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Among the huge number of membrane ATPases, those

of the P-type (so termed because they undergo auto-

phosphorylation during the ATP-hydrolysis cycle) have

been extensively studied. Subunit composition, poly-

peptide sequence, spatial organization, molecular

mechanism of enzyme activity and coding genes have

been elucidated in detail for the (Na+,K+)-, H+- and

Ca2+-ATPases. Energy generated by the ATP-hydroly-

sing activity of these enzymes is used in part to trans-

port ions in to and out of cells. Regulation of the

ATPase activity of these ‘ion pumps’ has been inten-

sively studied because of their physiological impor-

tance. Regulatory mechanisms at the transcriptional

level have been described for the P-type ATPases, and

fast regulatory mechanisms at the membrane level

seem to occur as well. One of these mechanisms

involves interaction of the P-type ATPase with acety-

lated tubulin, apparently in the polymerized state.

Tubulin, the main component of microtubules, is a

heterodimer comprised of a and b subunits. Multiple

forms of a and b subunits have been identified as

products of different genes [1,2], and as results of post-

translational modifications including phosphorylation,

tyrosination ⁄detyrosination, acetylation, polyglycyla-

tion, polyglutamylation, and palmitoylation [3]. Micro-

tubules are localized in cytoplasm, and are essential

for cell structure and division. In proliferating cells,

they form the mitotic spindle or, during interphase, a
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The ATP-hydrolysing enzymes (Na+,K+)-, H+- and Ca2+-ATPase are

integral membrane proteins that play important roles in the exchange of

ions and nutrients between the exterior and interior of cells, and are

involved in signal transduction pathways. Activity of these ATPases is reg-

ulated by several specific effectors. Here, we review the regulation of these

P-type ATPases by a common effector, acetylated tubulin, which interacts

with them and inhibits their enzyme activity. The presence of an acetyl

group on Lys40 of a-tubulin is a requirement for the interaction. Stimula-

tion of enzyme activity by different effectors involves the dissociation of

tubulin ⁄ATPase complexes. In cultured cells, acetylated tubulin associated

with ATPase appears to be a constituent of microtubules. Stabilization of

microtubules by taxol blocks association ⁄dissociation of the complex.

Membrane ATPases may function as anchorage sites for microtubules.

Abbreviations

HDAC6, histone deacetylase 6; PMCA, plasma membrane calcium pump.
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typical radial array. In differentiated cells, microtu-

bules adopt diverse, cell-specific arrays. The functions

of microtubules have been intensively studied, with

emphasis on chromosome segregation and intracellular

transport. Increasing evidence indicates that micro-

tubules are also involved in cell polarity and in signal

transduction processes. All microtubule functions are

based on a delicate equilibrium between polymerized

and nonpolymerized states. Although the integrity of

microtubules is essential for their proper functioning,

ab-tubulin dimer in the nonassembled state can partici-

pate in other cell functions by interacting with differ-

ent proteins. A tubulin ‘pool’ is present in membranes,

and several integral membrane proteins, in addition to

cytoplasmic proteins, have been reported to interact

with assembled or nonassembled tubulin. Here, we

review results indicating that the acetylated form of

tubulin interacts with plasma membrane cation ATPases

and regulates their enzymatic activities.

Membrane tubulin

The presence of tubulin in isolated membranes from

various types of cells and tissues has been known since

1970 [4–10]. The facts that soluble tubulin can associ-

ate with isolated membranes [11,12], and that apparent

tubulin content in membrane increases with the time

spent for its isolation [13], made it difficult to rule out

the possibility that membrane-associated tubulin is an

in vitro artefact. However, more recent studies, using

various approaches, demonstrate that tubulin binds to

integral membrane proteins as the result of processes

involved in normal cell functioning [14–20]. It is prob-

able that other pools of tubulin are also linked to

membranes through different mechanisms.

Association of tubulin with the sodium
pump

Types of tubulin which were originally considered as

integral membrane components are now viewed as

peripheral proteins that remain associated with the

membrane through interaction with integral proteins.

When brain membranes are extracted at 4 �C with a

solution containing 0.5–1% Triton X-114, and the

preparation is partitioned (by increasing the tempera-

ture to 37 �C), part of total membrane tubulin appears

in the detergent phase [21,22]. The hydrophobic behav-

iour of tubulin is due to its association with an integral

membrane component that was identified as the a sub-

unit of Na+,K+-ATPase [23]. When brain membranes

are treated with 0.1 m Na2CO3 (pH 11), the associated

tubulin molecule is released from membranes, and par-

titions into the aqueous phase rather than the deter-

gent-rich phase [22]. Because this tubulin can be

released without disrupting the lipidic bilayer [22], it

was considered to be a peripheral rather than integral

membrane protein [24–26].

The interaction of tubulin with ATPase also occurs

in vitro; isolated membranes showed increased tubu-

lin ⁄ATPase complex content when incubated in the

presence of cytosolic tubulin [27]. The nature of the

forces that maintain the association of tubulin with

ATPase is unclear. However, it seems unlikely that

ionic bonds are involved, because the interaction of

tubulin with membranes is not suppressed by treat-

ment with 2 m NaCl [21]. The existence of a complex

containing acetylated tubulin and Na+,K+-ATPase is

supported on three observations: (a) Triton X-114

partition property of tubulin and Na+,K+-ATPase, as

summarized above; (b) both proteins precipitate when

detergent-solubilized membrane is incubated with

Sepharose-linked anti-tubulin IgG [28]; and (c) ATPase

contained in a detergent-solubilized membrane prepa-

ration was retained on a tubulin-linked Sepharose col-

umn [27]. The demonstration of a complex containing

Na+,K+-ATPase and acetylated tubulin does not rule

out the possibility that the complex contains additional

components. For simplicity, the term ‘tubulin ⁄
Na+,K+-ATPase complex’ has been used in most

studies.

Despite the lack of conclusive evidence, several

observations suggest that tubulin interacts directly with

ATPase. Commercial, purified Na+,K+-ATPase asso-

ciates with microtubules in vitro [23]. The simplest

explanation for the observed inhibition of Na,K-AT-

Pase (as well as H+- and Ca2+-ATPase; see below)

activity by purified tubulin is the association of the

two molecules. Regardless of the type of ATPase, this

observation suggests involvement of the catalytic sub-

unit in the interaction with acetylated tubulin.

SDS ⁄PAGE analysis (Coomassie Brilliant Blue stain-

ing) of membrane components that associate with

microtubules reconstituted from purified tubulin

showed only one prominent protein band, which was

identified as Na+,K+-ATPase [23]. If a third (or more)

protein was acting as an intermediate, it should appear

in the gel (considering 1 : 1 : 1 stoichiometry). We are

currently producing recombinant polypeptides corre-

sponding to cytosolic fragments of Na+,K+-ATPase

in order to identify the domain that interacts with

tubulin. Cross-linking experiments, and determination

of co-localization of acetylated microtubules and

Na+,K+-ATPase using immunogold, confocal and

total internal reflection fluorescence (TIRF) micros-

copy, are also in progress.
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Modulation of Na+,K+-ATPase activity
by association ⁄dissociation of
acetylated tubulin with the enzyme

Na+,K+-ATPase is an integral plasma membrane

protein which uses energy from ATP hydrolysis to trans-

port three Na+ ions out of the cell and two K+ into the

cell, thereby generating an electrochemical gradient

across the membrane. Proper functioning of this enzyme

is essential for the maintenance of body fluid and elec-

trolyte homeostasis [29,30]. Na+,K+-ATPase has two

subunits: the catalytic a subunit (molecular mass

� 110 kDa) and the glycosylated b subunit (protein

mass � 31.5 kDa). In some tissues, the Na+,K+ pump

has a small additional c subunit (7.3 kDa) involved in

regulation of enzyme activity [31,32]. Different isoforms

of the Na+,K+-ATPase subunits are found in different

tissues. The a subunit has 10 transmembrane segments,

and its N- and C-termini are localized on the cytosolic

side [33]. Na+,K+-ATPase is a member of the P-type

ATPase superfamily, which is characterized by phos-

phorylation of an aspartyl residue localized within the

highly conserved sequence DKTGS ⁄T of the a subunit

[34]. Many normal physiological processes, including

nerve impulse transmission, nutrient uptake and pump-

ing out of Ca2+, depend on the electrochemical gradient

resulting from activity of the sodium pump. Certain

pathological processes such as arterial hypertension and

altered excretion of Na+ by the kidneys are related to

disorders in the active transport of ions by the sodium

pump, with involvement of cytoskeletal components.

Na+,K+-ATPase activity is regulated by a variety

of factors including phosphorylation by protein kina-

se A and protein kinase C [35,36], cation occlusion

[37,38], FXYD proteins [39–42], adducin [43,44] and

l-glutamate [45].

After discovering that acetylated tubulin forms a

complex with Na+,K+-ATPase, we investigated the

effect of this association on enzyme activity and found

that brain plasma membrane Na+,K+-ATPase was

inhibited in vitro by acetylated tubulin [27]. The degree

of inhibition was correlated with: (a) the concentration

of acetylated tubulin isoform present in the tubulin

preparation used, and (b) the amount of acetylated

tubulin isoform associated with Na+,K+-ATPase.

Inhibition was abolished by inorganic phosphate in a

concentration-dependent manner, with a parallel

decrease in the association of acetylated tubulin with

the enzyme [27].

Involvement of acetylated tubulin in the regulation

of Na+,K+-ATPase activity in intact cells was first

demonstrated using cultured astrocytes [44]; stimula-

tion of Na+,K+-ATPase activity by l-glutamate was

correlated with a decreased quantity of acetylated

tubulin ⁄Na+,K+-ATPase complex. When the amount

of complex was decreased by 50%, the enzyme activity

was stimulated to double. This indicates that before

stimulation, � 66% of the enzyme was associated with

tubulin [46]. Glutamate mediates most excitatory

synaptic transmissions in the brain by interacting

with specific receptors [47]. By contrast, l-glutamate

transporters facilitate the uptake of glutamate, thus

lowering its concentration in the extracellular space

and inducing activation of Na+,K+-ATPase activity.

Glutamate uptake by transporters increases the sodium

concentration within the cell. In astrocytes, three Na+

ions (or two Na+ and one H+) accompany glutamate

entry, whereas one K+ is transported out accompanied

by either one OH) or one HCO3
) [48].

We showed that the effect of glutamate on

Na+,K+-ATPase activity is reversible. When astro-

cytes were treated with l-glutamate and subsequently

maintained in glutamate-free medium containing 1 mm

d-glucose, enzyme activity decreased and the level of

acetylated tubulin ⁄Na+,K+-ATPase complex increased

[46,49]. The amount of acetylated tubulin associated

with Na+,K+-ATPase was monitored by quantifying

the tubulin partitioned by Triton X-114. One might

expect that at maximal stimulation of enzyme activity

by glutamate, acetylated tubulin would be absent in

the detergent phase. However, the amount of tubulin

appearing in the detergent phase was decreased by

only � 50% [46,49]. This result suggests that some

forms of acetylated tubulin–enzyme complex are not

dissociated by l-glutamate, or that part of the ace-

tylated tubulin pool was associated with membrane

components other than Na+,K+-ATPase [23].

In astrocytes, the effect of l-glutamate was abolished

by the glutamate transporter inhibitor dl-threo-b-
hydroxyaspartate but was not affected by either specific

agonists or antagonists of specific l-glutamate receptors

[46]. The effect of l-glutamate appears to be mediated

by Na+ entry resulting from glutamate transport.

This concept was supported by the finding that the

Na+ ionophore monensin increases Na+,K+-ATPase

activity with concomitant dissociation of the complex.

Stimulation of Na+,K+-ATPase activity involving

dissociation of acetylated tubulin ⁄Na+,K+-ATPase

complex was also found in COS, Hep-2, CHO, L6 and

NIH3T3 cells [49]. In these non-neural cells, similarly to

neural cells, the effect of l-glutamate was mediated by

l-glutamate transporters, not by specific l-glutamate

receptors. l-Glutamate -specific receptors and trans-

porters have been reported in non-neural cells [50–54].

No effect of l-glutamate was observed when Na+

was replaced by K+ in the incubation medium.

Regulation of ATPases by acetylated tubulin C. A. Arce et al.
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Because Na+ is a ligand of Na+,K+-ATPase, one

possibility is that complex dissociation involves an

interaction between the enzyme and Na+ that accom-

panies the entry of l-glutamate. However, treatment of

isolated membranes with sodium ions did not dissoci-

ate the complex or activate the enzyme [27]. l-Gluta-

mate and the Na+ ionophore monensin induced

dissociation of acetylated tubulin ⁄ enzyme complex in

living cells but not in isolated membranes. These find-

ings indicate that the complex dissociation process

requires ordered spatial organization of the enzyme,

acetylated tubulin, l-glutamate transporter and possi-

bly additional components. Directionality of the flux

may also be an important factor in complex disso-

ciation.

Tubulin must be acetylated at Lys40
of the a subunit to interact with
Na+,K+-ATPase

Tubulin acetylation is a post-translational modification

consisting of the reversible addition of an acetyl group

on the e-amino group of a conserved lysine residue at

position 40 of the a subunit [55,56]. The enzyme that

catalyses this reaction has not been identified. How-

ever, a tubulin acetyl transferase activity from

Chlamydomonas flagella has been described [57]. Acety-

lation occurs preferentially on tubulin assembled into

microtubules, which is remarkable because crystallo-

graphic data indicate that the acetyl group is located

on the inside surface of the microtubule [58]. The ace-

tyl group can be released by histone deacetylase 6

(HDAC6), a member of the histone deacetylase family

[59–63]. In cultured cells, inhibition of HDAC6

activity leads to increased quantity of acetylated

tubulin [64–66]. The acetyl group can also be released

by SIRT 2, a NAD-dependent histone deacetylase

which is a mammalian homolog of the yeast silent

information regulator 2 (SIR2) [67,68].

The reversible acetylation of a-tubulin has been

implicated in the regulation of microtubule stability

and function [69]. Acetylated microtubules commonly

resist drug-induced but not cold-induced disassembly

[69]. Our studies revealed that acetylated tubulin is a

requirement for the association with Na+,K+-ATP-

ase, and consequent inhibition of enzyme activity. We

observed during studies of the cytoskeleton of Cath

a-differentiated (CAD) cells that this brain-derived

cell line does not contain either acetylated tubulin or

tubulin ⁄ATPase complex [28]. l-Glutamate treatment

of these cells did not stimulate Na,K-ATPase activity.

However, when cells were treated with the deacetylase

inhibitor Trichostatin A or tubacin [70], a significant

amount of acetylated tubulin appeared and tubulin ⁄
ATPase complex was found in membranes. l-Gluta-

mate treatment of cells containing acetylated tubulin

induced dissociation of the complex with concomitant

stimulation of enzyme activity (Fig. 1). Preparations

containing acetylated tubulin (isolated from brain or

from Trichostatin A-treated CAD cells) inhibited

Fig. 1. Schematic representation of the association of microtubules with membrane Na+,K+-ATPase as determined by their acetylation state.

Balance of activities of tubulin acetyl transferase (TAT) and HDAC6 determines the amount of acetylated and nonacetylated microtubules

(Ac-MT and Non Ac-MT, respectively). Ac-MT associate with membranes through Na+,K+-ATPase and inhibit enzyme activity. Non Ac-MT

cannot associate with membranes, and therefore Na+,K+-ATPase activity is not inhibited. Microtubules associated with Na+,K+-ATPase can

be released by L-glutamate uptake by L-Glu transporters. The inhibitory action of trichostatin A (TSA) and tubacin on HDAC6 induces higher

level of Ac-MT.
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Na,K-ATPase activity of isolated membranes, whereas

tubulin preparations lacking the acetylated isotype

(tubulin from nontreated CAD cells), had no effect

on enzyme activity. These results indicate that acety-

lated tubulin is necessary for complex formation. It

remains to be determined whether this acetyl group is

located in the interaction domain, or some other site

of the molecule. The tubulin ⁄Na,K-ATPase complex

may contain either tyrosinated or detyrosinated tubu-

lin isotypes. Involvement of other post-translational

modifications in association ⁄dissociation of the com-

plex has not been studied.

Acetylation of the e-amino group of Lys40 of the

a-tubulin chain clearly gives tubulin the ability to

interact with ATPases and consequently inhibit their

enzyme activity. This is the first function of post-trans-

lational acetylation of tubulin demonstrated at the

molecular level. Although we do not know the conse-

quences of this interaction for cell functioning, there

are several reports linking tubulin acetylation with

microtubule dynamics and cell motility. Hubbert et al.

[64] found that decrease of tubulin acetylation

enhanced cell motility, and concluded that this was

due to microtubule destabilization promoted by the

reduced amount of acetylated tubulin. Along the same

lines, Haggarty et al. [70] found that HDAC6 inhibi-

tion, which increases tubulin acetylation, reduced cell

motility. The reduction in motility may be due to

decreased cellular adhesion resulting from hyperacety-

lated microtubules [71]. Palazzo et al. [72] reported

that microtubule stabilization is not promoted by

tubulin acetylation, and suggested that the motility

change observed by Hubbert et al. [64] resulted from

alterations in the degree of tubulin acetylation, not

from changes in formation of stable microtubules. Ca-

brero et al. [73] studied the role of HDAC6 in migra-

tion of T lymphocytes, and found that this deacetylase

modulates lymphocyte chemotaxis independently of its

enzyme activity. Serrador et al. [74] investigated the

role of acetylated microtubules in the antigen-specific

interaction of T helper and antigen-presenting cells.

They found that HDAC6 plays a key role in this pro-

cess, and suggested that a particular subset of acety-

lated microtubules is necessary for organization of

immune synapse and activation of T cells. More recent

studies showed that HDAC6 (and hence tubulin acetyl-

ation state) plays an important role in human immu-

nodeficiency virus type 1 infection [75], and that

microtubules containing acetylated tubulin are

involved in motor-protein trafficking [76]. In addition,

SIRT2-mediated tubulin deacetylation was shown to

decelerate the differentiation ⁄ aging of oligodendroglia

[77].

Polymerization state of acetylated
tubulin that interacts with Na+,
K+-ATPase

Biochemical and microscopic observations suggest that

microtubules are anchored to the plasma membrane

[78–80]. The finding that tubulin interacts with plasma

membrane Na+,K+-ATPase prompted us to investi-

gate the possible involvement of microtubules in the

association of tubulin with Na+,K+-ATPase. Treat-

ment of cultured cells with nocodazole (a microtubule

depolymerizing agent) caused dissociation of acetylated

tubulin ⁄ATPase complex even in the absence of

sodium in the culture medium, indicating a different

dissociation mechanism compared with l-glutamate-

induced dissociation [49]. Nocodazole also dissociated

the complex in isolated membranes. In both whole

cells and isolated membranes, dissociation was accom-

panied by increased Na,K-ATPase activity. Treatment

of cells with l-glutamate following nocodazole did not

increase enzyme activity, reinforcing the idea that com-

plex dissociation is the cause of enzyme stimulation.

Stabilization of microtubules with taxol prevented

subsequent ATPase activation by l-glutamate. Taxol

also suppressed the increase of ATPase activity and

dissociation of tubulin ⁄ enzyme complex induced by

monensin. This could be due to: (a) the requirement of

microtubules to be depolymerized, or (b) a direct effect

of taxol on the ATPase molecule inhibiting dissocia-

tion. An important point for future study is whether

the acetylated tubulin that forms a complex with the

enzyme is a constituent of microtubules, or an isolated

tubulin dimer. Preliminary evidence supports the for-

mer concept: (a) taxol-stabilized microtubules formed

with purified tubulin bind Na,K-ATPase from deter-

gent-solubilized membranes or from commercial puri-

fied preparations; (b) when tissue is homogenized

under microtubule-depolymerizing conditions in the

absence of detergent, acetylated tubulin is found asso-

ciated with membrane ATPase. Conversely, when

tissue is homogenized under microtubule-stabilizing

conditions in the presence of detergent, ATPase is

found associated with acetylated tubulin constituent of

native microtubules [21].

Modulation of H+-ATPase activity by
association ⁄dissociation of acetylated
tubulin with the enzyme

Plasma membrane H+-ATPase in yeast is encoded by

the PMA1 gene. This gene has been cloned and

sequenced from Saccharomyces cerevisiae [81], Schizo-

saccharomyces pombe [82], Neurospora crassa [83,84]

Regulation of ATPases by acetylated tubulin C. A. Arce et al.
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and other fungal species. H+-ATPase, a member of

the P-type ATPase family often called the ‘proton

pump’, uses energy from ATP hydrolysis to pump pro-

tons out of the cell, and to support H+-coupled

uptake of certain amino acids, carbohydrates and inor-

ganic ions. H+-ATPase is an integral membrane

protein comprised of several polypeptides, most promi-

nently a 100 kDa chain that is partially inserted in the

plasma membrane. H+-ATPase in yeast and fungi

lacks a glycosylated b subunit of the type found in

mammalian Na+,K+-ATPase and H+,K+-ATPase.

Two small proteolipids, Pmp1p and Pmp2p, copurify

with the 100 kDa catalytic polypeptide and have been

proposed to play a regulatory role [85]. H+-ATPase is

activated when yeast cells are incubated in the presence

of glucose [86], and this activation is regulated at the

transcriptional and post-transcriptional levels [87–92].

Despite extensive investigation, the molecular mecha-

nism of this glucose-mediated activation is not com-

pletely understood.

We showed recently that acetylated tubulin interacts

with yeast H+-ATPase to form a complex in which

enzyme activity is inhibited, and that incubation of

yeast with glucose dissociates the complex and restores

enzyme activity as determined by ATP-hydrolysing

capacity or H+-pumping activity [93]. The association

of acetylated tubulin with H+-ATPase and consequent

inhibition of enzyme activity was also demonstrated

in vitro by incubating yeast membranes with purified

tubulin. Alkaline treatment caused dissociation of the

complex. Immunoprecipitation experiments using anti-

(acetylated tubulin) and anti-(H+-ATPase) IgG indi-

cated a physical interaction between acetylated tubulin

and this enzyme in membranes of glucose-starved cells

[93]. The existence of the complex was also determined

by the presence of acetylated tubulin in the detergent

fraction after partition in Triton X-114. Double immu-

nofluorescence, observed by confocal microscopy, indi-

cated that H+-ATPase and acetylated tubulin partially

co-localize at the periphery of glucose-starved cells.

Co-localization was not observed when the tubu-

lin ⁄ (H+-ATPase) complex was dissociated by glucose

treatment. Dissociation of the complex by glucose was

inhibited by 2-deoxy-d-glucose, a competitive substrate

for glucose uptake, indicating that the dissociation

involves glucose transporters. This idea was supported

by the observation that complex in isolated membranes

was not dissociated by glucose [93]. Dissociation of the

complex may involve some biochemical modification

that occurs in living cells but not in isolated mem-

branes. Formation or dissociation of the acetylated

tubulin-(H+-ATPase) complex may require the pres-

ence of Snf3p (a glucose sensor), Gpa2 protein

(a G protein) [94] and ⁄or protein kinases [91], which

were shown to participate in glucose-induced activa-

tion of plasma membrane H+-ATPase.

Modulation of plasma membrane
calcium pump activity by association ⁄
dissociation of acetylated tubulin with
the enzyme

The main function of the plasma membrane calcium

pump (PMCA) is to sustain a calcium gradient across

the plasma membrane via ATP hydrolysis-driven

expulsion of calcium ions from the cell. In humans,

PMCA is encoded by four plasma membrane

Ca2+-ATPase genes whose transcripts can be alterna-

tively spliced giving rise to numerous isoforms [95–99].

Because its polypeptide chain (130 kDa) is phosphory-

lated and dephosphorylated during the ion-transport

cycle, PMCA belongs to the P-type ATPase family.

The tissue distribution of different PMCA isoforms

has been reviewed in detail previously [100]. Most of

the PMCA mass protrudes into the cytoplasm, with

three main domains. The calmodulin-binding domain

is located in the C-terminal cytosolic protrusion. The

biological activity of PMCA is regulated by several

factors including calmodulin, acidic phospholipids and

phosphorylation. The C-terminal domain of PMCA

(the calmodulin-binding site) seems to be an internal

inhibitor of the enzyme [101].

Membrane vesicles from synaptosomes isolated from

rat brain were used to study PMCA interaction with

acetylated tubulin. Results similar to those for

Na+,K+-ATPase and H+-ATPase were obtained.

That is, acetylated tubulin interacts with PMCA to

form a complex, resulting in inhibition of PMCA

activity [102]. This complex is dissociated by ethanol

or calmodulin at physiological concentrations, result-

ing in activation of PMCA activity. The enzyme acti-

vation induced by ethanol or calmodulin is additive,

suggesting more than one mechanisms of action. The

effect of ethanol and calmodulin on PMCA is altered

by nocodazol or taxol treatment, suggesting that

microtubules are involved in tubulin ⁄ATPase inter-

action.

Conclusions and perspectives

The reversible interaction of acetylated tubulin with

the sodium, proton and calcium pumps regulates their

respective catalytic activities. This is the first demon-

strated function for the acetylation of tubulin. It

remains to be determined whether acetylated tubulin

interacts with and regulates all ATPases, or only
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P-type ATPases. It is interesting that three different

ATPases can form a complex with the same molecule,

acetylated tubulin. HDAC6 may play a crucial role by

deacetylating tubulin and thereby preventing its associ-

ation with ATPases. The external factors l-glutamate,

glucose and ethanol induced dissociation of, respec-

tively, (Na+,K+)-, H+- and Ca2+-ATPase ⁄ tubulin
complexes (Fig. 2). There may be additional or com-

plementary mechanisms leading to the dissociation of

ATPase ⁄ tubulin complexes and modulation of ATPase

activities. Complex disruption induced by endogenous

compounds seems to depend on the spatial organiza-

tion of the molecules involved. For example, dissocia-

tion of Na+,K+-ATPase from acetylated tubulin

induced by l-glutamate requires flux of Na+ ions into

the cell. Because acetylated tubulin is a common part-

ner in complexes formed with (Na+,K+)-, H+- and

Ca2+-ATPases, dissociation of these complexes

induced respectively by l-glutamate, glucose and etha-

nol ⁄ calmodulin should not proceed using acetylated

tubulin as a target, rather using different pathways

specific for each ATPase.

Regulation of ATPase activity by the association ⁄
dissociation of acetylated tubulin ⁄ enzyme complex is

still at the early stage of study. However, we can suggest

some topics of interest for future investigation. Studies

to date on tubulin ⁄ATPase interaction have used

membranes isolated after homogenization under micro-

tubule-depolymerizing conditions. We therefore do not

know whether the tubulin molecule that forms a

complex with ATPase was originally (a) part of a

microtubule, or (b) associated with ATPase as an indi-

vidual dimer. If possibility (a) is found to be correct, it

would indicate that ATPases function as ‘anchorages’

for microtubules. Anchorage of microtubules to mem-

brane has been deduced from biochemical experiments

or microscopic observations, but has been never

demonstrated at the molecular level. Such anchorage

could be a point of interaction between signals from

outside and inside the cell. Completely stabilized

microtubules are not adequate for establishment of

interaction with Na+,K+-ATPase, or sensitivity of the

complex to glutamate treatment [49]. Microtubules

which are at least partially dynamic are required. Thus,

acetylated microtubules, which are less dynamic than

nonacetylated microtubules (though still not completely

stable structures) are associated with ATPases. An

interesting question arises: is the increased stability of

acetylated microtubules due to their binding to mem-

brane through ATPase? This possibility is supported by

the finding of Bershadsky and Gelfand [103] that disas-

sembly of microtubules is an ATP-dependent process,

and demonstration by Infante et al. [104] that micro-

tubules are stabilized by a plus-end cap that includes

ATPase activity.

There are other intriguing questions. Perhaps mod-

ulation of the association ⁄dissociation of tubulin with

ATPase controls the flow of information from inside

to outside the cell. For example, a signal originating

from the nucleus or cytosol, whose transmission out

of the cell requires active ATPase, could be blocked

at the membrane level by association with acetylated

tubulin. By contrast, information can flow from

outside to inside the cell. Import of certain substances

(ions, trophic factors, hormones, amino acids,

carbohydrates, neurotransmitters) into the cell could

dissociate the complex, with consequent activation

of ATPase and transmission of a signal into the

cytosol.

ATPase activities are crucial elements in recep-

tion ⁄ transmission of signals at the membrane level.

Endogenous activators of these cation pumps, e.g.,

adducin in the case of the sodium pump [44], are there-

fore important factors in regulation of signalling. In

this context, acetylated tubulin is the first described

endogenous ATPase inhibitor.

Fig. 2. Schematic representation of the dis-

sociating effect of various compounds on

microtubules anchored to sodium, proton

and calcium pumps. Na+,K+-ATPase of neu-

ral and non-neural cells, H+-ATPase of yeast

and Ca2+-ATPase of brain membrane vesi-

cles do not show enzymatic activity when

they are associated to acetylated micro-

tubules. Microtubules are released from

membranes upon treatment with the indi-

cated effector resulting in increased enzyme

activity.
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