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ABSTRACT
We perform a statistical study of the process of orbital determination of the HD82943 extrasolar

planetary system, using the current observational data set of N = 165 radial velocity (RV)

measurements. Our aim is to analyse the dispersion of possible orbital fits leading to residuals

compatible with the best solution, and to discuss the sensitivity of the results with respect to both

the data set and the error distribution around the best fit. Although some orbital parameters

(e.g. semimajor axis) appear well constrained, we show that the best fits for the HD82943

system are not robust, and at present it is not possible to estimate reliable solutions for these

bodies. Finally, we discuss the possibility of a third planet, with a mass of 0.35MJup and an

orbital period of 900 d. Stability analysis and simulations of planetary migration indicate

that such a hypothetical three-planet system could be locked in a double 2/1 mean-motion

resonance, similar to the so-called Laplace resonance of the three inner Galilean satellites of

Jupiter.
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1 I N T RO D U C T I O N

Orbital determination of exoplanetary systems from radial velocity

(RV) data is a complex process. The equations relating the observa-

tions with the orbital elements (and minimum planetary masses) are

highly non-linear, allowing, in principle, the existence of several

local minima in the parameter space. Multiple-planetary systems

are particularly difficult. Usually, the ratio between the number N
of observations and the number M of free parameters is not very

large (N/M ∼ 10–20) and, in some cases, the observational interval

spans less than a few (or even one) orbital period of the outer planet

in the system.

If the system contains two planets in mean-motion resonances

(MMR), the problem is even more challenging. The orbital com-

mensurability can cause a very noticeable periodicity in the RV

curve, complicating the separation of both components from the

signal. Two of the most important orbital elements for dynamical

studies, the eccentricities e and longitudes of pericentre � are also

the most difficult to estimate, since they are given by asymmetries

in the quasi-periodic signal. Then, if the individual signals of two

planets are mutually affected by their resonant configuration, the

precision of the estimation of both e and � can be seriously com-

promised.

From a dynamical point of view, extrasolar systems in MMR

are very important, since they could be evidence of past or-

�E-mail: beauge@oac.uncor.edu

bital migration of the system, and thus help understand their

formation process (e.g. Lee & Peale 2002; Ferraz-Mello et al.

2005b). The compatibility of a given planetary system with mi-

gration depends very sensitively on the calculated values for e
and � , since they specify what type of resonant configuration

(libration, apsidal corotation, etc.) is present. Recent works have

used the current orbital characteristics of resonant systems to es-

timate the properties of the primordial gaseous nebula during the

last stages of planetary formation. Among these, we can men-

tion the analysis of the resonant Gliese 876 planets by Kley et al.

(2005) and the study of HD73526 by Sándor, Kley & Klagyivik

(2007).

However, it is not well established if the estimated planetary pa-

rameters are sufficiently reliable to weigh in favour or against dif-

ferent formation mechanisms. Although some resonant systems are

well constrained (e.g. Gliese 876), others may offer a more com-

plex scenario. In this paper we perform a detailed study of the orbital

determination of the resonant system HD82943. Our basic idea is

to establish how robust is the present modelization of both planets,

analysing the sensitivity of the orbital fit with respect to the observa-

tional data set and error distribution of the parameters around the best

solutions. This system was chosen mainly for two reasons. First, the

currently accepted best fit is dynamically unstable (Ferraz-Mello,

Michtchenko & Beaugé 2005a; Lee et al. 2006), which seems to

imply that it is not consistent with the configuration of the real plan-

ets. Secondly, it has already been discussed previously in several

works, thus giving us a well grounded basis with which to compare

our results.
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The paper is organized as follows. In the following section we

review the main characteristics of the HD82943 planetary system,

as well as previous results. Section 3 is devoted to introducing our

process for the calculation of the best fit from RV data. The sen-

sitivity of this solution with respect to the observational interval is

discussed in Section 4. The following section presents a mapping

of the rms of the residuals in a plane of orbital elements of the

outer planet, which allows an estimation of the confidence levels

around the global minimum. A dynamical analysis of the different

possible fits is shown in Section 6, and the hypothetical existence

of a third planet in the HD82943 system is discussed in Section 7.

Conclusions close the paper in Section 8.

2 T H E H D 8 2 9 4 3 P L A N E TA RY S Y S T E M

Currently there are two known planets in the HD82943 system

(Mayor et al. 2004), both discovered by the Geneva group, the first

in 2000 and the second in 2001. Although as early as in 2001 it was

fairly certain that the planets lie in the vicinity of a 2/1 MMR, only

by 2002 were there enough observations available to yield a rela-

tively reliable orbital fit. These parameters were originally posted

in the Geneva group web page, but later replaced with updated val-

ues. However, they can be seen in table 1 of Ji et al. (2003). This fit

showed bodies apparently trapped in an apsidal corotation resonance

(ACR) of type (π, π) (see Beaugé, Ferraz-Mello & Michtchenko

2003). Although the orbital configuration was found to be dynam-

ically stable for time-scales of at least 106 yr, this type of ACR

is incompatible with a smooth planetary migration scenario from

originally quasi-circular orbits.

In a later paper, Mayor et al. (2004) presented a new set of or-

bital parameters with an extended data set composed of N = 142

observations. Although both planets were still found to be in a 2/1

MMR, there were significant differences in the masses and orbital

elements. The mass ratio m2/m1 fell from 1.9 to ∼1, and the eccen-

tricities also varied significantly. With this new set of parameters,

the orbital configuration seemed to correspond to an ACR of type

(0, 0), more compatible with planetary migration.

From numerical integrations of the published orbital fits, Ferraz-

Mello et al. (2005a) found that the solution presented by Mayor

et al. (2004) was dynamically unstable in time-scales of the order of

105 yr. Since the central star entered the main sequence approxi-

mately 3 Gyr ago, it is unlikely that its planets should be stable for

time-scales much smaller than this. Thus, it appears that the best

orbital fit did not correspond to the real system, and other orbital

solutions should be found compatible with the observational data.

Since the raw data were unavailable to the general community, the

RV values and times were reconstructed from the published graphi-

cal presentations. With these data, Ferraz-Mello et al. (2005a) found

that the rms of the weighted residuals (hereafter referred to as wrms)

around the minimum was a very shallow function of the primary

parameters, and many different orbital fits (some dynamical stable)

gave origin to similar values. In other words, the best-fitting solu-

tion does not necessarily correspond to the parameters of the real

system.

Lee et al. (2006) presented additional observations of the system

obtained with Keck HIRES which, together with the CORALIE

data, now totalled N = 165 observations. The orbital fit of the com-

plete data set once again yielded a dynamically unstable solution,

this time for time-scales of the order of 103 yr. Moreover, the rms of

the best multi-Keplerian fit increased significantly, indicating that

a longer observation interval does not necessarily diminish the ob-

served minus calculated (O − C) values. However, the authors also

found stable solutions with values of rms similar to the minimum.

Some correspond to (0, 0)-type ACR, although a few showed only

a θ1-libration (see Section 6), but with circulation of the difference

of the longitudes of pericentre.

More recently, a different analysis of the same data was performed

by Goździewski & Konacki (2006), using a hybrid algorithm which

includes a stability analysis embedded into the minimum squares fit.

They showed the existence of two islands of stable motion associated

to the 2/1 MMR in the neighbourhood of the best fit. Additionally,

completely different configurations were also analysed. In partic-

ular, they showed that two planets in stable co-orbital motion and

non-coplanar orbits could yield similar RV curves, albeit with sig-

nificantly larger dispersion of the residuals (rms ∼8.4). However,

the existence of co-orbital giant planets is far from being established,

and there is evidence that planetary bodies with masses larger than

∼ 0.7 M⊕ could not be accreted in the equilateral Lagrangian points

of giant exoplanets (Beaugé et al. 2007a). It is nevertheless curious

how co-orbital bodies can mimic the RV curve of two bodies in a

2/1 MMR.

In the same work, Goździewski & Konacki (2006) also analysed

the possible existence of a third planet in the HD82943 system

with an orbital period of approximately 1000 d, thus exterior to the

outer known planet. A three-planet orbital fit showed a significant

decrease in the rms (∼6.3), although the solution was, once again,

unstable in very short time-scales. However, a marginally stable

solution was also found with smaller values of the eccentricity of the

new hypothetical planet. Even though the corresponding residuals

were larger (rms ∼7.4), it constitutes an interesting scenario that

deserves further study.

Probably the most important conclusion that stems from these

works is our lack of concrete knowledge of the dynamical set-up of

the HD82943 system. Not only the diversity of possible configura-

tions is surprisingly large, but also the orbital fitting process seems

to be very sensitive to the observational data set.

3 R A D I A L V E L O C I T Y DATA A N D B E S T F I T S

We begin reviewing the known characteristics of the HD82943 plan-

etary system. Both observational sets are shown in Fig. 1, top frame
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Figure 1. Top: RV data points reconstructed from Mayor et al. (2004).

Bottom: Raw data points from Keck (Lee et al. 2006). In both cases the error

bars in the ordinate correspond to the observational uncertainty εi0 as given

by the observational groups.
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for the reconstructed CORALIE data and bottom frame for Keck.

The latter set increased the observation time interval by almost two

years, and we also note some superposition with the CORALIE ob-

servational timeline. As shown in the figure, we have subtracted

8100 m s−1 from the RVs of the CORALIE data so that its average

value is similar to that of Keck.

For all subsequent calculations, the mass of the star will be taken

equal to M∗ = 1.15 M�, as adopted by Ferraz-Mello et al. (2005a)

and Lee et al. (2006). We will also assume a constant stellar jitter

in the observations equal to s j = 4.2 m s−1, deduced by Lee et al.

(2006) from empirical models of stellar interior. Thus, the square

of the uncertainty in each RV value will be equal to ε2
i = ε2

i0
+ s2

j ,

where εi0 is the value given by the process of determination of the

RV value. Although this variation of the uncertainty introduces some

changes in the orbital solution, these are not important as long as

the jitter is not taken too large.

With this RV data, we proceeded to calculate the best orbital

fits, in an astrocentric reference frame, assuming the presence of

two planetary bodies. The best fit is defined as that set of primary

parameters (e.g. Beaugé, Ferraz-Mello & Michtchenko 2007b) that

minimize a certain function R of the residuals, defined to be a

statistical measure of the goodness of the fit. We will refer to this

indicator R as a fitness function. Assuming a Gaussian distribution

for the errors, two fitness functions are usually employed:

(wrms)2 = S

N − 1

N∑
i=1

(Vr i − yi )
2

ε2
i

with
1

S
= 1

N

N∑
i=1

1

ε2
i

χ 2 = 1

N − M

N∑
i=1

(Vr i − yi )
2

ε2
i

, (1)

where Vri
is the RV data at observation time ti , and yi is the calculated

RV value from the orbital fit. M is the number of fitted parameters

(in our case M = 12) and ν = N − M is usually referred to as the

number of degrees of freedom of the regression.

The quantity denoted here by χ 2 is sometimes referred to as

‘normalized χ 2’ (Press et al. 1992), and is a common goodness-

of-fit indicator among the astronomical community. However, to

distinguish this statistic from the test variate χ2
ν , we use a subscript

only in the latter case. The χ2 as defined by equation (1b) is very

sensitive to the values assumed for the standard deviation of the data

and for the putative jitter affecting them (i.e. εi0 and s j ).

Errors in the assumed standard deviations and in the assumed

stellar jitter may lead to meaningless values of χ 2. In this respect,

the big advantage of the wrms given by equation (1a) is that changes

in the assumed εi0 and/or s j will modify the relative weighing of

the data (and consequently the results) but produce only a minimal

variation in the value of the wrms. This indicator is a consistent

estimator of the goodness of fit. For this reason, although throughout

the paper we will give the numerical values of both fitness functions,

all comparisons with other works will be done using wrms.

To calculate the best multi-Keplerian fit we used three differ-

ent and sequential subroutines. First, we used a genetic algorithm

(Pikaia, see Charbonneau 1995) with a population of 200 mem-

bers (i.e. random initial conditions in the parameter space), evolved

over approximately 104 generations. Since genetic algorithms are

only exploratory tools, they only guarantee a certain proximity to

the global minimum of the fitness function, although not a precise

value. From then on we used a simplex subroutine to improve the

result. Since we found that sometimes the result could be improved

even further, we employed a third routine, based on a Monte Carlo

technique sometimes referred to as ‘simulated annealing’. The idea

behind this technique is simple. At a given iteration, two parameters

are chosen randomly. These are then varied in a random direction by

a magnitude that can never exceed a certain (user defined) value β,

typically of the order of 0.01 in normalized units. We then calculate

the wrms for this new solution. If it is found less than the previous,

it is adopted. If not, the original solution is maintained. A new iter-

ation is then performed. The routine ends when no improvement is

noted for at least 105 iterations.

We also performed dynamical fits, assuming coplanar edge-on

configurations. As a starting solution we used the Keplerian param-

eters, and searched for the new solutions using a simulated annealing

routine. This was found to be the most robust tool, since it does not

require any information on the partial derivatives or the shape of

the fitness function in the parameter space. Moreover, we found it

has the capacity of avoiding small-scale irregularities of the fitness

function in the parameter space, and converged to the global mini-

mum with almost no human intervention. Finally, we also checked

for 3D fits in which the planetary inclinations and the longitudes

of the ascending nodes were also considered free parameters. How-

ever, no significant improvement was found, and the best-fitting 3D

solutions were always very close to the coplanar values.

The numerical values of the best multi-Keplerian orbital fits, for

the CORALIE and the complete data, are shown in Table 1, where

we have separated the primary and the secondary parameters. Recall

Table 1. Best multi-Keplerian orbital fits for the two planets of the HD82943

system. The time of passage through the pericentre τ is given in units of

(JD −240 0000). Orbital elements are astrocentric, and orbital periods are

osculating. V0C is the RV off-set from the CORALIE data, and V0K is the

corresponding value from Keck.

CORALIE = 142 RV CORALIE + Keck = 165 RV

Parameter HD82943c HD82943b HD82943c HD82943b

K (m s−1) 61.65 45.75 65.77 43.69

P (d) 219.48 435.09 219.29 441.26

e 0.383 0.183 0.356 0.222

� (◦) 124.29 239.51 127.32 282.86

τ 50 747.86 51 325.84 50 751.02 52 695.54

V0C (m s−1) 43.79 43.87

V0K (m s−1) 33.69

m (MJup) 1.860 1.845 2.006 1.756

a (au) 0.746 1.178 0.746 1.189

λ − � (◦) 356.41 239.51 351.83 207.33

wrms (m s−1) 6.964 7.954√
χ2

ν 1.165 1.369

Table 2. Best dynamical orbital fits for the two planets of the HD82943 sys-

tem. All orbital elements are astrocentric, and orbital periods are osculating.

CORALIE = 142 RV CORALIE + Keck = 165 RV

Parameter HD82943c HD82943b HD82943c HD82943b

m (MJup) 1.866 1.809 2.025 1.749

P (d) 218.50 444.04 218.40 452.79

a (au) 0.744 1.194 0.744 1.210

e 0.384 0.125 0.355 0.213

λ (◦) 115.80 123.60 115.64 134.95

� (◦) 119.35 247.15 123.55 295.57

V0C (m s−1) 43.46 43.74

V0K (m s−1) 34.29

wrms (m s−1) 7.010 7.952√
χ2

ν 1.173 1.369
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Figure 2. Top: Synthetic RV curves obtained from the multi-Keplerian fits.

Continuous lines correspond to complete CORALIE–Keck data set, while

broken line to the solution form the CORALIE data alone. Filled circles are

the data points, with the vertical error bars showing the internal uncertainty of

each observation. Bottom: O − C residuals for same fits, with open circles

for the complete observation interval and crosses for the CORALIE data

alone.

that we assumed edge-on coplanar orbits for both planets. Table 2

presents the best dynamical fits. It is important to keep in mind

that Lee et al. (2006) presented kinematical (i.e. multi-Keplerian

fits), in terms of Jacobi canonical coordinates. Orbital elements in

this work are astrocentric, so slight differences may exist in the

values with respect to the other published orbits. Nevertheless, the

Keplerian fit is practically identical. There are also some differences

in the values with respect to those issued from coplanar dynamical

fits, but this is not a consequence of the chosen variables. Many

differences among determinations stem from the shallowness of the

fitness function with respect to the eccentricity of the outer planet.

Fig. 2 compares the RV data with the synthetic curves obtained

from each best multi-Keplerian fit. Note that there is a slight dif-

ference in the plots, specially in the local maxima. Apart from the

change in the planetary masses, one of the main reasons for the ob-

served difference lies in the value of � 2. In 2004, the best-fitting

value gave � 2 � 238◦, while currently it is approximately � 2 �
280◦. Notwithstanding this difference in the RV trend, there is little

effect on the values of O − C for the data points.

4 JAC K K N I F E : O R B I TA L F I T S W I T H
T RU N C AT E D DATA S E T S

The first announced orbital fit for both planets (see Ji et al. 2003) with

only approximately 100 data points, gave stable solutions consistent

with apsidal corotations. Subsequent observations led to significant

changes in the masses and most of the orbital parameters. However,

they also lead to dynamically unstable solutions.

In order to test the variations in the results of the orbital fits as

function of the number of observations, we employed a modification

of what is usually referred to as jackknife. This consists in perform-

ing a series of orbital fits, each using a reduced data set where the

last point is eliminated. In other words, we first perform a fit with the
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Figure 3. Variation of the parameters of the best multi-Keplerian fit, as func-

tion of the observation time. Data correspond to the complete CORALIE–

Keck set.

complete set of 165 data points. Secondly, we perform a different

fit with only 164 points (eliminating the last one chronologically

speaking), etc. We then plot the variation of the parameters of each

orbit fit as a function of the observation time interval (or the number

of data points). If the current solution is robust, then we should ex-

pect only small and smooth changes in the parameters as a function

of this time. More importantly, we can then expect that future in-

corporation of additional observations will not significantly change

our knowledge of the system.

Results for multi-Keplerian fits are shown in Fig. 3, where the RV

values were ordered chronologically, thus mixing both the

CORALIE and Keck data sets. Parameters of the inner planet are

shown in grey, while those of the outer planet are in black. The lower

left-hand frame shows the change in wrms and
√

χ 2. Note the in-

crease in the values of the statistics, particularly over the last few

tens of observations. Thus, more data points do not necessarily im-

ply better orbital fits. The lower right-hand plot shows the number

of data points as a function of time. The dates (i.e. timings) corre-

sponding to the three published sets of observations are delimited

by horizontal broken lines. With this we can identify in each of the

other frames the values of the parameters at each published date.

These plots give a fair amount of information. First, and most im-

portant, there does not seem to be any evidence of a convergence of

the parameters towards certain values. Thus, there is no confidence

that future observations will not change the masses and orbital ele-

ments of the planets once again. From this point of view, the current

orbital fit of the HD82943 planets is not robust and, therefore, not

reliable.

Even so, some parameters change less than others. The orbital pe-

riods seem fairly stable, and there is little doubt that both bodies are

C© 2008 The Authors. Journal compilation C© 2008 RAS, MNRAS 385, 2151–2160
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in fact in the vicinity of a 2/1 MMR. Even just a few data points are

enough to point to an orbital commensurability between both plan-

ets. The planetary masses are more sensitive, although the value of

m2 remains fairly stable for quite a long time. The inner mass m1,

however, seems to experience jumps between two distinct values,

especially for N > 100. Finally, the least robust parameters are the

eccentricity and longitude of pericentre. This is not surprising, since

they are determined from the skewness of the harmonic components.

However, the magnitude of the changes is very significant. As with

m1, there is a certain trend, and values that appear repeatedly. For

example, most of the values of e2 in the last 60 data points are ei-

ther near to 0.18 or 0.3. The preferred values for � 2 are ∼120◦ or

∼270◦. Moreover, the variations of e1 and e2 seem related, main-

taining a near-constant difference. The variation of e1 also seems

opposite to that of m1.

Two additional important conclusions can be drawn from this

figure. First, orbital fits for this system with less than N ∼ 100 points

are completely unreliable. This helps explain why there was so much

difference between the 2002 fit (Ji et al. 2003) and the solution

presented by Mayor et al. (2004). Secondly, there is a notorious

difference in the fits with respect to the last observational point. The

passage from N = 164 to 165 implies very drastic changes in some

elements, particularly in the longitudes of pericentre, but also in m1

and the eccentricities. This change, however, caused practically no

change in the wrms (see lower left-hand frame). This seems to imply

that both solutions, although very different, are equally consistent

with the observational data. Once again, this leads to the conclusion

that the currently accepted orbital configuration for the HD82943

planets is not robust, and even a single additional data point can

change the picture.

The increase in wrms as function of N was not expected. From

equation (1), if we assume constant values of εi and (yi − Vri
) for

all data points, it can be shown that wrms ∝ √
N/(N − 1) while√

χ 2 ∝ 1+ M/N . Thus, when the number of observations is much

larger than the number of free parameters M, both indicators should

be practically constant, as long as the orbital solution is adequate and

the system satisfies the statistical conditions implicit in a minimum

squares calculation. Thus, the observed growth in the calculated

wrms could indicate that the adopted two-planet model is becoming

increasingly inadequate to represent the observations.

Fig. 4 presents a similar analysis, this time only considering the

N = 142 CORALIE data. Since the observation interval of Keck

partially intersects the CORALIE points, this figure will allow us

to better reproduce the evolution of the orbital fits from 2000 up

to 2004. Comparing to Fig. 3, we find a certain decrease in the

dispersion of the solutions. The eccentricities, in particular, show a

more regular trend, with e2 more stable and e1 showing a smooth

decrease in value. Note that there is no longer any jump in e2 around

T = 52 500. The longitudes of pericentre, however, still present

sudden changes, especially � 2. Once again, the elimination of only

a few of the last data points causes a very large variation in the angle,

although no significant effect is noted in the fitness functions (see

the lower left-hand plot).

5 O R B I TA L F I T S I N A G R I D

The degree of the statistical instability in the orbital fits is so notice-

able that the removal of a single observation can lead to completely

different values in some of the orbital parameters (see Fig. 3). Table 3

shows the numerical values of the best fits (multi-Keplerian and dy-

namical) for N = 164 (last point eliminated) which can be compared
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Figure 4. Same as before, but only considering the CORALIE data set of

N = 142 observations.

Table 3. Main parameters of the best fits for N = 164 data points. All orbital

elements are astrocentric, and orbital periods are osculating.

Multi-Keplerian Dynamical

Parameter HD82943c HD82943b HD82943c HD82943b

m (MJup) 1.435 1.765 1.397 1.782

a (au) 0.748 1.169 0.744 1.188

e 0.447 0.331 0.460 0.360

� (◦) 133.19 144.25 134.79 139.82

λ − � (◦) 359.57 326.21 357.45 331.45

wrms (m s−1) 7.835 7.838√
χ2 1.347 1.348

to the results for N = 165 shown in Tables 1 and 2. Although there

are important changes in the solution, they cause practically no ef-

fect in the fitness functions (wrms or
√

χ2), nor in the RV curve,

indicating that both solutions are compatible with the data.

To analyse this sensitivity more globally, we followed the idea

of Lee et al. (2006) and performed a series of multi-Keplerian or-

bital fits over a grid in the variables (k2, h2) = (e2 cos � 2, e2 sin

� 2). For each point the numerical values of these parameters are

fixed, and the fit is done only on the remaining parameters. These

were allowed to vary with no restriction, and the resulting wrms

corresponds to the best fit for those fixed values of (k2, h2). We

then plotted level curves of wrms in this grid, which give informa-

tion on the shape and relative depth of the fitness function in the

plane.

This procedure was applied to four sets of observations, corre-

sponding to N = 120, 142, 164 and 165. Results are shown in
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Figure 5. Level curves of constant wrms for multi-Keplerian orbital fits

considering fixed values of (k2, h2) = (e2 cos � 2, e2 sin � 2) in a regular

grid. Each plot was drawn using a different number of data points N. In

each frame, the global minimum is identified with a large filled circle. Broad

black level curves represent the 1σ confidence level.

Fig. 5. In each case, the global minimum wrms min is identified

by a large filled circle. Although close to the minimum the level

curves are approximately elliptical, distortions appear for larger val-

ues, indicating that confidence levels obtained from analysis of the

correlation matrix are not valid beyond the immediate vicinity of

wrmsmin.

It is interesting to observe the changes in the level curves as

function of N. This change, however, is not necessarily gradual. For

N = 164 the figure shows two local minima with almost the same

wrms. The global minimum is located at � ∼ 140◦, while the other

solution (� ∼ 270◦) resembles the global minimum obtained for

N = 165. Thus, not only is the fitness function very shallow around

the best-fitting solution, but sometimes two local minima can be

observed, and very small changes in the data set can lead to one (or

the other) being identified as the best fit.

Finally, the value N = 120 adopted for the upper left-hand frame

is not arbitrary, but was chosen such that the best fit was dynamically

stable. This was confirmed with a long-term numerical simulation of

the orbits, and the evolution of the system corresponds to moderate

amplitude oscillations around a (0, 0) ACR.

To interpret these plots, we will introduce an estimation of the 1σ

confidence levels of the wrms. Because of the important nonlinearity

of the fitness function, we cannot draw confidence ellipsoids as

usual. Since the fitness function wrms2 is roughly proportional to a

χ 2
ν variate with ν = N − M, we may use the mean (ν) and variance

(2ν) of the χ 2
ν variate to approximate the 1σ confidence level of the

resulting wrms2. Hence,

(wrms1σ )2 � (wrmsmin)2

(
1 ±

√
2

ν

)
. (2)

Introducing the values for N = 165 (i.e. wrmsmin = 7.952 and

ν = 153), we obtain wrms1σ � 7.952 (1 ± 0.057), which gives

wrms1σ � 8.41. (3)

We show this level by the broad black curve in Fig. 5, and assume

it is an estimation of the domain where the real minimum should be

found (Press et al. 1992). Although the best-fitting solution varies

significantly in the different plots, the shape and extension of the

1σ confidence region appears more robust. Even so, many differ-

ent types of dynamical configurations coexist within these regions.

Thus, although at present it is not possible to choose between them,

it seems probable that the HD82943 system lies somewhere inside.

6 DY NA M I C A L A NA LY S I S

The best fits for both N = 164 and 165 are dynamically unstable in

time-scales of the order of a few 103 yr. In fact, as was mentioned

before, rarely do best fits for this system (for different N) correspond

to stable solutions. However, the results of the previous section

show that we have a large region of orbital solutions inside the 1σ

confidence level, all consistent with the observational data. We can

then extend the dynamical analysis to all the points in the region,

and estimate which solutions are stable.

Each point of the grids shown in Fig. 5 not only corresponds to

specific values of (k2, h2) = (e2 cos � 2, e2 sin � 2), but also to dif-

ferent values for the other orbital elements and minimum planetary

masses. The wrms assigned to each point in the plane corresponds

to the best orbital fit for that pair (k2, h2), and the values of the free

parameters are those obtained for that value of the fitness function.

This is important to keep in mind because other solutions exist for

the same values of (k2, h2) that lead to different (but larger) wrms. In

principle, it is possible that some of these other solutions may have

wrms within the 1σ level of confidence. In other words, although

these plots represent a good indication of the different possible so-

lutions, other ‘good’ fits may also be possible.

The initial conditions corresponding to each point in the grid for

N = 165 was integrated numerically for 106 yr. Although most lead

to ejections within this time-span, those that survived correspond

to apsidal corotations of type (0, 0) in the 2/1 MMR (see Beaugé,

Michtchenko & Ferraz-Mello 2006). These were considered to be

stable. We calculated the amplitudes of oscillation of both the res-

onant angle θ 1 = 2λ2 − λ1 − � 1 and the difference of longitudes

of pericentre �� = � 2 − � 1. Here λi are the mean longitudes

of the planets and � i are the longitudes of pericentre. Index 1 marks

the inner body (smaller semimajor axis) and index 2 is reserved for

the outer planet.

Results are shown in the top frame of Fig. 6, once again in the

(k2, h2) plane. Two overlaid plots are present in this figure. The

large filled circle shows the position of the best fit for N = 165.

The continuous thick curve around this point is the 1σ level of

confidence (see Fig. 5). All points with wrms > wrms 1σ are located

in the dashed region outside this curve. In grey-scale, we also show

the results of the dynamical analysis. The small white region in the

top left-hand part of the plot corresponds to initial conditions which

lead to stable ACR solutions with amplitudes of libration less than

30◦. The grey colouring indicates increasing amplitudes (numerical

values shown in labels), while the darkest grey marks the location

of all dynamically unstable solutions.

In the bottom frame of Fig. 6 we have plotted (open circles)

the location in the (k2, h2) plane of all the best fits obtained with

successive elimination of data points (jackknife). The large filled

triangles correspond to two stable solutions (fits II and III) from
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Figure 6. Top: In the (k2, h2)= (e2 cos � 2, e2 sin � 2) plane, the large filled

circle shows the best fit (smallest wrms) for N = 165 data points. The closed

continuous curve marks the limit of the region of the 1σ confidence level.

In grey-scale we show the dynamical behaviour of all the points in the grid.

White corresponds to stable (0, 0) ACR with amplitudes below 30◦. Darker

tones of grey indicate larger amplitudes. The darkest shade marks unstable

points. Bottom: Open symbols show values of (k2, h2) corresponding to the

best fits obtained for different values of N. Filled triangles represent fits II and

III of Lee et al. (2006), while a filled square is solution B from Ferraz-Mello

et al. (2005a).

Lee et al. (2006), and the large filled square marks the position of

the stable solution B of Ferraz-Mello et al. (2005a). Once again we

note a great diversity of configurations, whose distribution in this

plane is reminiscent of the 1σ level curve. It is interesting to see that

the majority of the best fits correspond to aligned orbits (i.e. � 2 ∼
130◦), quite different from the published best fits.

7 I S T H E R E A T H I R D P L A N E T
I N T H E H D 8 2 9 4 3 S Y S T E M ?

The top and middle frames of Fig. 7 show the date-compensated

discrete Fourier transform (DCDFT) spectra of the residuals O −
C after the best dynamical fits using the CORALIE data (N = 142)
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Figure 7. DCDFT spectra of the O − C remaining after several dynamical

orbital fits. Horizontal dashed lines mark the 99 per cent confidence level.

Top frame corresponds to the CORALIE data (N = 142) once the best two-

planet orbital solution is subtracted. Middle frame was obtained with the

complete CORALIE–Keck data (N = 165). Note a statistically significant

peak with a period of around 900 d. Bottom frame shows the same spectra,

but assuming a three-planet orbital solution.

Table 4. Best three-planet dynamical orbital solution for N = 165.

Parameter HD82943c HD82943b HD82943d(?)

m (MJup) 2.045 1.693 0.508

P (d) 217.88 456.59 934.85

a (au) 0.743 1.216 1.961

e 0.353 0.198 0.579

� (◦) 124.80 288.67 213.56

λ − � (◦) 351.28 218.49 301.26

V0C (m s−1) 46.10

V0K (m s−1) 35.05

wrms (m s−1) 6.005√
χ2 1.051

and the complete CORALIE–Keck observations (N = 165). These

plots were calculated using the DCDFT (Ferraz-Mello 1981) which

allows a treatment of unequally spaced data. In the top and middle

frames the power spectra are normalized so that the total area is unity.

The dashed horizontal line shows the 99 per cent confidence level

estimated using the Quast algorithm (Ferraz-Mello & Quast 1987).

Although no significant periodicity is noticeable in the residuals

with N = 142, there is a marked peak approximately at T = 1000 d

in the middle frame. This apparent periodicity can be appreciated

also in Fig. 2, and seems to correspond to an additional signal in the

RV data.

Table 4 shows the best dynamical fit of the complete data set

assuming three planets in coplanar orbits. The corresponding spectra
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of the residuals are shown in the lower frame of Fig. 7. Note that the

peak at large orbital periods has disappeared and no significant signal

remains. Moreover, the value of
√

χ 2 has decreased from 1.369 to

1.051 while the wrms changed from 7.952 to 6.005. Although this

reduction is striking, the number of free parameters of the regression

has increased from 12 to 17. Thus, we must employ some test to

check whether this decrease in the fitness function is statistically

significant. A simple tool is the so-called Ftest quantity, defined as

Ftest =
(

RSS1 − RSS2

g

)(
N − M1 − 1

RSS1

)
, (4)

where M1 = 12 is the number of free parameters of the original fit,

g = M2 − M1 = 5 and RSSi = χ2
i (N − Mi ) (see Bevington &

Robinson 2003, chapter 11). Comparing the best dynamical solu-

tions for two and three planets, we obtain Ftest = 13.06. The critical

values for the 10, 5 and 1 per cent confidence levels are

F0.1(g, N − M2) ≈ 1.8,

F0.05(g, N − M2) ≈ 2.2,

F0.01(g, N − M2) ≈ 3.1,

(5)

which seems to indicate that the increase in the goodness of the

fit is statistically significant and not solely due to the increase in

the number of free parameters. Together with the elimination of

the peak in the DCDFT spectra, it appears very probable that the

observational data points towards a third planet located roughly with

orbital period in the range of 1000 d.

Unfortunately the best three-planet fit leads (once again) to unsta-

ble motion. The eccentricity of the hypothetical planet (e3 ∼ 0.58)

is very large, making the system very susceptible to close encoun-

ters. However, a marginally stable three-planet solution was found

by Goździewski & Konacki (2006), corresponding to a 2/1 MMR

between the two inner bodies, while the hypothetical third planet

lies in a low-eccentricity non-resonant orbit. A long-term numeri-

cal simulation showed indications of chaotic motion, although no

detectable dynamical instability was perceived in time-scales of the

order of 108 yr.

Even though the stable three-planet fit by Goździewski & Konacki

(2006) is intriguing, and has the advantage of damping the ∼1000 d

signal in the residuals, it is not clear whether it would be consis-

tent with a migration scenario. Recall that if the resonant lock of

HD82943b and HD82943c is the consequence of a large-scale mi-

gration, the same effect should have also induced changes in the

primordial orbit of any hypothetical third planet. To study this sce-

nario, we analysed the dynamical evolution of three planets under

the additional effects of a dissipative exterior force which mim-

icked the effects of planet–disc interactions. An in previous works

(e.g. Beaugé et al. 2006) we chose a Stokes-like drag force with

fixed values for the e-folding times for the semimajor axes and ec-

centricities. In our simulations the exterior force only affected the

two outer planets, and the drag parameters were chosen to guarantee

orbital decay with convergent orbits. The masses of the two inner

planets were chosen as m1 = 1.70MJup and m2 = 1.75MJup, while

the mass of the fictitious outer planet was varied. All orbits were

initially circular, with semimajor axes beyond the respective 2/1

MMR.

Under a wide range of initial conditions and drag parameters,

we found that the three planets evolved towards a double MMR, in

which n1/n2 � 2/1 and the ratio n2/n3 also corresponded to a ratio

of integers. Moreover, in a large majority of the simulations the outer

pair of planets was also trapped in a 2/1 MMR (i.e. n2/n3 � 2/1).

In such cases, the orbits of all three planets showed simultaneous
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Figure 8. Migration of three planets (m1 = 1.70, m2 = 1.75 and m3 = 0.35,

in Jupiter masses), initially in circular orbits with semimajor axes a1 = 4,

a2 = 7 and a3 = 13 au. Convergent migration is modelled with a Stokes-like

drag force acting only on the two outer bodies. After ∼106 yr, all planets are

locked in successive 2/1 MMR displaying small amplitude oscillations of

the resonant angles θ21, θ32 and the difference in longitudes of pericentre.

The resonance angle of the Laplace resonance θL = λ1 − 3λ2 + 2λ3 also

librates. The final configuration corresponds to a double asymmetric ACR.

librations of the corresponding resonant arguments

θ21 = 2λ2 − λ1 − �1,

θ32 = 2λ3 − λ2 − �2, (6)

as well as librations of the difference in longitudes of pericentre

� 2 − � 1 and � 3 − � 2. In other words, the system evolved to-

wards a double ACR. An example of such a simulation is shown in

Fig. 8, where the mass of the outer planet was chosen as m3 = 0.35

MJup. Here the ratio of e-folding times between semimajor axes and

eccentricities was chosen to force equilibrium eccentricities com-

parable to the stable three-planet fit of Goździewski & Konacki

(2006).

Apart from asymmetric librations of the resonant angles θ 21 and

θ 32, we also noted the libration of another angle, defined as

θL = λ1 − 3λ2 + 2λ3. (7)

In satellite dynamics, this is known as the Laplace critical angle,

and three massive bodies displaying libration of θL are said to be

locked in a Laplace resonance. At present, the Galilean satellites Io,

Europa and Ganymede constitute the only known system trapped in

such a configuration (e.g. Ferraz-Mello 1979).

Since our simulations of planetary migration seem to favour or-

bital evolution of three planets into a Laplace resonance, it is plau-

sible to expect that any hypothetical third planet in the HD82943

system should be found in such a configuration. We then modified

our orbital fitting code to include an online dynamical analysis of

the solutions. Apart from incorporating a stability check, we also

placed restrictions in the simulated annealing routine to map only

those regions of the phase space compatible with a Laplace res-

onance. With this resonant orbital fitting code, we then searched

for the orbital configuration that best reproduced the complete RV

data.

The phase space associated to the Laplace resonance is complex,

and appears to be populated with a number of small islands of stable
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Table 5. Best stable three-planet dynamical orbital solution corresponding

to a Laplace resonance (N = 165).

Parameter HD82943c HD82943b HD82943d(?)

m (MJup) 1.703 1.747 0.351

P (d) 218.70 447.50 900.22

a (au) 0.745 1.200 1.912

e 0.361 0.190 0.078

� (◦) 132.32 192.01 116.19

λ − � (◦) 350.15 298.13 27.63

V01 (m s−1) 42.93

V02 (m s−1) 31.74

wrms (m s−1) 7.521√
χ2 1.316

motion surrounded by large chaotic regions of instability. Although

this makes the identification of good stable fits a complicated pro-

cess, we were able to find some satisfactory solutions with signifi-

cant reductions in wrms with respect to the two-planet fit. Table 5

presents our best solution. Even though the mass of the third planet

is slightly smaller than the value given by the best fit, the amplitude

it generates in the RV curve is still much larger than the data error

bars. Finally, it must be noted that our search within the three-planet

model was not exhaustive, and even better configurations may be

possible.

A long-term numerical simulation shows a dynamically stable

solution for time-scales of at least 1 Gyr, with no appreciable secular

change in the eccentricities or amplitudes of libration. Fig. 9 presents

two dynamical maps in the plane (k3, h3) = (e3 cos � 3, e3 sin � 3).

Each was constructed from a grid of 401×401 initial conditions, and

the stable solution of Table 5 is identified by a filled star. Minimum

planetary masses and all other parameters were set equal to the

stable configuration. The grey coding in the top frame is related to

the escape times; dark grey corresponds to unstable initial conditions

that are ejected from the system in a few thousand years, while more

stable orbits are marked in white. In the bottom frame we have

plotted the spectral number obtained from a Fourier analysis of the

integration results (Michtchenko & Ferraz-Mello 2001). Regular

orbits are identified in white, and increasingly chaotic solutions are

shown in darker shades of grey. In black continuous lines we also

show the level curves of constant wrms of each point in the plane.

Note that the stable island is not large, and is limited to low-to-

moderate eccentricities of the hypothetical third planet. Thus, the

region associated to the lowest wrms (see Table 4) lies in the midst

of a large unstable region. The best stable fit (filled star) is located

to one side of the light-coloured island, although all the apparently

regular orbits have very similar values of the fitness function.

Finally, Fig. 10 compares the spectra of the residuals of the best

three-planet fit (broken line) with the best stable fit (broad line)

given in Table 5. The original plot, corresponding to the best two-

planet fit, is shown in thin continuous lines. Although the best stable

orbital solution has a larger value of wrms than the best fit, it is still

able to eliminate the spurious peak at approximately 900 d, and no

statistically significant signal remains in the data.

8 C O N C L U S I O N S

Although it is well known that RV curves of multiplanetary systems

in MMR are difficult to model, HD82943 is a particularly complex

case. Whether this is due to the existence of an additional planet

or to the dynamical characteristics of the resonance relation, the

orbital determination process is extremely sensitive to the data set.

Figure 9. Top: Escape times for initial conditions in the plane (k3, h3) =
(e3 cos � 3, e3 sin � 3) in the vicinity of the stable three-planet solution in

the Laplace resonance (filled star). White indicates no escape, while darker

grey tones show faster ejections. Bottom: Spectral number from a Fourier

analysis of the numerical integration of each initial condition. Regular orbits

are shown in white, while chaotic motion is shown in darker shades. Black

level curves are constant values of the wrms of all initial conditions in the

plane.
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Figure 10. DCDFT Spectra of the O − C after three different orbital fits,

considering the complete observational data set. Horizontal grey line marks

the 99 per cent level of confidence. Although the stable orbital configuration

in the vicinity of the Laplace resonance yields a larger wrms than the best

three-planet fit, the peak around 900 d is practically eliminated, and no

statistically significant signal remains.

C© 2008 The Authors. Journal compilation C© 2008 RAS, MNRAS 385, 2151–2160



2160 C. Beaugé et al.

This lack of robustness is so pronounced that the elimination of a

single data point can change the location of the best fit and lead to

widely different solutions.

An analysis of the shape of the fitness function in the (k2, h2) plane

shows the existence of two local minimum of wrms for several data

sets; the relative strength of each minimum varies with N, leading

to one or the other being identified as the best fit at different times.

However, in all cases the configuration with minimum wrms invari-

ably leads to dynamical instability. None the less, stable solutions

have been found in their vicinity, all consistent with apsidal corota-

tions (ACR) in which both the resonant angle and the difference in

longitudes of pericentre oscillate around zero.

There is some intriguing evidence indicating the possible exis-

tence of a third planet in the HD82943 system, with approximately

half a Jupiter mass and an orbital period of ∼900 d. Stability consid-

erations and simulations of planetary migration both point towards

a Laplace resonance, where all three planets would be locked in

successive 2/1 MMR and double asymmetric ACR. However, the

complete observational interval only covers about twice the orbital

period of the hypothetical outer body; consequently more data are

required to confirm this result.

Finally, it is important to stress caution against the use of sta-

ble solutions of resonance exoplanetary systems as evidence for (or

against) different formation mechanisms. Although HD82943 may

be an extreme case, it does serve as an example of just how unde-

pendable orbital fits can be, even those consistent with stable motion

and small residuals. Although it appears almost certain that these

planets are located inside the 2/1 MMR, the actual location of the

system inside the commensurability is very difficult to establish.

Moreover, there is no guarantee that new observations will not lead

to (perhaps) significantly different orbital solutions.
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