeleton, since under load application, an interstitial voids re-arrangements is undertaken.

3.3.4. State equation for the liquid phase
The water solid state equation was developed by Murty et al. [18] and it is given by:

ρw = ρwoexp[−βwT + Cw(pw − pwo)] (35)

where the superscript o stands for the initial state, βw is the thermal expansion coefficient andCw is the compressibility
coefficient. Taking the series expansion of Eq. (20) and disregarding the higher order terms, it is obtained

ρw = ρwo[1 − βwT + Cw(pw − pwo)] (36)

being the time derivative given by:

1

ρwo

∂wρw

∂t
= 1

Kw

∂wpw

∂t
− βw

∂wT

∂t
(37)

where Kw = 1/Cw is the water bulk modulus. Eq. (37) may be also obtained from the mass balance differential
equation [15].
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3.3.5. State equation for the gaseous phase
The gaseous phase may be considered as a mixture of perfect ideal gases, dry air and water vapour. Therefore, it

is possible to apply the ideal gas laws by relating the constituent partial pressure (pga or pgw), the constituent mass
concentration in the gaseous phase (ρga or ρgw) and the absolute temperature T. The perfect gas state equations applied
to dry air (ga), to water vapour (qw) and to the air (g), are [5]:

pga = ρgaTR

Ma

(38)

pgw = ρgwTR

Mw

(39)

ρg = ρga + ρgw (40)

pg = pga + pgw (41)

Mg =
(
ρgw

ρg

1

Mw

+ ρga

ρg

1

Ma

)−1

(42)

where Mi is the molar mass of the i constituent and R is the universal gas constant.

3.3.6. Pollutant saturation–suction coupling effects
Earlier FE models for non-saturated soils [11] did not consider the saturation degree variation with time, leading to

symmetric equations systems. Therefore, this situation motivate many authors [6] to study the behaviour of partially
saturated soils, and a relationship between the water saturation degree, Sw, and the suction,pgw = pg − pw,was settled
down. This relationship is referred as the soil–water characteristic curve.

The mathematical models that involve the saturation–suction coupling effects and, consequently, based on these
curves [15,17], lead to accurate soil deformation prediction when they are checked against experimental results.
However, the symmetry presented in the former case is lost, yielding to additional costs in terms of processing time
and computational memory.

Di Rado et al. [4] proposed a non-saturated soil model leading to a flexible system of equation that may be treated
alternatively as symmetrical or non-symmetrical, according to the relevance of the saturation–suction coupling effects,
which relevance is assessed based on saturation values and the slope of the saturation–suction curve.

Due to the existence of immiscible substances in the soil, the three-phase system considered by Di Rado et al.
[4] becomes a multiphase system and thereby, a new suction relationship arises, namely pgπ = pg − pπ, being pπ the
pollutant pore pressure.

The new phases behave similar to the liquid phase in many aspects, even though they are not equal. Among others
issues, a different definition for the saturation–suction relationship Sπ − pgπ is demanded. Hence, for this work, the
following expression was adopted:

Sπ = SB − (SB −MB)tanh(LBpgπ) (43)

where SB, MB and LB are shape parameters. It allows to model different configurations for the saturation–suction
curve likewise the soil–water characteristic curve, proposed by Fredlund and Xing [6] (see Fig. 2), with an additional
important property: expression (43) can be easily inverted, and no further algorithm for the solution of the root function
when the suction value is entailed for a certain saturation degree, is required.

4. General field equations

Macroscopic balance laws are currently transformed by the introduction of the constitutive relationships previously
defined in Section 3.3.
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Fig. 2. Curve Sπ − pgπ: possible configurations with respect to shape parameters SB, MB and LB; (a) varying LB, being SB and MB constant; (b)
varying MB, being SB and LB constant; (c) varying SB, being LB and MB constant.

4.1. Solid phase

The solid phase behaviour may be conveniently depicted using the lineal momentum balance equation, which is
obtained from Eq. (4) by appropriately setting the state variables i, b and G [15].

LTσ + ρg = 0 (44)

where g is the gravity acceleration and the differential operator is given by:

LT =

∣∣∣∣∣∣∣∣∣

∂/∂x 0 0 ∂/∂y 0 ∂/∂z

0 ∂/∂y 0 ∂/∂x ∂/∂z 0

0 0 ∂/∂z 0 ∂/∂y ∂/∂x

∣∣∣∣∣∣∣∣∣
(45)
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4.2. Liquid phase

Taking the derivative of the saturation degree of the different phases given in Eq. (1) with respect to time and clearing
∂ Sg /∂t, it is obtained:

∂Sg

∂t
= −∂Sw

∂t
− ∂Sπ

∂t
(46)

Introducing the liquid phase state, Eq. (37), the solid phase pressure definition, Eq. (22), and the solid phase density, Eq.
(34), in the macroscopic balance of the liquid phase, Eq. (13), and constraining the problem to an isothermal condition,
the following expression is obtained:

[
S2
w

α− n

Ks
+ nSw

Kw

]
∂pw

∂t
+

[
α− n

Ks
SwSg

]
∂pg

∂t
+

[
α− n

Ks
SwSπ

]
∂pπ

∂t

+α SwmTL
∂u

∂t
+

[
α− n

Ks
Swp

w − α− n

Ks
Swp

g + n

]
∂Sw

∂t
+ Sw

α− n

Ks

[
pπ − pg

] ∂Sπ
∂t

+ 1

ρw
∇T

[
kkrw

μw
(−∇pw + ρwg)

]
= 0 (47)

Terms like ∂Sw/∂t and ∂ Sπ /∂t may be written as follows

n
∂Sw

∂t
= n

∂Sw

∂pgw

∂pgw

∂t
= Cw

∂pgw

∂t
= Cw

(
∂pg

∂t
− ∂pw

∂t

)

n
∂Sπ

∂t
= n

∂Sπ

∂pgπ

∂pgπ

∂t
= Cπ

∂pgπ

∂t
= Cπ

(
∂pg

∂t
− ∂pπ

∂t

) (48)

where n∂Sw/∂pgw = Cw is the derivative of the water saturation with respect to the suction, which may be obtained
with the aid of the soil characteristic curve (Sw − pgw) [4,6]. Since the π phase behaves like a fluid, an equivalent
analysis may be achieved by the mere implementation of a new Sπ − pgπ curve which allows the assessment of the
derivative n ∂ Sπ / ∂ pgπ = Cπ as it was done for the water phase [19]. One possibility is the adoption of a hyperbolic
function [3] for the above mentioned Sπ − pgπ curve.

Taking into account Eqs. (47) and (48), the following expression is obtained:

α22
∂pw

∂t
+ α23

∂pg

∂t
+ α24

∂pπ

∂t
+ α21L

∂u

∂t
+ 1

ρw
∇T

[
kkrw

μw
(−∇pw + ρwg)

]
= 0 (49)

with

α21 = α Swm
T

α22 = α− n

Ks
Sw

(
Sw − pw

Cw

n
+ pg

Cw

n

)
+ nSw

Kw
− Cw

α23 = α− n

Ks
Sw

(
Sg + pw

Cw

n
− pg

Cw

n
+ (pπ − pg)

Cπ

n

)
+ Cw

α24 = α− n

Ks
Sw

(
Sπ − (pπ − pg)

Cπ

n

)
.

(50)

4.3. Gaseous phase

From the gaseous phase balance equation for isothermal processes, Eq. (18), and regarding the state equation for
the gaseous phase, Eq. (42), the relative velocity definition, Eq. (3), the solid phase density, Eq. (34) and Eqs. (46) and
(48), the following mathematical statement is obtained:
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[
α− n

Ks
Sg

(
Sw − Cw

n
(pw − pg)

)
+ Cw

]
∂pw

∂t

+
[
α− n

Ks
Sg

(
Sg + Cw

n
(pw − pg) + Cπ

n
(pπ − pg)

)
− Cw − Cπ + nSgMg

ρgTR

]
∂pg

∂t

+
[
α− n

Ks
Sg

(
Sπ − Cπ

n
(pπ − pg)

)
+ Cπ

]
∂pπ

∂t
+αSg mTL

∂u

∂t
+ 1

ρg
∇T

[
kkrg

μg
(−∇pg + ρgg)

]
= 0 (51)

which may be written similarly to Eq. (49) as follows:

α32
∂pw

∂t
+ α33

∂pg

∂t
+ α34

∂pπ

∂t
+ α31L

∂u

∂t
+ 1

ρg
∇T

[
kkrg

μg
(−∇pg + ρgg)

]
= 0 (52)

with

α31 = αSg m
T

α32 = α− n

Ks
Sg

(
Sw + Cw

n
(pg − pw)

)
+ Cw

α33 = α− n

Ks
Sg

(
Sg − Cw

n
(pg − pw) − Cπ

n
(pg − pπ)

)
− Cw − Cπ + nSgMg

ρgTR

α34 = α− n

Ks
Sg

(
Sπ + Cπ

n
(pg − pπ)

)
+ Cπ

(53)

4.4. Immiscible pollutant phase

Whenever the pollutant is unable to mix with the liquid phase and accordingly to what was settled herein, it is
clearly forming a new phase, π. The mathematical framework may be stated likewise the liquid phase [20]. From the
immiscible pollutant mass balance equation for isothermal processes, Eq. (19), and regarding expressions (34), (37),
(46) and (48), it is obtained:

[
α− n

Ks
Sπ

[
Sw − (pw − pg)

Cw

n

]]
∂pw

∂t
+

[
α− n

Ks
Sπ

[
Sg + (pw − pg)

Cw

n
+ (pπ − pg)

Cπ

n

]
+ Cπ

]
∂pg

∂t

+
[
α− n

Ks
Sπ

[
Sπ − (pπ − pg)

Cπ

n

]
+ nSπ

Kπ
− Cπ

]
∂pπ

∂t
+ α Sπm

TL
∂u

∂t
+ 1

ρπ
∇T

[
kkrπ

μπ
(−∇pπ + ρπg)

]
= 0

(54)

which may be expressed likewise Eq. (49) as follows:

α42
∂pw

∂t
+ α43

∂pg

∂t
+ α44

∂pπ

∂t
+ α41L

∂u

∂t
+ 1

ρπ
∇T

[
kkrπ

μπ
(−∇pπ + ρπg)

]
= 0 (55)

with

α41 = α Sπm
T

α42 = α− n

Ks
Sπ

[
Sw − (pw − pg)

Cw

n

]

α43 = α− n

Ks
Sπ

[
Sg + (pw − pg)

Cw

n
+ (

pπ − pg
) Cπ
n

]
+ Cπ

α44 = α− n

Ks
Sπ

[
Sπ − (pπ − pg)

Cπ

n

]
+ nSπ

Kπ
− Cπ

(56)
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5. Discrete mathematical model

By the application of Galerkin method to the differential system of equations described by Eqs. (44), (49), (52) and
(55), and discretizing using the FE method, the following ordinary differential equations system (ODES) is furnished:

KE

∂ū

∂t
+ Csw

∂p̄w

∂t
+ Csg

∂p̄g

∂t
+ Csπ

∂p̄π

∂t
= ∂f u

∂t
(57)

Pww

∂p̄w

∂t
+ Cwg

∂p̄g

∂t
+ Cwπ

∂p̄π

∂t
+ Cws

∂ū

∂t
+ Hwwp̄

w = fw (58)

Cgw
∂p̄w

∂t
+ Pgg

∂p̄g

∂t
+ Cgπ

∂p̄π

∂t
+ Cgs

∂ū

∂t
+ Hggp̄

g = f g (59)

Cπw
∂p̄w

∂t
+ Cπg

∂p̄g

∂t
+ Pππ

∂p̄π

∂t
+ Cπs

∂ū

∂t
+ Hππp̄

π = fπ (60)

Eqs. (57)–(60) may be written using a matrix description, giving the following expression:
⎡
⎢⎢⎢⎢⎢⎢⎣

KE Csw Csg Csπ

Cws Pww Cwg Cwπ

Cgs Cgw Pgg Cgπ

Cπs Cπw Cπg Pππ

⎤
⎥⎥⎥⎥⎥⎥⎦

+

⎡
⎢⎢⎢⎢⎢⎢⎣

˙̄u

˙̄pw

˙̄pg

˙̄pπ

⎤
⎥⎥⎥⎥⎥⎥⎦

+

⎡
⎢⎢⎢⎢⎢⎢⎣

0 0 0 0

0 Hww 0 0

0 0 Hgg 0

0 0 0 Hππ

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎣

ū

p̄w

p̄g

p̄π

⎤
⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎣

ḟ u

fw

f g

fπ

⎤
⎥⎥⎥⎥⎥⎥⎦

(61)

All matrices and vectors are presented in Appendix A.

6. Numerical examples

6.1. Unidimensional soil column problem

In first place, an example for the validation of the mathematical model addresed in the present work is suggested.
The outcomes obtained in this work from the FE simulation were checked against experimental results presented in
Lewis et al. [14] as well as against the numerical results for the situation without pollutant presence presented in Di
Rado et al. [4].

The soil column was assumed to be unsaturated with initial water saturation Sw equal to 0.52. The initial pore water
pressure was taken equal to −280 kpa and the boundary pore water pressure was instantaneously changed to −420 kpa
at the surface. Furthermore, the constitutive behavior of the solid phase is assumed elastic.

The FE mesh and boundary conditions are shown in Fig. 3. Biquadratic quadrilateral isoparametric elements (with
8 nodes) were adopted for the FE mesh. Moreover, the material parameters are: wide B = 0.10 m; height H = 1.00 m;
Young’s modulus E = 1.73 × 105 kpa; Poisson’s ratio μ= 0.3; initial void ratio e0 = 0.4; vertical permeability coeffi-
cient ky = 0.11456 m/day; water and pollutant compressibility coefficient Kf = Kπ = 4.3 × 109 kpa; grain compressibility
Ks = 1.4 × 106 kpa.

Fig. 4 shows the vertical displacements vs. time for a point located at half the height of the soil column (point A
in Fig. 3). The cross symbols stands for a previous work presented by Lewis et al. [14], the dotted line and the solid
line were used for the results addressed in Di Rado [4] and the results obtained here with null pollutant saturation,
respectively. It may be straightforward noticed that the three mentioned plots agree with each other, allowing us to
validate the mathematical simulation carried out in the present work. Furthermore, the vertical displacements vs. time
for different pollutant saturation values were included as well.

6.2. One-dimensional multiphase soil consolidation problem

The following example consists in a non-saturated soil column with liquid and gaseous substances as well as another
immiscible substance gathered in the solid skeleton voids. The sample may be treated as an one-dimensional model.
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Fig. 3. FEM mesh and boundary conditions.

The physical and geometric data of the problem are given as follows: wide B = 0.10 m; height H = 1.00 m; load
q = 10.0 kpa; Young’s modulus E = 1000.0 kpa; Poisson’s ratio μ= 0.3; initial void ratio e0 = 2.0; vertical permeabil-
ity coefficient ky = 8.64 × 10−3 m/day; water and pollutant compressibility coefficient Kf = Kπ = 1.0 × 106 kpa; initial
water saturation degree Sw = 0.50; initial pollutant saturation degree Sπ = 0.40. The pore pressures on the top sur-

Fig. 4. Vertical displacements vs. time at point A, comparison against experimental data.
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Fig. 5. One-dimensional soil column. Numerical results at point B of Fig. 3: (a) displacement vs. time; (b) pollutant saturation degree vs. time; (c)
Water pore pressure vs. TIME; (d) pollutant pore pressure vs. time.

face are set to zero (atmospheric pressure), whereas the boundary conditions for displacements are indicated in
Fig. 3.

In Fig. 5(a)–(d), plots standing for displacements vs. time (settlement evolution), the pollutant saturation vs. time
as well as the pore water and pore pollutant values vs. time at point B of Fig. 3, were respectively presented.

A further discussion on the results shown in Fig. 5 allows pointing out that the pore pressure evolution is indeed in
agreement with the solid phase deformation as well as with the saturation degree decrease due to the reduction of the
interstitial voids with the load process evolution.

6.3. Strip footing

The following example models the two-dimensional consolidation problem in partially saturated soils with immis-
cible pollutant presence. It consists on a strip footing under uniform load, q = 10 kN/m, width H = 2 m and Depth
B = 4 m.

Soil-type characteristics match those typically found in the Argentine Northeast region: Young’s modulus
E = 1500.0 kpa, Poisson’s ratioμ= 0.3, specific weight γ = 19.61 kN/m, initial void ratio e0 = 2.0, grains compressibility
Ks = 1.0 × 106 kpa and permeability coefficient k = 8.64 × 10−4 m/day.

Boundary condition are summarized in Table 1; furthermore, the water and the pollutant saturation degree at the
beginning of the load process are Sw = 0.70 and Sπ = 0.20, respectively.

The FE mesh has 210 bilinear isoparametric quadrilateral elements. In Fig. 6, the displacement as well as the distorted
FE mesh, is presented. Finally, Fig. 7 shows the water pore pressure distribution 7 (seven) h after load application on
the left and 30 (thirty) h after load application on the right, respectively. Likewise, in Fig. 8, the pollutant pore pressure
distribution at the same time steps is presented.
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Table 1
Boundary conditions.

Boundary X-Displa. Y-Displa. Water-Pres. Air-Pres. Pollutant-Pres.

A–B Yes No No No No
B–C No Yes No No No
C–D Yes No No No No
D–E No No Yes Yes Yes
F–A No No Yes Yes Yes

Fig. 6. FE mesh and deformed configuration.

Fig. 7. Water pore pressure distribution at 7 h (on the left) and 30 h (on the right).

Fig. 8. Pollutant pore pressure distribution at 7 h (on the left) and 30 h (on the right).
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7. Concluding remarks

A coupled mathematical framework for the solution of pore pressures and displacements of a non-saturated porous
media with three fluid phases in isothermal conditions was presented. Furthermore, the solution of the aforementioned
problem using the FE method was carried out. The previous model presented by the authors was widened including the
pollutant phase as well as a specific suction–saturation relationship for the added constituent. Encouraging outcomes
were obtained based on the general compatibility between the different variables values. Specifically, Fig. 4 shows
that as long as the pollutant saturation decreases the vertical displacements declines as well. This situation arises due
to the physical features that pollutants render to the whole system and due to a declination in the air saturation. At
the limit situation, namely, when the saturation value tends to zero, the obtained displacements match perfectly the
experimental results.

Appendix A.

In this appendix de FE matrices and vectors for the discrete mathematical model, corresponding to the ODES of
Eq. (61) are presented

KE =
∫
�

BTDEB d�

Csw =
∫
�

BT α12Np d� Cws =
∫
�

NT
u α21B d�

Csg =
∫
�

BT α13Np d� Cgs =
∫
�

NT
u α31B d�

Csπ =
∫
�

BT α14Np d� Cπs =
∫
�

NT
u α41B d�

Cwg =
∫
�

NT
pα23Np d� Cgw =

∫
�

NT
pα32Np d�

Cwπ =
∫
�

NT
pα24Np d� Cπw =

∫
�

NT
pα42Np d�

Cgπ =
∫
�

NT
pα34Np d� Cπg =

∫
�

NT
pα43Np d�

Pww =
∫
�

NT
pα22Np d� Pgg =

∫
�

NT
pα33Np d�

Pππ =
∫
�

NT
pα44Np d�

(A.1)

Hww = 1

Swρw

∫
�

(∇Np)T
kkrw

μw
∇Np d�

Hgg = 1

Sgρg

∫
�

(∇Np)T
kkrg

μg
∇Np d�

Hππ = 1

Sπρπ

∫
�

(∇Np)T
kkrπ

μπ
∇Np d�

(A.2)
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f u =
∫
�

NT
u ((1 − n)ρs + nSwρ

w + nSgρ
g + nSπρ

π)g d�+
∫
�
q
u

NT
u t̄ d�qu

fw = 1

Swρw

∫
�

(∇Np)T
kkrw

μw
ρwg d�−

∫
�
q
w

NT
p

qw

ρw
d�

f g = 1

Sgρg

∫
�

(∇Np)T
kkrg

μg
ρgg d�−

∫
�
q
g

NT
p

qg

ρg
d�

fπ = 1

Sπρπ

∫
�

(∇Np)T
kkrπ

μπ
ρπg d�−

∫
�
q
π

NT
p

qπ

ρπ
d�

(A.3)

where Nu is the vector containing the shape functions for displacement components, Np is the vector containing the
shape functions for pressure of the different phases, B = LNu is the matrix relating strain and displacement components,
with L given by Eq. (45).
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