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Abstract

In this paper we study properties of the estimators of marginal mean parameters in the GEE1 approach of Heagerty and Zeger
[Heagerty, P.J., Zeger, S.L., 1996. Marginal regression models for clustered ordinal measurements. J. Amer. Statist. Assoc. 91,
1024–1036] for clustered ordinal data. We consider two aspects: coverage probabilities and efficiency. The first point was tackled
by a simulation study, calculating empirical levels of confidence intervals for regression parameters using different sample sizes.
We showed that the difference between empirical and nominal levels widens when sample size decreases, especially when the
probability for a given response category is low in a group of clusters with the same covariate vector. We studied asymptotic
efficiency for the case of an independence working specification in relation to a correctly specified exchangeable association
structure. We extended to ordinal measurements the results derived for binary outcomes, sustaining that the loss of efficiency
depends both on the intensity of the association between responses and the design matrix. For equal cluster sizes, we showed that
relative efficiency is high when responses are independent, when covariates are mean-balanced, or when all covariates are constant
within clusters. However, relative efficiency noticeably declines with increasing association for non-mean-balanced within-cluster
covariates. Simulation studies also supported these conclusions for data with an approximately exchangeable association structure.
c© 2007 Elsevier B.V. All rights reserved.

1. Introduction

Clustered data are frequent in biological and medical experimental research. This includes longitudinal studies,
where individuals are observed over time (Agresti, 2002; Diggle et al., 2002) or for other dimensions such as distance
to some origin (Singer and Andrade, 1986), and also in family studies (Ziegler et al., 1998; Yan and Fine, 2004). In
this context, Liang and Zeger (1986) proposed the generalized estimating equations (GEE) approach, which not only
models the marginal means in terms of covariates but also incorporates the association between cluster responses.

Several GEE alternatives have been proposed. GEE1 approaches consider association as a nuisance characteristic,
with the main interest residing in relating marginal means to covariates. When association is also focused on, GEE2
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methods (Zhao and Prentice, 1990; Prentice and Zhao, 1991; Liang et al., 1992; Heagerty and Zeger, 1996; Yan and
Fine, 2004) offer higher efficiency in the estimation of association parameters, but are computationally costly and
association structure has to be correctly specified to consistently estimate marginal mean parameters, which is not
necessary in GEE1 (Liang et al., 1992; Carey et al., 1993; Heagerty and Zeger, 1996; Ziegler et al., 1998; Huang
et al., 2002). A third alternative known as ALR (Alternating Logistic Regressions) (Carey et al., 1993; Heagerty and
Zeger, 1996) is similar to GEE1, but includes some modifications in the estimating mechanism.

Clustered ordinal data are a particular case. However, since an ordinal outcome has a multivariate representation,
covariates need to be rearranged and the working correlation matrix has to account for the correlation structure of
the multinomial distribution (Ziegler et al., 1998). GEE approaches marginally assume a cumulative model. Global
odds ratios (Williamson et al., 1995; Heagerty and Zeger, 1996) are recommended to model association (Dale, 1986;
Fahrmeir and Tutz, 2001), since they are less constrained than correlations, are more easily interpreted and exploit the
ordering of the categories.

In this paper we study some properties of the estimators of marginal mean parameters in the context of the
GEE1 approach of Heagerty and Zeger (1996) for ordinal data. We focus on two aspects: coverage probabilities and
efficiency. For the first one, we made a simulation study and calculated empirical levels of the confidence intervals
for regression parameters based on the sandwich variance estimator. Lipsitz et al. (1991) studied these coverage
probabilities in binary responses for a sample size of 100. We considered from 20 to 300 clusters, since our aim
was to empirically verify the validity of inferences for different sample sizes. Concerning efficiency, some other
authors have investigated the loss of efficiency that can occur when assuming different working association structures.
However, their studies were confined to continuous or discrete data, principally binary outcomes. Clustered ordinal
data have the extra complexity that observations within each cluster are also multivariate due to their multinomial
nature. Fitzmaurice (1995) highlighted that the degree of efficiency depends on both the strength of association
between responses and the covariate design. In the case of binary data, he showed for cluster-level covariates that
assuming independence does not lead to efficiency loss in relation to exchangeable specification, but for multivariate
normally distributed within-cluster covariates (with intra-cluster correlation r < 1), the relative efficiency declines
with increasing correlation between the responses. Sutradhar and Das (1999) studied relative efficiency for binary
responses with the same covariate pattern, but with the association parameter α for the working specification being
replaced by the limiting value α0 of its estimator. This was extended by Sutradhar and Das (2000) for covariates that
vary within and among clusters, which are assumed to follow a multivariate normal distribution. Mancl and Leroux
(1996) studied asymptotic efficiency by considering an independence working specification in relation to a correctly
specified exchangeable association structure. They showed for the case of constant weights, and thus approximately
for binary data, that relative efficiency is equal to one when responses within clusters are independent, when all
covariates are constant within clusters, or when all covariates vary within clusters but are mean-balanced. For unequal
cluster sizes, efficiency for cluster-level covariates depends also on the coefficient of variation in cluster sizes. In the
present paper, we studied if the efficiency results of Mancl and Leroux (1996) could be extended for ordinal data. We
also examined relative efficiency by simulations for situations with approximately exchangeable association.

This article is organized as follows. Section 2 describes briefly the GEE1 approach of Heagerty and Zeger (1996).
In Section 3 we show the simulation schemes used and the results concerning confidence levels. In Section 4 we
present the study of the efficiency of regression estimators. The final section discusses the results obtained.

2. The model

Let yi =
(
yi1, yi2, . . . , yiTi

)′ represent the vector of ordinal measurements for the i th subject or cluster,
i = 1, . . . , K , where yi t ∈ {1, . . . , C}. Heagerty and Zeger (1996) proposed to use a cumulative model for the
marginal means, that is:

g [E (yi tc)] = θc + x′

i tλ, (1)

where yi tc = Iyi t >c, c = 1, . . . , C − 1, θc is a cutpoint, xi t denotes the covariates associated with yi t , λ is a p × 1
vector of unknown parameters and g is a link function. The association between two observations t and t ′ from the
same cluster is considered using global odds ratios (Dale, 1986), defined as

Ψi(t t ′)(cc′) =
P
(
yi t ≤ c, yi t ′ ≤ c′

)
P
(
yi t > c, yi t ′ > c′

)
P (yi t ≤ c, yi t ′ > c′) P (yi t > c, yi t ′ ≤ c′)

.
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Then, the model for the association is log
(
Ψi(t t ′)(cc′)

)
= e′

i(t t ′)(cc′)
α, where α is a vector of unknown parameters and

ei(t t ′)(cc′) are covariates.

The GEE1 estimating equation for β =
(
θ ′, λ′

)′ results in:

K∑
i=1

D′

i V −1
i

(
y∗

i − pi
)

= 0,

where y∗

i =
(
yi11, . . . , yi1,C−1, yi21, . . . , yi2,C−1, . . . , yiTi ,C−1

)′, pi = E
(
y∗

i

)
, Di = ∂pi/∂β and Vi is the working

covariance matrix of y∗

i , totally specified in terms of β and α. The estimating equation for α is:

K∑
i=1

(
∂σ i

∂α

)′

(var (Si ))
−1 (Si − σ i ) = 0,

where Si =
(
Si(12)(11), . . . , Si(12)(1,C−1), . . . , Si(12)(C−1,C−1), . . . , Si(Ti −1,Ti )(C−1,C−1)

)′
, Si(t t ′)(cc′) = (yi tc − pi tc)

× (yi t ′c′ − pi t ′c′) , σ i = E (Si ) . A block-diagonal matrix can be used as an approximation of var (Si ), using only first
and second moment assumptions.

A Fisher-scoring type algorithm is used to obtain (β̂
′
, α̂′)′. The estimator β̂ is consistent and asymptotically

multivariate Gaussian with covariance matrix(
K∑

i=1

D′

i V −1
i Di

)−1 ( K∑
i=1

D′

i V −1
i var

(
y∗

i

)
V −1

i Di

)(
K∑

i=1

D′

i V −1
i Di

)−1

. (2)

A consistent estimator of (2), known as the robust or sandwich covariance estimator, is obtained by replacing var
(
y∗

i

)
by
(
y∗

i − p̂i
) (

y∗

i − p̂i
)′ and β and α by their estimates. When var

(
y∗

i

)
is correctly specified, then (2) reduces to:(

K∑
i=1

D′

i

(
var

(
y∗

i

))−1 Di

)−1

. (3)

3. Coverage probabilities

In order to study empirically the validity of inferences for the regression parameters in the GEE1 approach of
Heagerty and Zeger (1996), we conducted a simulation study.

Cumulative models, as (1), assume that an observable ordinal variable y with C categories is a categorized version
of an underlying unobservable continuous variable U , considering certain cutpoints θc. That is to say

y = c ⇔ θc < U ≤ θc−1, c = 1, . . . , C, (4)

where −∞ = θC < θC−1 < · · · < θ1 < θ0 = ∞. The most common parameterization supposes that U is related to a
vector of explanatory variables x by

U = −x′λ + ε, (5)

where λ is a vector of parameters and ε is a random variable with distribution function F . Then, the model is:

P (y > c|x) = P (U ≤ θc) = F
(
θc + x′λ

)
.

This formulation of the cumulative model suggests a mechanism for generating ordinal variables from the
categorization of a continuous variable considering some cutpoints, using (4). Thus, we obtained clustered ordinal
simulated data by categorizing correlated normal random variables.

We considered a three-level ordinal response and a single covariate, the model for marginal means being

probit (P (yi t > c)) = θc + xi tλ, i = 1, . . . , K , t = 1, . . . , Ti , c = 1, 2. (6)
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Table 1
Description of the scenarios of the first simulation scheme (mean-balanced or cluster-level covariates)

Independence (ρ = 0)

x(1) x(2) θ

Ia (0, 1.5)′ (1.317, 0.183)′

Ib (0, 0.6, −0.2)′ (0.586, −0.325)′

Ic (0, 0, 0)′ (−2, −2, −2)′ (−0.309, −1.691)′

Id (0, −1, −2, 1)′ (−1, −2, 0, 1)′ (0, −1)′

Association (ρ 6= 0)

ρ x(1) x(2) θ Ψ

Aa 0.2 (0, 0.6, 1.2)′ (0.9,0.3)′ [1.69, 1.95]
Ab 0.5 (0, 0.4, −0.4)′ (−0.2, −0.2, 0.4)′ (0.2, −0.2)′ [4.00, 5.33]
Ac 0.75 (0, 0, 0)′ (0.2,0.2,0.2)′ (0.3, 0.1)′ [11.23, 11.62]
Ad 0.85 (0, −0.02, −0.03)′ (−0.01, −0.02, −0.02)′ (−0.01, −0.03)′ [21.74, 21.81]
Ae 0.92 (0, 0, 0)′ (−0.1, −0.1, −0.1)′ (0.05, −0.05)′ [46.29, 47.68]
Af 0.97 (0, 0.02, 0.04)′ (0.03, 0.01)′ [139.09, 143.22]
Ag 0.4 (0, 0.3, 0.6, 0.3)′ (0.3, 0.4, 0.5, 0)′ (0.45, 0.15)′ [2.93, 3.24]
Ah 0.85 (0, 0, 0, 0)′ (−0.02, −0.02, −0.02, −0.02)′ (−0.01, −0.03)′ [21.74, 21.75]

For simplicity in relating (5) and (6) we used λ = −1. For each scenario (see Section 3.1), we generated 10,000
subsets of K clustered observations in an ordinal scale. For each i , a value for the corresponding vector of clustered
observations was generated through a multivariate normal distribution with mean xi =

(
xi1, . . . , xiTi

)′ and covariance
matrix Σi . The choice of xi and Σi is discussed in Section 3.1. The response was categorized at each t in three classes,
considering two cutpoints θ1 and θ2. To model association, we used independence (Ψi(t t ′)(cc′) = 1) and exchangeable
(log

(
Ψi(t t ′)(cc′)

)
= α) working specifications.

Asymptotic 95% confidence intervals for θc and λ are given, respectively, by:

θ̂c ± 1.96σ̂θ̂c
and λ̂ ± 1.96σ̂̂λ

using the sandwich variance estimator for σ̂θ̂c
and σ̂̂λ. We determined the percentage of times these confidence intervals

included after model fitting the true values used to generate the categories. With 10,000 replicates, we obtained a
precision of ±0.4 (for a confidence coefficient of 0.95). Those empirical confidence levels were calculated for each
scenario in subsets of K = 20, 30, 50, 100 and 300 clusters, in order to evaluate the validity of inferences for different
sample sizes.

3.1. Simulation schemes

In a first scheme of simulations, we considered mean-balanced (xi = xi ′∀i, i ′, with xi =
1
Ti

∑Ti
t=1 xi t ) or cluster-

level (xi t = xi t ′∀t, t ′) covariates and equal cluster sizes (Ti = T ∀i, T = 2, 3, 4). In some cases we stated the same
covariate pattern for each cluster (a special case of mean-balanced covariates), generating K values from N

(
x(1),Σ

)
,

where Σ had diagonal elements 1 and off-diagonal elements ρ, and using those values to generate clustered ordinal
observations according to the cutpoints θ1 and θ2. In other situations we considered two groups of clusters. Specifically,
we generated K/2 values from N

(
x(1),Σ

)
and K/2 values from N

(
x(2),Σ

)
to obtain the ordinal responses, and

therefore the covariates used in (6) being:

xi =

{
x(1), i = 1, . . . , K/2,

x(2), i = K/2 + 1, . . . , K .

Table 1 describes the scenarios considered in the first simulation scheme. Situations (Ia), (Ib), (Ic) and (Id) correspond
to independent observations (ρ = 0), while cases from (Aa) to (Ah) represent measurements with association (ρ 6= 0),
with an approximately exchangeable structure. The values of ρ, x(1), x(2) and θc are indicated and also the interval in
which Ψi(t t ′)(cc′) falls according to that choice, when ρ 6= 0. Scenarios are ordered by intensity of association within
cluster size.
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Table 2
Description of the scenarios of the second simulation scheme (non-mean-balanced within-cluster covariates)

Independence (ρ = 0)

x(1) x(2)

I’a (0, 0.75)′ (0.75, 1.5)′

I’b (−0.2, 0, 0.6)′ (0, 0, 0.4)′

I’c (-2,0,0)′ (−2, −1, −1)′

I’d (0, −1, −1, 1)′ (−2, 0, 0, 0)′

Association (ρ 6= 0)

x(1) x(2) Ψ

A’a (0, 0.6, 0.6)′ (0.6, 1.2, 1.2)′ [1.69, 1.84]
A’b (0, 0.4, 0.4)′ (−0.4, −0.4, −0.4)′ [4.04, 4.57]
A’c (0.2,0,0.2)′ (0.2, 0.4, 0.4)′ [11.23, 12.43]
A’d (−0.02, 0, −0.02)′ (−0.02, −0.02, −0.03)′ [21.74, 21.78]
A’e (−0.1, −0.05, 0)′ (0.1, 0.05, 0)′ [46.29, 51.60]
A’f (0, 0.02, 0.04)′ ( 0.02,0,0)′ [139.09, 143.22]
A’g (0, 0.3, 0.4, 0.3)′ (0.3, 0.4, 0.5, 0.6)′ [2.93, 3.12]
A’h (0, −0.02, −0.04, 0)′ (0, −0.01, −0.01, −0.01)′ [21.74, 21.84]

In a second configuration (Table 2), we considered two groups of clusters with covariates that vary within clusters
but are not mean-balanced, that is, with x(1)

6= x(2) and x(1) or x(2) not having all its components equal. Scenarios
(I’a) to (I’d) and (A’a) to (A’h) are respectively identified with situations (Ia) to (Id) and (Aa) to (Ah) of the first
scheme, with the same values for ρ, θ1 and θ2 being maintained and with the covariate vectors x(1) and x(2) being
small modifications of those from the first scheme.

Finally, we analyzed the unequal cluster sizes case. We considered four situations with different design matrix and
the same values of θ = (0.03, 0.01)′ and ρ = 0.95, with Ψ between 79 and 81:

(i) Mean-balanced covariates:
x(1) = (0, 0.02, 0.04)′ ; x(2) = (0.01, 0.03, 0.03, 0.01)′ .

(ii) Cluster-level covariates, Ti = 3, 4:
x(1) = (0, 0, 0)′ ; x(2) = (0, 0, 0, 0)′ ; x(3) = (0.02, 0.02, 0.02)′ ; x(4) = (0.02,0.02,0.02,0.02)′ .

(iii) Cluster-level covariates, Ti = 2, 10:
x(1) = (0, 0)′ ; x(2) = ( 0,0,0,0,0,0,0,0,0,0)′ ; x(3) = (0.02,0.02)′ ;

x(4) = (0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02)′ .

(iv) Non-mean-balanced within-cluster covariates:
x(1) = (0, 0.02, 0.04)′ ; x(2) = (0.01, −0.01, 0, 0.01)′ .

In (ii) and (iii), we considered four groups of K/4 clusters, each of them with covariate vector x( j), j = 1, . . . , 4.

Values for K of 30 and 50 were changed respectively to 32 and 52 to be divisible by four.
In some scenarios of the first configuration, the cutpoints θc were “population terciles” based on all the observations

in a data subset. For example, for the same covariate vector x = (x1, . . . , xT )′ for all clusters, these values were
calculated by supposing that the T K observations were realizations of a random variable that assumes, with
probability of 1

T , a value from N (xt , 1) , t = 1, . . . , T . Therefore, θc is the solution of 1
T

∑T
t=1 Φ (θc) =

c
3 , c = 1, 2,

where Φ is the standard normal distribution function.
To calculate the value of the global odds ratios for each scenario, it is necessary to note that

Ψi(t t ′)(cc′) =
P (Ui t > θc, Ui t ′ > θc′) P (Ui t ≤ θc, Ui t ′ ≤ θc′)

P (Ui t > θc, Ui t ′ ≤ θc′) P (Ui t ≤ θc, Ui t ′ > θc′)
,

where
(
Ui1, . . . , UiTi

)′ is the multivariate normal random vector used to generate the observations. Therefore,
Ψi(t t ′)(cc′) involves calculating joint probabilities from a bivariate normal random vector with mean (xi t , xi t ′)

′ and
covariance matrix Σi,t t ′ (rows and columns t and t ′ of Σi ). The simplest association structure is “independence”
(Ψi(t t ′)(cc′) = 1 for all i, t, t ′, c, c′), which is equivalent to ρ = 0. For each i , and Ti = 3, say, there are 12 global odds
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Fig. 1. Empirical confidence levels according to sample size for independent simulated data of the first simulation scheme. Solid lines correspond
to θc , and dashed lines to λ. Dotted lines indicate the 95% nominal level.

ratios. If there exists some symmetry in the election of θc and xi t , for example xi2 = xi1 + e, xi3 = xi1 + 2e, θ1 =

xi1 + d, θ2 = xi3 − d, there are at most seven out of the 12 global odds ratios that are different. It also can be shown
that the number of different global odds ratios reduces to five for e = 2d. On the other hand, for fixed covariate vectors
and cutpoints, Ψ increases as ρ increases, and while xi t values get closer, Ψ declines. Also, when cutpoints get closer,
the four global odds ratios associated with each pair t and t ′ get more similar. All these considerations were taken
into account to define scenarios with an approximately exchangeable association structure, and different strengths of
association. That is, values of ρ and xi t (and θc) were varied to cover a wide range of global odds ratio values and also
to get specific covariate designs. As a reviewer suggested, we set the first component of x(1) in the first scheme at 0 in
order to facilitate comparisons between scenarios.

Our simulation studies were implemented in R, version 2.3.1 (R Development Core Team, 2006) and the
corresponding routine for the case of equal cluster sizes (first and second simulations schemes) is available at
http://www.fcm.unc.edu.ar/escuelas/nutricion/catedras/estadistica/cated Estadistica%20y%20Bioestadistica.htm. For
model fitting we used the R function ordgee of package geepack (Yan, 2002), which handles clustered ordinal data
following Heagerty and Zeger (1996). For multivariate normal vector generation, we applied the function rmvnorm of
package mvtnorm (Genz et al., 2006).

3.2. Results

Fig. 1 shows the empirical confidence levels in situations (Ia), (Ib), (Ic) and (Id), considering an independence
working association structure, for sample sizes K = 20, 30, 50, 100 and 300. Fig. 2 corresponds to the situations with
association of the first simulation scheme, using an exchangeable working specification. Similar values of empirical
levels were observed for the corresponding scenarios from the second simulation scheme (results not shown). This
indicates that the behaviour of empirical levels is not related to the design matrix (in the way considered in this
work). That is, for similar values in covariates, coverage patterns do not notably change whether the covariates are
cluster-level, mean-balanced or not. This is also supported by the unequal cluster sizes case (Fig. 3).

The observed patterns for the different parameters are similar within each scenario. On the other hand, it can be seen
in general that the difference between empirical and nominal confidence levels declines as K grows. For K = 300, the
percentage observed is approximately 95% in every case, while for K = 100, it is higher than 90% in most scenarios,
supporting the validity of inferences for these sample sizes in the cases considered.

For situations with association, when global odds ratios are lower than 20, the difference between empirical and
nominal levels is almost insignificant for all sample sizes. However, there is an important increase in that difference
for higher values, specifically in scenarios (Af) and (Ah), where the empirical levels are between approximately 60%
and 70% for K = 30 and are around 40% and 50%, for K = 20. This should indicate that, as the association
grows large, inferences are less reliable for small sample sizes. However, in some independence situations there also
exist noticeable differences when K decreases. Furthermore, it is worth mentioning that we modified some scenarios
varying the strength of association, but letting fixed the other parameters, and similar coverage patterns were obtained,
showing that empirical levels are not linked to intensity of association among responses. It can be noted that smaller
coverage values are observed in situations where P (yi t = c) is low for some c and t within a group. For example,
P (yi t = 2) = 0.008 for all i, t in (Ad), (Af) and (Ah), while in (Aa), where empirical levels are almost 95% for all

http://www.fcm.unc.edu.ar/escuelas/nutricion/catedras/estadistica/cated%5FEstadistica%20y%20Bioestadistica.htm
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Fig. 2. Empirical confidence levels according to sample size for situations with association of the first simulation scheme. Solid lines correspond
to θc , and dashed lines to λ. Dotted lines indicate the 95% nominal level.

Fig. 3. Empirical confidence levels according to sample size for situations with unequal cluster sizes. Solid lines correspond to θc , and dashed lines
to λ. Dotted lines indicate the 95% nominal level.

sample size, the lowest value of P (yi t = c) is 0.184. That may occur since estimation problems arise when some
response category is not well represented in a dataset, and this is more frequent for a low value of the corresponding
probability and worsens when sample size decreases.

It is also remarkable that similar values of empirical levels were obtained in all the situations with association in
both simulation schemes and in the unequal cluster sizes case, using an independence working association structure
(considering only the replicates where the estimation algorithm converged for both independence and exchangeable
working specifications).

4. Efficiency of regression estimators

4.1. Asymptotic relative efficiency under working independence versus true exchangeable association structure

In this section we present the study of the asymptotic efficiency of the estimator β̂ I , using an independence working
specification, relative to β̂Ex , assuming a correctly specified exchangeable association structure. For each element
of β, the asymptotic relative efficiency (ARE) is given by the ratio of the diagonal elements of (3) and (2) (see
Appendix). We considered analogous situations to those presented in the simulation schemes in Section 3, assuming
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Fig. 4. Asymptotic relative efficiency of independence to exchangeable estimator for non-mean-balanced within-cluster covariates and equal cluster
sizes. Solid lines correspond to θc , and dashed lines to λ.

Fig. 5. Asymptotic relative efficiency of independence to exchangeable estimator for situations with unequal cluster sizes. Solid lines correspond
to θc , and dashed lines to λ.

a cumulative probit model (6) for the marginal means, but varying the global odds ratio Ψ from 1 to 200. For all cases
corresponding to the first scheme, the ARE was superior to 0.9 in general, showing that the independence estimator
is almost as efficient as the exchangeable one for cluster-level and mean-balanced covariates and equal cluster sizes,
without taking into account the strength of association. Fig. 4 presents the ARE of each element of β̂ I to β̂Ex for
situations (a) to (h) corresponding to (A’a) to (A’h) in the second configuration. It can be seen that the ARE of λ̂I
to λ̂Ex is equal to one for independent observations (Ψ = 1) and it noticeably decreases as Ψ grows larger, with
values lower than 0.4 for Ψ higher than 50. Therefore, there is an important efficiency loss when covariates vary
within clusters but are not mean-balanced. Regarding the cutpoints, the ARE also declines as Ψ gets larger, but it
is one when the covariates grand mean is zero (as in (e)), and generally high for mean value near to zero. This is
in analogy with the intercept behaviour in GEE models for the case of constant weights, since it can be shown that
relative efficiency is one for independent within-cluster responses, for cluster-level and mean-balanced covariates and
also when the covariates grand mean is zero.

The ARE of β̂ I to β̂Ex for the unequal cluster sizes situations is shown in Fig. 5. For mean-balanced covariates the
ARE is approximately one and also for cluster-level covariates as in (ii). However, when the coefficient of variation in
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Table 3
Relative efficiency of independence to exchangeable estimator for the second simulation scheme (non-mean-balanced within-cluster covariates)

Independence (ρ = 0)

θ1 θ2 λ

I’a 1.000 0.999 1.000
I’b 1.000 1.000 1.000
I’c 1.007 1.013 1.009
I’d 1.000 1.000 1.000

Association (ρ 6= 0)

θ1 θ2 λ

A’a 0.983 0.983 0.972
A’b 0.997 0.998 0.908
A’c 0.738 0.730 0.575
A’d 0.680 0.679 0.498
A’e 1.003 1.003 0.325
A’f 0.911 0.911 0.283
A’g 0.876 0.874 0.820
A’h 0.952 0.952 0.650

cluster sizes is greater, as in (iii) (with Ti = 2 in half of the clusters and Ti = 10 in the other half), the ARE declines as
Ψ increases although covariates are constant within clusters. Finally, for non-mean-balanced within-cluster covariates,
it can be seen that the ARE decreases as association gets stronger.

For all the situations presented above, similar results were obtained assuming an analogous logit cumulative model
for the marginal means (results not shown).

4.2. Simulation study

We wanted to verify if the efficiency results obtained when the true association structure is exchangeable are
also applicable to approximated situations, as in the case of the simulated data presented in Section 3. Then, for
all the scenarios described in Section 3.1 and K = 300, we evaluated the relative efficiency for each parameter by
calculating the ratio of the sample variances of the estimates obtained specifying exchangeable and independence
working association structures. Estimators of β were little biased (the bias was generally in the order of 10−3 and
10−4 and only in a few situations around 10−2) and therefore the efficiency values coincided with those calculated as
the ratio of the sample mean squared errors. The standard error of the mean of β estimates was approximately 10−3

and 10−4 in general, with a maximum value of 0.078.
For the first configuration, the relative efficiency was approximately one in all situations both with cluster-level and

mean-balanced within-cluster covariates.
The relative efficiencies of β̂ I to β̂Ex for the second configuration are presented in Table 3. Clearly, there is

an important reduction in the relative efficiency of λ̂I to λ̂Ex when association gets stronger. For independent data
(Ψ = 1), efficiency is almost one. When Ψ is approximately two, efficiency is a little less than one, but for Ψ around
four, efficiency is slightly higher than 0.9, descending to 0.6 for Ψ between 10 and 20. Finally, values lower than 0.33
can be seen for Ψ higher than 40. As above, it can be observed that relative efficiency of θ̂ I to θ̂ Ex depends on the
association strength and on the covariates grand mean. For example, in (A’e) Ψ is around 50 but covariates mean is
equal to zero, and thus efficiency is almost one. Note also that the values observed in simulations are similar to those
presented in Fig. 4 for the corresponding situation and odds ratio value.

In the unequal cluster sizes case, β̂ I was almost as efficient as β̂Ex in cases (i) and (ii), while for cluster-level
covariates with higher coefficient of variation in cluster sizes (iii), the efficiency was around 0.7 and for non-mean-
balanced within-cluster covariates (iv), it was 0.81 for θ1 and θ2 and 0.261 for λ.

Relative efficiency was also studied for small sample sizes (K = 20, 30, 50, 100). In general it coincided that in
the scenarios where empirical confidence levels differed strongly from nominal ones (see Section 3.2), there were
problems in calculating efficiency for K 6= 300 because some β estimates were extremely large, mainly when using
an exchangeable specification. However, when coverage probabilities were always around 0.95, lower sample sizes
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were needed to obtain efficiency values similar to those for K = 300 (and to the ARE values in Section 4.1). For
example, in scenario (A’g) approximately the same efficiency values were observed for all sample sizes.

5. Discussion

In this article we studied some properties of the estimators of regression parameters in the GEE1 approach of
Heagerty and Zeger (1996) for clustered ordinal data. We focused on this alternative since it includes specific models
for ordinal data, both for marginal means and for association between responses. Furthermore, it uses centered
variables y∗

i − pi in the estimating equation for α instead of y∗

i , as proposed by Williamson et al. (1995), which
results in α estimators that are more efficient and invariant to the codification of the response in the case of binary
data (Heagerty and Zeger, 1996).

In the simulation study, the generation of ordinal data was based on the cumulative probit model formulation,
which assumes an underlying normal variable. For K = 300, the estimation algorithm was successful for both
working specifications. Some convergence problems appeared when sample size got smaller and they worsened
when the probability of getting certain outcome was low within a group of clusters having the same covariate vector.
From our experience, GEE with working independence structure converges much more frequently. Other authors also
reported convergence difficulties for binary data (Lipsitz et al., 1991) and ordinal data with the association modelled
through correlation between category indicator variables (Miller et al., 1993). In those simulation studies, GEE with
an independence structure converged in all replicates, while GEE including some association structures encountered
estimation problems for small sample sizes and/or high association.

The empirical confidence levels for regression parameters were approximately 95% for sample sizes greater than or
equal to 100. The difference between empirical and nominal levels widened when sample size decreased and this rise
was noticeable when the probability for a given response category was low for some t in a group of clusters with the
same covariate vector. Therefore, some caution should be exercised when making inferences when a response category
is not well represented in a dataset, especially with small size samples. In similar studies, but only for binary data,
empirical confidence levels higher than 84% were obtained, for 50 (Carey et al., 1993) and 100 (Lipsitz et al., 1991)
clusters. Furthermore, empirical confidence levels might not be related to either the working association structure used
or the covariates design in the sense considered here (mean-balanced, cluster-level or not).

We also studied asymptotic efficiency of the independence estimator β̂ I relative to the exchangeable estimator
β̂Ex , when the true association structure is exchangeable. We showed that, when responses are independent, when
covariates are mean-balanced or when all covariates are constant within clusters, λ̂I maintains a high efficiency in
relation to λ̂Ex , whatever the strength of the association is. On the other hand, when covariates vary within clusters
but are not mean-balanced, the ARE of λ̂I to λ̂Ex markedly declines as association becomes stronger. These results
are also applicable to the unequal cluster size cases, except for cluster-level covariates, where efficiency declines as
association increases when the coefficient of variation in cluster sizes gets higher. This extends results of Mancl and
Leroux (1996) for the case of ordinal data. Regarding the cutpoints, another situation of high efficiency is when the
covariates grand mean is zero; however, this is less relevant since in applications the interest usually focuses in λ.

Sutradhar and Das (1999, 2000) used the limiting value α0 of the α estimator for the working specification. In our
study, exchangeable was assumed as the true association structure, and independence specification does not require
estimation of an association parameter α. Then, in this case, their approach coincides with that of Fitzmaurice (1995).
In all these articles, the authors also conclude that independent observations within clusters and cluster-level covariates
produce ARE equal to one for binary data, and they show that ARE declines with increasing association between the
responses for normally distributed covariates with zero mean and intra-cluster correlation r < 1.

Our study then supports the affirmation, now also for the case of ordinal measurements, that the degree of efficiency
depends not only on the strength of association but also on the covariate design. Moreover, the simulation study
showed that the results described above are also applicable to data with an approximately exchangeable association
structure.

Circumstances in which assuming independence leads to estimators nearly as efficient as exchangeable ones are
very specific, thus in general it is expected that in practical situations there could be efficiency loss. Therefore, we
agree with Fitzmaurice (1995) in that some effort should be made in modelling association even when it is considered
a nuisance characteristic of the data.
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Appendix

Assuming a correctly specified exchangeable association structure (all global odds ratios equal to Ψ ), a cumulative
probit model (6) for the marginal means and the same covariate vector x = (x1, x2, x3)

′ for every cluster, then var
(
β̂ I
)

and var
(
β̂Ex

)
, following (2) and (3), are given by:

var
(
β̂ I
)

=
1
K

(
D′V −1

I D
)−1 (

D′V −1
I VEx V −1

I D
) (

D′V −1
I D

)−1
and

var
(
β̂Ex

)
=

1
K

(
D′V −1

Ex D
)−1

, where

D =

ϕ (η11) 0 ϕ (η21) 0 ϕ (η31) 0
0 ϕ (η12) 0 ϕ (η22) 0 ϕ (η32)

ϕ (η11) x1 ϕ (η12) x1 ϕ (η21) x2 ϕ (η22) x2 ϕ (η31) x3 ϕ (η32) x3

′

,

VI =

V1 0 0
0 V2 0
0 0 V3

 , Vt =

(
pt1 (1 − pt1) pt2 (1 − pt1)

pt2 (1 − pt1) pt2 (1 − pt2)

)
,

ηtc = θc + xtλ, ptc = Φ (ηtc)

and Φ and ϕ are, respectively, the standard normal distribution and density functions. The elements Vt of VI are
obtained considering that {yi tc} are cumulative indicators of categories. VEx has the same block-diagonal elements of
VI , but the off-diagonal elements are replaced by cov (yi tc, yi t ′c′), for t 6= t ′. After to Williamson et al. (1995), it can
be shown that these values are given by

1
2 (Ψ − 1)

[
1 + (ptc + pt ′c′) (Ψ − 1) − Z(t t ′)(cc′)

]
− ptc pt ′c′ ,

where Z(t t ′)(cc′) =
{
[1 + (ptc + pt ′c′) (Ψ − 1)]2

+ 4Ψ (1 − Ψ) ptc pt ′c′

}1/2
.

In the case of two groups of clusters with covariate vectors x(1) and x(2), var
(
β̂Ex

)
=

2
K (D′

1V −1
Ex1 D1 +

D′

2V −1
Ex2 D2)

−1, where D j and VEx j are as D and VEx above, but with x replaced by x( j), j = 1, 2. In an analogous
way, var

(
β̂ I
)

can be derived. This extends clearly to the case of cluster sizes different from three and unequal cluster
sizes.
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