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1 Introduction

The existence of multi-parametric families of supersymmetric Wilson loops is a remarkable
feature of ABJM theories [1, 2] (see [3] for a review of ABJM Wilson loops). In particular,
there exists a one-parameter family that interpolates between the 1/2-BPS fermionic [4–
6] and the 1/6-BPS bosonic Wilson loops [7]. The former were put in correspondence
with open strings satisfying Dirichlet boundary conditions in all the angular coordinates,
while the latter correspond to imposing Neumann conditions on two directions along a
CP1 ⊂ CP3. Given these maps, it is quite natural to associate the entire parametric family
of Wilson loops with open strings in AdS4 × CP3 satisfying some kind of interpolating
boundary conditions that connect the Dirichlet and Neumann cases. Although a proposal
was put forward in [8], the precise form of these boundary conditions is not completely
understood. One question that remains unanswered is whether the Wilson loops preserve
the full conformal group, and not just scale invariance, for any value of the interpolating
parameter. Thus, discovering instances of interpolating boundary conditions on AdS2
compatible with SL(2;R) conformal symmetry might shed some light on the identification
of the holographic dual for this family of Wilson loops. This is one of the main motivations
for the present work.

The guiding principle for identifying the interpolating boundary conditions is that they
must preserve both supersymmetry and scale invariance. With regard to supersymmetry, it
was shown in [8] that the existence of a rich moduli of supersymmetric boundary conditions
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can be associated to the appearance of massless fermions in the spectrum of IIA strings
in AdS4 ×CP3 (see [9] for the same phenomenon in a different setup). This is contrary to
the case of AdS5 × S5 (cf. [10–12]) where all fermionic fluctuations dual to the 1/2-BPS
Wilson loop in N = 4 SYM are massive. On the other hand, the reason to search for
scale-preserving boundary conditions is that it is expected that each Wilson loop in the
family corresponds to a defect CFT1. This arises from the fact that the Wilson loop vevs
are independent of the interpolation parameter ζ [13, 14]. As argued in [15–17] for the case
of circular loops, the beta function for ζ is proportional to the derivative of the CFT1 free
energy (given by the log of the Wilson loop vev) with respect to ζ. The independence of
the vev on the interpolating parameter can then be interpreted as a sign of scale invariance.

Specifying interpolating boundary conditions that preserve conformal symmetry is a
subtle problem. As is well known, changes in the boundary conditions for fields in AdS
entail deformations of the dual CFT which usually break scale invariance. As an example
consider a massive scalar on AdSd+1 [18–20], whose asymptotic behavior is

φ(z, x) −→
z→0

z∆− (α(x) + · · · ) + z∆+ (β(x) + · · · ) , ∆± = d

2 ±

√
d2

4 +m2R2 . (1.1)

For −d2

4 < m2R2 < −d2

4 + 1, one can impose either Dirichlet or Neumann boundary
conditions, i.e. fix J(x) = α(x) or J(x) = β(x), giving rise to CFT operators with scale
dimensions ∆+ or ∆−, respectively. This range of masses is known as the Breitenlohner-
Freedman (BF) window [21, 22]. Arbitrary combinations of α(x) and β(x) which interpolate
between Dirichlet and Neumann boundary conditions are also permitted, and they can be
seen to correspond to multi-trace deformations of the dual CFT.1 For instance, setting
J(x) = α(x) + χβ(x) as the source describes an interpolation between two fixed points.
Since α(x) and β(x) have different mass dimensions, this choice introduces a dimensionful
parameter χ into the problem. As a result, scale invariance is broken by the boundary
condition and a renormalization group flow in the dual field theory is triggered [24–26].

The case of interest to us is that of massless scalar fields in AdS2, as these account for
the angular fluctuations of the string worldsheet dual to the supersymmetric Wilson loops.
Imposing either Neumann or Dirichlet boundary conditions on them should correspond, in
the dual description, to primary operators in one dimension respecting conformal symmetry.
Indeed, correlation functions for operator insertions using Dirichlet boundary conditions
have been recently computed in [27], finding full agreement with field theory expectations.

The boundary conditions proposed in [8] compensate for the difference in scale dimen-
sions between α(τ) and β(τ) by taking the derivative of α(τ) with respect to the boundary
coordinate τ , rendering the interpolating parameter dimensionless. An integrated version
of that boundary condition reads

J(τ) ≡ cosχα(τ) + 1
2 sinχ

∫ ∞
−∞

dτ ′β(τ ′)sign(τ − τ ′) . (1.2)

1Supersymmetric multi-trace boundary conditions for scalar supermultiplets on AdSd+1 were considered
in [23] for dimensions d = 2 , 3 , 4.
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However, having a dimensionless parameter is not sufficient to guarantee full conformal
invariance at the quantum level. One way of testing if a set of boundary conditions is com-
patible with a given symmetry is by computing correlation functions holographically. As it
turns out, the 2-point functions that result from sourcing the combination (1.2) are consis-
tent with conformal symmetry. To further understand if this invariance is actually present
in the dual defect theory it is important to study higher-point correlation functions, as these
could lead to more stringent tests. Our goal is then to compute holographic 4-point func-
tions associated to interpolating boundary conditions of the type (1.2) and check whether
they respect the conformal structure or not. In particular, for a CFT defined on an infinite
line, a primary operator O(τ) of scale dimension ∆ has a 4-point correlator of the form

〈O(τ1)O(τ2)O(τ3)O(τ4)〉 = G(u)
(τ1 − τ2)2∆(τ3 − τ4)2∆ , u = (τ1 − τ2)(τ3 − τ4)

(τ1 − τ3)(τ2 − τ4) , (1.3)

where G(u) is an arbitrary function of the unique independent cross-ratio, u, that exits in
1d. Full conformal symmetry and not just scale invariance is needed to conclude this.

As we will see, our main result in this paper is that the holographic 4-point function
resulting from the boundary condition (1.2) does not respect the form (1.3). Although this
is not a priori an impediment for its interpretation as the dual to the family of Wilson loops
under scrutiny, it is of interest to consider alternatives that are actually consistent with full
conformal symmetry. Thus, we will allow for the possibility of a second kind of boundary
condition by replacing the sign function in (1.2) with another dimensionless function.

The rest of paper is organized as follows. In section 2 we review the implementation
of boundary conditions through the addition of boundary terms to the action consistent
with the variational principle. We do this for the source (1.2) as well as for an alternative
interpolating boundary condition, also consistent with scale invariance. Section 3 is de-
voted to the computation of Witten digrams in AdS2 using these interpolating boundary
conditions, thus obtaining correlation functions of excitations in a 1d defect in the strong
coupling limit. We first review the computation of the 2-point function and then turn
to the calculation of the 4-point function using the quartic interactions derived from the
Nambu-Goto action. In section 4, we conclude discussing our results.

2 Interpolating boundary conditions

We work in Euclidean AdS2 space with unit radius. In Poincaré coordinates (z, τ) the
metric takes the form

ds2 = 1
z2

(
dτ2 + dz2

)
, z > 0 , −∞ < τ <∞ . (2.1)

To regulate possible divergences the boundary is located at z = ε, the induced metric is
h = ε−2 and the outer normal vector becomes ∂n = −z∂z.

2.1 Variational principle and AdS/CFT

Let us start by reviewing the role that boundary terms and the variational principle play in
the calculation of correlation functions in AdS/CFT [28–31]. Consider a massless complex
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scalar field in AdS2 with action

S0 =
∫
d2x
√
g ∂µφ̄∂

µφ . (2.2)

Setting d = 1 and m = 0 in (1.1) we find that the possible conformal dimensions are
∆− = 0 and ∆+ = 1. The asymptotic expansion then reads

φ(z, τ) = α(τ) + zβ(τ) +O(z2) . (2.3)

Assuming regularity in the bulk (z →∞), the on-shell variation of the action takes the form

δS0 =
∫ ∞
−∞

dτ
√
h
(
∂nφ̄δφ+ ∂nφδφ̄

) ∣∣∣
z=ε

= −
∫ ∞
−∞

dτ
(
β̄(τ)δα(τ) + β(τ)δᾱ(τ)

)
. (2.4)

For massless fields we can safely take the regulating parameter ε→ 0 since no divergences
arise. We learn from (2.4) that S0 is appropriate for a variational problem in which the
function α(τ) is fixed; only then does (2.2) have an actual extremum when �φ = 0. This
corresponds to the usual Dirichlet boundary conditions in AdS. Moreover, according to the
AdS/CFT dictionary, the 1-point function (or vev) of the dual operator OD in the presence
of the source JD ≡ α is

〈ŌD(τ)〉 ≡ − δSD[J ]
δJD(τ) = β̄(τ) , SD ≡ S0 . (2.5)

Alternatively, Neumann boundary conditions require the addition of the boundary term

SNbdry = −
∫ ∞
−∞

dτ
√
h
(
φ∂nφ̄+ φ̄∂nφ

) ∣∣∣
z=ε

=
∫ ∞
−∞

dτ
(
α(τ)β̄(τ) + ᾱ(τ)β(τ)

)
. (2.6)

Evaluating the action on-shell one finds

δ
(
S0 + SNbdry

)
=
∫ ∞
−∞

dτ
(
ᾱ(τ)δβ(τ) + α(τ)δβ̄(τ)

)
. (2.7)

Hence, the 1-point function of the dual operator ON sourced by JN ≡ β is

〈ŌN (τ)〉 ≡ − δSN [J ]
δJN (τ) = −ᾱ(τ) , SN ≡ S0 + SNbdry . (2.8)

The possibility of imposing either boundary condition is due to the fact that a massless
scalar field in AdS2 lies inside the BF window.

2.2 Local and non-local boundary conditions

Generically, Dirichlet and Neumann boundary conditions are compatible with the isome-
tries of AdS2, leading to correlation functions that exhibit 1d conformal symmetry. More-
over, when appropriately combined with fermionic fields, they also respect supersymme-
try [32]. In this paper we explore boundary conditions that interpolate between the Dirich-
let and Neumann cases while preserving scale invariance, and wonder whether they are
consistent with the full conformal group.
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To achieve our goal we need a well-posed variational problem in which the boundary
source J(τ) combines the two fall-off functions α(τ) and β(τ) in a suitable way. Since
these fields have different mass dimensions, directly adding them necessarily breaks scale
invariance [24, 33]. A specific AdS2 interpolation of this kind was considered in [10] and
interpreted as a Renormalization Group flow in the dual CFT1. As shown in [8], however,
the difference in scale dimensions can be compensated by combining β(τ) with the deriva-
tive of α(τ) or, more conveniently (for reasons that will become clear below), α(τ) with
an integral of β(τ). Following these insights, we propose boundary conditions defined by
fixing the combination2

J(τ) ≡ cosχα(τ) + sinχ
∫ ∞
−∞

dτ ′β(τ ′)g(τ − τ ′) , (2.9)

where χ ∈
[
0, π2

]
is an interpolating parameter and g(τ) is a real dimensionless function we

will promptly identify. Equation (2.9) includes (1.2) as a particular case; it also enables
us to define alternative interpolating boundary conditions. The main requisite is that g(τ)
satisfy the closure relation∫ ∞

−∞
dτ ′′∂τg(τ − τ ′′)∂τ ′g(τ ′ − τ ′′) = δ(τ − τ ′) , (2.10)

which allows us to implement the boundary condition in the variational problem via3

Sbdry ≡ − cosχ sinχ
∫ ∞
−∞

dτ

∫ ∞
−∞

dτ ′
(
β̄(τ)β(τ ′)− ∂τ ′ᾱ(τ ′)∂τα(τ)

)
g(τ − τ ′)

+ sin2 χ

∫ ∞
−∞

dτ
(
ᾱ(τ)β(τ) + α(τ)β̄(τ)

)
. (2.11)

Alternatively, this can be written as

Sbdry = − tanχ
∫ ∞
−∞

dτ

∫ ∞
−∞

dτ ′
(
β̄(τ)β(τ ′)− ∂τ ′ J̄(τ ′)∂τJ(τ)

)
g(τ − τ ′) . (2.12)

Neglecting a total τ -derivative the variation of the on-shell action then reads

δ (S0 + Sbdry) = −
∫ ∞
−∞

dτ
(
〈Ō(τ)〉δJ(τ) + 〈O(τ)〉δJ̄(τ)

)
, (2.13)

where

〈Ō(τ)〉 ≡ cosχ β̄(τ) + sinχ
∫ ∞
−∞

dτ ′∂τ ′ᾱ(τ ′)∂τg(τ − τ ′) . (2.14)

We see that S0+Sbdry is the appropriate action for the variational problem at hand, namely,
that in which the combination (2.9) is fixed. Moreover, according to the AdS/CFT dictio-
nary, the 1-point function of the dual operator sourced by J(τ) is given by expression (2.14).
As χ varies, the source and vev interpolate between the Dirichlet case and a g-transformed

2In the following, the Cauchy principal value is implicit in all integrals in order to deal with divergences
at τ = τ ′.

3Recall that in Euclidean signature hermitian conjugation acts as f̄(τ) ≡ f(−τ)∗. It is easy to see
that (2.11) is real.
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version of the Neumann case (see discussion at the end of this section). We remark that
in the AdS/CFT correspondence boundary actions are defined only up to arbitrary func-
tionals of the sources. In writing (2.11) and (2.12) this ambiguity was fixed by demanding
that not only J(τ) has the correct Dirichlet and Neumann limits, but also 〈Ō(τ)〉 does. As
a consistency check, notice that Sbdry vanishes for χ = 0 and reduces to SNbdry for χ = π

2 .
Some comments regarding the function g(τ) are now in order. We consider two alter-

natives, dubbed local (L) and non-local (NL):

g(τ) =


1
2sign(τ) , L

1
π

ln (|τ |) , NL

⇒ ∂τg(τ) =


δ(τ) , L

1
πτ

, NL
. (2.15)

This terminology stems from the fact that upon taking a derivative of (2.9) we obtain

∂τJ(τ) =


cχ∂τα(τ) + sχβ(τ) , L

cχ∂τα(τ) + sχβ̂(τ) , NL
, 〈Ō(τ)〉 =


cχβ̄(τ) + sχ∂τ ᾱ(τ) , L

cχβ̄(τ) + sχ∂τ ˆ̄α(τ) , NL
.

(2.16)
Here we have abbreviated cχ = cosχ and sχ = sinχ, and denoted by β̂(τ) the Hilbert
transform of β(τ), defined as (see appendix A)

β̂(τ) ≡ 1
π
p.v.

∫ ∞
−∞

dt
β(t)
τ − t

. (2.17)

So, even though the current in (2.9) sources a non-local combination of α(τ) and β(τ), its
derivative is local in these fields for the L choice of boundary conditions. The same is true
for the vev in (2.16). As mentioned above, the L boundary condition is equivalent to one
of the cases considered in [8]. The NL alternative is a new (non-local) boundary condition
for massless fields on AdS2 that, as we will see, preserves the conformal invariance in the
dual CFT1.

The Hilbert transform is a mathematical tool widely used in signal processing and other
areas of physics [34], and its appearance in the present setting is quite natural. Recall that
the fall-off fields α(τ) and β(τ) become linked by regularity of φ(z, τ) in the interior of AdS
(z →∞). Indeed, the most general regular solution to the equation of motion �φ = 0 can
be written as

φ(z, τ) = 1√
2π

∫ ∞
−∞

dw e−|w|z+iwτ φ̃(w) , (2.18)

with φ̃(w) an arbitrary function. Using the fact that the Hilbert transform takes eiwτ 7→
−i sign(w)eiwτ , it is straightforward to see that

∂zφ̂(z, τ) = ∂τφ(z, τ) ⇒ β̂(τ) = ∂τα(τ) . (2.19)

Since β̂(τ) and ∂τα(τ) are locally related for regular solutions, it seems reasonable to
combine them as in (2.16).
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3 Correlation functions at strong coupling

We now move on to study the tree-level correlation functions that result from applying the
AdS/CFT dictionary to the interpolating boundary conditions introduced in the previous
section. To this purpose we consider the dynamics arising from the fluctuations of a type
IIA open string around an AdS2 ⊂ AdS4×CP3 classical worldsheet. The bosonic spectrum
includes two transverse fluctuations in AdS4 with m2 = 2 and six fluctuations along CP3

with m2 = 0. We identify the scalar field discussed in previous section with a complex
combination of these massless excitations, which can be put in correspondence with certain
components of the displacement (super) multiplet along the Wilson loop. The expansion
of the Nambu-Goto action to fourth order in the effective string tension was performed
in [27]. Interestingly, the quartic interactions involve derivatives of the field. This forces
us to revisit the variational problem and modify the definition of the source and vev.
Performing a first principles derivation of the 4-point function (relegated to appendix C)
we verify that the standard prescription in terms of Witten diagrams remains valid once
the appropriate boundary terms are added to the action.

Before we proceed with the calculation of holographic correlation functions, let us
explain how the Dirichlet and Neumann results can be recovered as limiting cases of our
proposed interpolating boundary conditions. From (2.9) and (2.14) we immediately see that

JD(τ) = J(τ)
∣∣∣
χ=0

, 〈ŌD(τ)〉 = 〈Ō(τ)〉
∣∣∣
χ=0

, (3.1)

so the χ = 0 limit will yield correlators corresponding to Dirichlet boundary conditions,
for both the L and NL choices. On the other end of the interpolation, however, neither the
source nor the vev directly reduce to their Neumann counterparts. Instead, the relation
involves a derivative/Hilbert transform, namely,

JN (τ) =


∂τJ(τ)

∣∣∣
χ=π

2

L

−∂τ Ĵ(τ)
∣∣∣
χ=π

2

NL
, ∂τ ŌN (τ) =


−Ō(τ)

∣∣∣
χ=π

2

L

ˆ̄O(τ)
∣∣∣
χ=π

2

NL
. (3.2)

The connection between our proposal and the standard Neumann boundary conditions is
found by considering J ′(τ) ≡ ∂τJ(τ) as the source when computing correlation functions.
After all, we can always integrate by parts and write

δS ∼
∫ ∞
−∞

dτ〈Ō(τ)〉δJ(τ) =
∫ ∞
−∞

dτ〈Ō′(τ)〉δJ ′(τ) , (3.3)

with 〈Ō(τ)〉 = −〈∂τ Ō′(τ)〉. The problem with the J ′(τ)-approach is that the dual op-
erators Ō′(τ) have “∆O′ = 0”, meaning they are not well-defined primaries (cf. (3.15)).
Using J(τ) as the source, on the other hand, yields correlators for the derivatives of such
operators, O(τ) = −∂τ Ō′(τ), which are proper primaries with ∆O = 1. In general, the
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relation between the two sets of correlation functions follows from noticing that, formally,4

δ2nS[J ]
δJ̄(τ1) · · · δJ(τ2n)

= (−1)n ∂2n

∂τ1 · · · ∂τ2n

(
δ2nS′[J ′]

δJ̄ ′(τ1) · · · δJ ′(τ2n)

)
, (3.4)

where S′[J ′] ≡ S[J ], up to total boundary derivatives. Therefore,

〈O(τ1) · · · Ō(τ2n)〉 = (−1)n〈∂τ1O′(τ1) · · · ∂τ2nŌ′(τ2n)〉 = 〈∂τ1O′(τ1) · · · ∂τ2nO′(τ2n)〉 . (3.5)

The NL choice in (3.2) also suggests considering the operators obtained by taking the source
to be the derivative of the Hilbert transform, i.e. J ′′(τ) ≡ −∂τ Ĵ(τ), in which case one has

δS ∼
∫ ∞
−∞

dτ〈Ō(τ)〉δJ(τ) =
∫ ∞
−∞

dτ〈Ō′′(τ)〉δJ ′′(τ) , (3.6)

with 〈Ō(τ)〉 = −〈∂τ ˆ̄O′′(τ)〉. An analogous application of the chain rule as in (3.4) gives

〈O(τ1) · · · Ō(τ2n)〉 = 〈∂τ1Ô′′(τ1) · · · ∂τ2n
ˆ̄O′′(τ2n)〉 = 〈∂τ1Ô′′(τ1) · · · ∂τ2nÔ′′(τ2n)〉 . (3.7)

These relations are crucial for correctly interpreting the χ = π
2 limit of the interpolating

boundary conditions: it will yield correlation functions that are related to those in the
Neumann case by taking the Hilbert transform and/or (NL/L) a derivative with respect
to each of the insertion points. In particular, we expect that

〈O(τ1)Ō(τ2)〉
∣∣∣
χ=π

2

= 〈∂τ1ON (τ1)∂τ2ON (τ2)〉


1 L

−1 NL
, (3.8)

where we have used ¯̂
f(τ) = − ˆ̄f(τ) and that successive Hilbert transforms of f(τ1−τ2) over

τ1 and τ2 give back f(τ1 − τ2). We will confirm this expectation below.

3.1 2-point function

The boundary-to-bulk propagator K(z, τ ; τ ′) for a massless scalar field is defined such that
the regular solution to the equation of motion is expressed as

φ(z, τ) =
∫ ∞
−∞

dτ ′K(z, τ ; τ ′)J(τ ′) , �K(z, τ ; τ ′) = 0 , (3.9)

where J(τ) is the boundary data that is fixed in the variational problem. In the case of
Dirichlet and Neumann boundary conditions they read

KD(z, τ ; τ ′) = 1
π

z

z2 + (τ − τ ′)2 , KN (z, τ ; τ ′) = 1
2π ln

(
z2 + (τ − τ ′)2

)
, (3.10)

and satisfy

KD(z, τ ; τ ′) −→
z→0

δ(τ − τ ′) , ∂zKN (z, τ ; τ ′) −→
z→0

δ(τ − τ ′) , (3.11)

4In Euclidean signature ∂τf(τ) = −∂τ f̄(τ) and ¯̂
f(τ) = − ˆ̄f(τ), hence the factors of (−1)n.
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as appropriate for JD(τ) = α(τ) and JN (τ) = β(τ), respectively. For the case at hand, in
order to comply with the boundary condition (2.9), the propagator must behave as

cosχK(z, τ ; τ ′) + sinχ
∫ ∞
−∞

dτ ′′∂zK(z, τ ′′; τ ′)g(τ − τ ′′) −→
z→0

δ(τ − τ ′) . (3.12)

We readily find

K(z, τ ; τ ′) =


cosχKD(z, τ ; τ ′) + sinχ∂τKN (z, τ ; τ ′) L

KD(z, τ ; τ ′)
cosχ+ sinχ NL

. (3.13)

It is easy to check that

cosχK(z, τ ; τ ′) + sinχ
∫ ∞
−∞

dτ ′′∂zK(z, τ ′′; τ ′)g(τ − τ ′′) = KD(z, τ ; τ ′) , (3.14)

thus verifying (3.12) for both L and NL boundary conditions.
From (2.5) and (2.8) we find that the 2-point functions for Dirichlet and Neumann

boundary conditions are given by

〈OD(τ1)ŌD(τ2)〉 = 1
π

1
(τ1 − τ2)2 , 〈ON (τ1)ŌN (τ2)〉 = − 1

π
ln (|τ2 − τ1|) . (3.15)

In the Neumann case, the dual (∆ON = 0) operator does not transform as a proper primary.
As explained above, it is its derivative that is well-behaved, that is,

〈∂τ1ON (τ1)∂τ2ON (τ2)〉 = −∂τ1∂τ2〈ON (τ1)ŌN (τ2)〉 = 1
π

1
(τ1 − τ2)2 , (3.16)

where we have used that ∂τON (τ) = −∂τ ŌN (τ). Similarly, according to (2.14), the 2-point
functions for the interpolating boundary conditions are

〈O(τ1)Ō(τ2)〉 = 1
π

1
(τ1 − τ2)2 ×


1 L

cosχ− sinχ
cosχ+ sinχ NL

. (3.17)

As advertised, these expressions correctly reproduce the Dirichlet and Neumann limits.
In the version discussed in [8], the L case exhibited a contact term that is now absent
from the 2-point function. This slight difference is explained by the presence of the term
∂τ ′ J̄(τ ′)∂τJ(τ) in the boundary action (2.12). The same term is also responsible for yielding
a vev that appropriately interpolates between β(τ) (Dirichlet) and ∂τα(τ) (Neumann).

3.2 4-point function

The computation of 4-point functions depends on the precise form of the quartic interac-
tions. In the following we consider the Nambu-Goto action expanded around an open AdS2
worldsheet ending on a straight line at the AdS4 × CP3 boundary. The fluctuations along
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the CP3 directions are massless, and we focus on a single complex combination of these.
To fourth order in δX ∼ λ−

1
4φ, the Nambu-Goto action in static gauge becomes [27]

Sλ =
∫
d2x
√
g

[
|∂φ|2 −

√
2
λ

(
|∂φ|2|φ|2 + 1

2 |∂φ|
4
)]

, (3.18)

where gµν is the AdS2 worldsheet metric (2.1), λ = 2T 2 is the ABJM ’t Hooft coupling
and T is the effective string tension.

A crucial aspect of the action (3.18) is that the quartic interactions involve derivatives
of the field. This forces us to revisit the variational problem. Indeed, we now have

δSλ = −
∫ ∞
−∞

dτ (η̄(τ)δα(τ) + η(τ)δᾱ(τ)) , (3.19)

with

η(τ) ≡ β(τ)
(

1−
√

2
λ
|α(τ)|2

)
. (3.20)

As with S0, this action is appropriate for the Dirichlet problem in which α(τ) is fixed. The
natural analogue of Neumann boundary conditions corresponds to fixing η(τ) via

SNbdry =
∫ ∞
−∞

dτ (α(τ)η̄(τ) + ᾱ(τ)η(τ)) . (3.21)

In order to impose our proposal of interpolating boundary conditions we add to Sλ the
term

Sbdry = − cosχ sinχ
∫ ∞
−∞

dτ

∫ ∞
−∞

dτ ′
(
η̄(τ)η(τ ′)− ∂τ ′ᾱ(τ ′)∂τα(τ)

)
g(τ − τ ′)

+ sin2 χ

∫ ∞
−∞

dτ (ᾱ(τ)η(τ) + α(τ)η̄(τ))

= − tanχ
∫ ∞
−∞

dτ

∫ ∞
−∞

dτ ′
(
η̄(τ)η(τ ′)− ∂τ ′ J̄(τ ′)∂τJ(τ)

)
g(τ − τ ′) , (3.22)

with g(τ) as before and

J(τ) ≡ cosχα(τ) + sinχ
∫ ∞
−∞

dτ ′η(τ ′)g(τ − τ ′) . (3.23)

The 1-point function then reads

〈Ō(τ)〉 ≡ cosχ η̄(τ) + sinχ
∫ ∞
−∞

dτ ′∂τ ′ᾱ(τ ′)∂τg(τ − τ ′)

= 1
cosχ

(
η̄(τ) + sinχ

∫ ∞
−∞

dτ ′∂τ ′ J̄(τ ′)∂τg(τ − τ ′)
)
. (3.24)

We see that the derivative nature of the quartic potential not only alters the expression for
the vev but also requires us to modify the definition of the source (cf. (2.9), (2.14), (2.11)).
Fortunately, the modification is quite simple, we just need to replace β(τ)→ η(τ) in every
expression. It is important to mention that the boundary condition (3.23) is now non-linear
in the field and depends on the coupling λ−

1
2 .
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√
2
λ

(
|∂φ|2|φ|2 + 1

2 |∂φ|
4
)O(τ1) Ō(τ2)

O(τ3)Ō(τ4)

Figure 1. Tree-level diagram coming from the expansion of the Nambu-Goto action.

In appendix C we show that, in spite of the above modifications to the source and vev,
the Witten diagram prescription for computing the 4-point correlation function still works
in the usual way: (i) replace each field in the quartic vertex (3.18) by the bulk-to-boundary
propagator K(z, τ ; τ ′) satisfying the appropriate boundary conditions and (ii) symmetrize
the insertion points. The expression arising from the connected diagram depicted in figure 1
is given by√
λ

2 〈O(τ1)Ō(τ2)O(τ3)Ō(τ4)〉 = T (τ1, τ2, τ3, τ4) + (τ1 ↔ τ3) + (τ2 ↔ τ4) + (τ1, τ2 ↔ τ3, τ4) ,

(3.25)
where

T (τ1, τ2, τ3, τ4) = U(τ1, τ2, τ3, τ4) + V (τ1, τ2, τ3, τ4) , (3.26)

and

U(τ1, τ2, τ3, τ4) =
∫
dτdz

z2 ∂µK̄(z, τ ; τ1)∂µK(z, τ ; τ2)K̄(z, τ ; τ3)K(z, τ ; τ4) , (3.27)

V (τ1, τ2, τ3, τ4) = 1
2

∫
dτdz

z2 ∂µK̄(z, τ ; τ1)∂µK(z, τ ; τ2)∂νK̄(z, τ ; τ3)∂νK(z, τ ; τ4) . (3.28)

These integrals can be computed using the method of residues. In terms of the invariant
cross-ratio

u ≡ τ12τ34
τ13τ24

, τij ≡ τi − τj , (3.29)

we find√
λ

2 〈O(τ1)Ō(τ2)O(τ3)Ō(τ4)〉L = A(u)+cos(2χ)B(u)+cos(4χ)C(u)+sin(4χ)S(τi)
2π3τ2

13τ
2
24

(3.30)

+ sin2χcos(2χ)
π3

( 1
τ12τ14

− 1
τ23τ34

)( 1
τ12τ23

− 1
τ14τ34

)
,

and √
λ

2 〈O(τ1)Ō(τ2)O(τ3)Ō(τ4)〉NL = 1
(cosχ+ sinχ)4

A(u) +B(u) + C(u)
2π3τ2

13τ
2
24

, (3.31)
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where

A(u) = − 1
u2(1− u)2 + u− 3

4(1− u)3 ln(u2)− 2 + u

4u3 ln((1− u)2) ,

B(u) = 2
u(1− u) , C(u) = −2− 1

u(1− u) + 1
2 (2u− 1) ln

(
u2

(1− u)2

)
,

S(τ1, τ2, τ3, τ4) = (1− 2u)
[
sign(τ12) + sign(τ23) + sign(τ34) + sign(τ41)

]π
2 . (3.32)

It is possible to write A(u), B(u) and C(u) in terms of conformal invariant D-functions [35].
Also, one can check that the function S(τ1, τ2, τ3, τ4) is invariant under the full conformal
group, including the inversion τ → −1/τ . Unlike u, it is not invariant under τ → −τ and
τ → 1/τ separately. Finally, the terms appearing in the second line of (3.30) cannot be
written in terms of the cross ratio u and therefore spoil the full conformal covariance of
the 4-point function in the L-case. This is the main result of the paper, which we further
discuss in the next section. As expected, the χ = 0 limit reduces to the Dirichlet case. For
χ = π

2 our result coincides with that found in [35] for Neumann boundary conditions.

4 Discussion

Motivated by the existence of a one-parameter family of supersymmetric Wilson Loops
in ABJM theory, in this paper we studied two examples of interpolating scale invariant
boundary conditions for interacting massless scalar fields in AdS2. In order to test if they
preserve full conformal symmetry, we computed 4-point correlation functions holograph-
ically. Quartic interaction terms were derived from the expansion of the Nambu-Goto
action around an open string worldsheet in AdS4 × CP3. These terms involve derivatives
which induce additional boundary terms in the action. We verified that a first-principles
derivation of the 4-point function coincides with the Witten diagrams prescription.

For scalar fields satisfying the L boundary condition, previously discussed in [8], the
expression for the 2-point correlation function (3.17) is conformally covariant. However,
the holographic 4-point function shown in (3.30) cannot be interpreted as that of primary
operators in a CFT1. This failure of conformal covariance is reminiscent of the one found for
the pure Neumann case, studied in [35] in the context of ordinary Wilson Loops in N = 4
super Yang-Mills. In that reference the anomalous factor disappeared after integrating
over the position in S5 around which the Nambu-Goto action was expanded. No such
integration appears to be justified in the ABJM case.

On the contrary, in view of the results (3.17) and (3.31), massless scalars satisfying NL
boundary conditions are dual representations of ∆ = 1 primaries in the defect CFT1. The
values χ = ±π

4 of the interpolating parameter are special: for χ = −π
4 the combination

we source in (2.16) is identically zero, whereas for χ = π
4 the vev of the dual operator in

the presence of non-zero sources vanishes. Notice that these two statements, which are a
consequence of (2.19), are only valid at leading order in λ−1/2. The fact that the 2-point
correlator vanishes for χ = π

4 and becomes negative beyond this point seems puzzling, as
it would imply a violation of unitarity. We claim, however, that in the range π

4 < χ ≤ π
2
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the l.h.s. of (2.9) should be interpreted as the Hilbert transform of the source and not as
the source itself. The physical result is then obtained by transforming back with respect to
τ1 and τ2, a procedure that yields a positive 2-point function. This interpretation becomes
evident at the endpoint χ = π/2, as argued at the begginning of section 3.

The reasons why the 4-point function (3.31) is consistent with conformal covariance
but (3.30) is not are not clear to us at the moment. One difference between the L and NL
boundary conditions, perhaps relevant to understand this issue, is that the former break
invariance under parity transformation τ → −τ whereas the latter do not.

In conclusion, out of the two interpolating boundary conditions we have studied, only
the NL ones lead to conformally covariant 4-point correlation functions of primary opera-
tors. The failure of conformal covariance for the L-boundary conditions case might appear
surprising, as the interpolating parameter χ is dimensionless and the correlation functions
are consistent with scale invariance. What are the implications of this for the problem
of identifying the dual description of the supersymmetric family of interpolating Wilson
Loops in ABJM theory [1, 2]? In principle, this does not necessarily imply that L-boundary
condition should be rejected or that the NL-boundary condition should be preferred. The
field theory arguments mentioned in the introduction suggest that the interpolating param-
eter in the family of Wilson loops should be regarded as an exactly marginal deformation.5

However, scale invariance does not imply full conformal symmetry. In order to make a more
assertive proposal for the dual representation of the interpolating Wilson loops it would
be necessary to understand the conformal transformation properties in the field theory de-
scription. For example, it would be interesting to study perturbatively 4-point correlations
functions of insertions along those Wilson loops and appraise their conformal covariance in
the field theory side. It was shown in [8] that the L-boundary condition describes config-
urations preserving 4 real supersymmetries, matching the number of supersymmetries of
the interpolating Wilson loops. The consistency of supersymmetry transformations with
the NL-boundary condition is another interesting problem that remains to be explored.

Another more speculative possibility is that, instead of being broken, conformal covari-
ance of the L-boundary condition could be realized in a more intricate way. The anomalous
terms in (3.30), although inappropriate for a 4-point correlation function of primary oper-
ators of scale dimension ∆ = 1, would appear in 4-point functions involving operators of
scale dimensions ∆ = 3/2 and ∆ = 1/2. The appearance of fractional scale dimension for
bosonic excitations could point towards derivatives of fractional order, as the ones defined
in [37]. These describe fields in CFT1 that transform under non-local representations of
sl(2). Therefore, it could be interesting to explore the possibility of relating our L-boundary
condition to excitations in those more generic representations.

Finally, in a general context not related to Wilson loops, one could wonder whether
the interpolating boundary conditions presented here can be generalized to scalar fields
in AdSd+1. Indeed, consider a massive field with ∆+ − ∆− = 1; any other masses for

5This interpretation applies when perturbative computations are done at framing f = 1. Recently, the
same problem was considered with a regularization scheme that uses framing f = 0 [36], in which case the
interpolation was interpreted as an RG flow. An interesting open question is what is in correspondence to
framing in the dual string theory description.
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which ∆+ − ∆− equals a larger integer lie outside the BF window. For the L-choice of
boundary conditions, the τ -derivative could be generalized to a directional derivative on
the d-dimensional boundary. This, of course, would break rotational invariance as well as
the d-dimensional conformal invariance. In order to generalize the NL-boundary condition,
we could use the following non-local first order differential operator:6

√
∇2f(x) ≡ −

Γ(d+1
2 )

π
d+1

2

∫
ddx′

f(x′)
|x− x′|d+1 . (4.1)

Since
√
∂2
τf(τ) = ∂τ f̂(τ) for d = 1, a natural generalization of the NL boundary condition

could be

∂τ Ĵ(τ) = cosχ∂τ α̂(τ)− sinχβ(τ) 7→
√
∇2J(x) = cosχ

√
∇2α(x)− sinχβ(x) . (4.2)

It would be interesting to further analyze these higher-dimensional generalizations and the
correlation functions that can be obtained from them.
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A Hilbert transform

For any function f(τ) the Hilbert transform f̂(τ) is defined as [34]

f̂(τ) ≡ 1
π
p.v.

∫ ∞
−∞

dt
f(t)
τ − t

= 1
π

lim
ε→0

∫ ∞
−∞

dt f(t) (τ − t)
ε2 + (τ − t)2 , (A.1)

where p.v. stands for Cauchy principal value. This can also be written as

f̂(τ) = d

dτ

( 1
π
p.v.

∫ ∞
−∞

dt f(t) ln (|τ − t|)
)

= d

dτ

( 1
2π lim

ε→0

∫ ∞
−∞

dt f(t) ln
(
ε2 + (τ − t)2

))
.

(A.2)
These definitions hold provided that the integrals exists. More generally, one can con-
sider f(τ) to be a distribution. In Fourier space the Hilbert transform is a multiplicative
operator, namely,

F(f̂ )(w) = −i sign(w)F(f )(w) . (A.3)

A few transform pairs are listed in table 1 and some useful properties are shown in table 2.

6This definition follows from the Fourier transform of the Laplace operator.
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Function Hilbert transform

constant 0

δ(τ) 1
πτ

ln(|τ |) −π2 sign(τ)

eiwτ −i sign(w)eiwτ

1
2 ln

(
z2 + τ2

)
− tan−1

(
τ

|z|

)
z

z2 + τ2 sign(z) τ

z2 + τ2

Table 1. Examples of Hilbert transform pairs.

Property Comments∫ ∞
−∞

dτ f̂(τ)g(τ) = −
∫ ∞
−∞

dτ f(τ)ĝ(τ) anti-self adjoint

Function Hilbert transform

f̂(τ) −f(τ) inverse

∂τf(τ) ∂τ f̂(τ) derivative

(f ∗ g)(τ) (f̂ ∗ g)(τ) = (f ∗ ĝ)(τ) convolution

f̄(τ) − ¯̂
f(τ) f̄(τ) ≡ f(−τ)∗

f(τ − a) f̂(τ − a) translations

f(aτ) sign(a)f̂(aτ) rescalings/parity

f(−1/τ) f̂(−1/τ)− f̂(0) inversion

Table 2. Useful Hilbert transform properties.
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B Bulk-to-bulk propagators

In AdS/CFT the computation of tree-level correlation functions involves solving non-linear
equations of motion, which in turn requires knowing both the bulk-to-boundary and bulk-
to-bulk propagators. For a massless scalar field the latter is defined by

�xG(x;x′) = 1
√
g
δ(x;x′) . (B.1)

For the AdS2 metric in conformal gauge (2.1), the Dirichlet and Neumann propagators
coincide with those in flat space,

GD/N (z, τ ; z′, τ ′) = 1
4π
(
ln
(
(z − z′)2 + (τ − τ ′)2

)
∓ ln

(
(z + z′)2 + (τ − τ ′)2

))
, (B.2)

and satisfy

GD(z, τ ; z′, τ ′)
∣∣∣
z=0

= 0 , ∂zGN (z, τ ; z′, τ ′)
∣∣∣
z=0

= 0 . (B.3)

Moreover, they are related to the corresponding AdS2 bulk-to-boundary propagators (3.10)
by

KD(z′, τ ′; τ) = −∂zGD(z, τ ; z′, τ ′)
∣∣∣
z=0

, KN (z′, τ ′; τ) = GN (z, τ ; z′, τ ′)
∣∣∣
z=0

. (B.4)

This follows directly from Green’s third identity

φ(z′, τ ′) = −
∫ ∞
−∞

dτ
(
φ(z, τ)∂zG(z, τ ; z′, τ ′)− ∂zφ(z, τ)G(z, τ ; z′, τ ′)

) ∣∣∣
z=0

, (B.5)

valid for any harmonic function φ on the upper half-plane.
In order to identify the correct boundary conditions for G(x;x′) in the interpolating

case we re-write Green’s identity as

φ(z′, τ ′) =−
∫ ∞
−∞

dτ

[(
φ(z,τ)+tanχ

∫ ∞
−∞

dτ ′′∂zφ(z,τ ′′)g(τ−τ ′′)
)
∂zG(z,τ ;z′, τ ′) (B.6)

−∂zφ(z,τ)
(
G(z,τ ;z′, τ ′)+tanχ

∫ ∞
−∞

dτ ′′∂zG(z,τ ′′;z′, τ ′)g(−τ+τ ′′)
)]∣∣∣∣∣

z=0

,

where we have swapped the order of integration in the last term. Recalling that

�φ = 0 ⇒
∫ ∞
−∞

dτ ∂zφ(z, τ)
∣∣∣
z=0

= 0 , (B.7)

we see that a sufficient condition for the second line in (B.6) to vanish is

∂τ

(
cosχG(z, τ ; z′, τ ′) + sinχ

∫ ∞
−∞

dτ ′′∂zG(z, τ ′′; z′, τ ′)g(−τ + τ ′′)
) ∣∣∣∣∣

z=0

= 0 . (B.8)

The field can then be reconstructed from the boundary data using the bulk-to-boundary
propagator

K(z′, τ ′; τ) = − 1
cosχ∂zG(z, τ ; z′, τ ′)

∣∣∣
z=0

. (B.9)
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The bulk-to-bulk Green’s functions with boundary conditions (B.8) can be found with
the help of the relations

∂τ ′GD/N (z,τ ;z′, τ ′) = ∂z′ĜN/D(z,τ ;z′, τ ′) , ∂z′GD/N (z,τ ;z′, τ ′) =−∂τ ′ĜN/D(z,τ ;z′, τ ′) ,
(B.10)

valid for z > z′, where the Hilbert transforms of the Dirichlet and Neumann propagators
read

ĜD/N (z, τ ; z′, τ ′) = − 1
2π

(
tan−1

(
τ − τ ′

|z − z′|

)
∓ tan−1

(
τ − τ ′

z + z′

))
. (B.11)

Notice that

ĜD(z, τ ; z′, τ ′)− ĜN (z, τ ; z′, τ ′) = 1
π

tan−1
(
τ − τ ′

z + z′

)
(B.12)

is a harmonic function but

ĜD(z, τ ; z′, τ ′) + ĜN (z, τ ; z′, τ ′) = − 1
π

tan−1
(
τ − τ ′

|z − z′|

)
(B.13)

is not. We find that

G(x;x′) =


c2
χGD(x;x′) + s2

χGN (x;x′)− cχsχ
(
ĜD(x;x′)− ĜN (x;x′)

)
L

cχGD(x;x′) + sχGN (x;x′)
cχ + sχ

NL
, (B.14)

where we have abbreviated cχ = cosχ and sχ = sinχ. Satisfyingly, we find from (B.9)
that (B.14) correctly reproduces (3.13).

C First principles derivation of Witten diagrams

According to the AdS/CFT dictionary, at tree-level, the 4-point function in the dual field
theory is given by

〈O(τ1)Ō(τ2)O(τ3)Ō(τ4)〉 = − δ4S[J ]
δJ̄(τ1)δJ(τ2)δJ̄(τ3)δJ(τ4)

= 1
cosχ

δ3η̄(τ4)
δJ̄(τ1)δJ(τ2)δJ̄(τ3)

,

(C.1)
where we have used (3.24) to identify the first derivative of the on-shell action. Notice that
the contact term that renders the 2-point function conformally covariant is linear in J(τ)
and therefore does not affect higher order correlators.

To find the vev as a function of the source we need to solve the non-linear equa-
tion of motion derived from the quartic action (3.18) with interpolating boundary condi-
tions (3.23). We do this perturbatively in the coupling λ−

1
2 by expanding the field as

φ = φ0 +
√

2
λ
φ1 +O(λ−1) . (C.2)
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We find that

�φ0 = 0 , �φ1 = Jbulk , (C.3)

where

Jbulk = −φ0|∂φ0|2 +∇µ
(
∂µφ0|φ0|2

)
+∇µ

(
∂µφ0|∂φ0|2

)
= φ̄0(∂φ0)2 +∇µ

(
∂µφ0|∂φ0|2

)
.

(C.4)
The asymptotic coefficients α(τ) and β(τ) as well as the function η(τ) defined in (3.20) are
also expanded as

α = α0 +
√

2
λ
α1 +O(λ−1) , β = β0 +

√
2
λ
β1 +O(λ−1) , η = η0 +

√
2
λ
η1 +O(λ−1) , (C.5)

with

η0 = β0 , η1 = β1 − β0ᾱ0α0 . (C.6)

Substituting (C.5) into (3.23) we get

cosχα0(τ) + sinχ
∫ ∞
−∞

dτ ′β0(τ ′)g(τ − τ ′) = J(τ) , (C.7)

cosχα1(τ) + sinχ
∫ ∞
−∞

dτ ′β1(τ ′)g(τ − τ ′) = F (τ) , (C.8)

where

F (τ) = sinχ
∫ ∞
−∞

dτ ′β0(τ ′)ᾱ0(τ ′)α0(τ ′)g(τ − τ ′) . (C.9)

As usual, the source J(τ) enters linearly in the boundary condition for φ0. The novel fea-
ture, brought in by the derivative nature of the vertices, is the non-homogeneous boundary
condition for the fluctuation φ1. The classical solution satisfying (C.7) and (C.8) is then
given by

φ0(z, τ) =
∫ ∞
−∞

dτ ′K(z, τ ; τ ′)J(τ ′) , (C.10)

φ1(z, τ) =
∫
dz′dτ ′

z′2
Ḡ(z, τ ; z′, τ ′)Jbulk(z′, τ ′) +

∫ ∞
−∞

dτ ′K(z, τ ; τ ′)F (τ ′) . (C.11)

Here K(z, τ ; τ ′) and G(z, τ ; z′, τ ′) are the bulk-to-boundary and bulk-to-bulk propagators7

introduced in section 3.1 and appendix B. Notice that φ0 and φ1 have the correct asymp-
totics as a consequence of (3.12) and (B.8).

The term η0 = β0 in (C.5) does not contribute to the 4-point function since it is linear
in J . To compute η1 we need

β1(τ) =
∫
dz′dτ ′

z′2
∂zḠ(z, τ ; z′, τ ′)

∣∣∣
z=ε

Jbulk(z′, τ ′) +
∫ ∞
−∞

dτ ′∂zK(z, τ ; τ ′)
∣∣∣
z=ε

F (τ ′) . (C.12)

7The conjugation in G(z, τ ; z′, τ ′) is due to the interchange τ ↔ τ ′. A similar property holds for
K(z, τ ; τ ′).
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The first term requires no further manipulation once we recall the relation (B.9) between
the bulk-to-bulk and bulk-to-boundary propagators. The second term can be simplified by
replacing the definition of F (τ), swapping the order of integration, and using the boundary
condition for K(z, τ ; τ ′). In this process, the δ-function appearing in (3.12) will cancel
against the term β0ᾱ0α0 in η1. Putting these ingredients together yields

η1(τ)
cosχ = −

∫
dz′dτ ′

z′2
Jbulk(z′, τ ′)K̄(z′, τ ′; τ)−

∫ ∞
−∞

dτ ′β0(τ ′)ᾱ0(τ ′)α0(τ ′)K(z, τ ; τ ′)
∣∣∣
z=ε

.

(C.13)
Finally, using the expression (C.10) for φ0 we arrive at

η̄1(τ4)
cosχ = −

∫ ∞
−∞

dτ1dτ2dτ3 J̄(τ1)J(τ2)J̄(τ3)T ′(τ1, τ2, τ3, τ4) , (C.14)

where

T ′(τ1, τ2, τ3, τ4) = U ′(τ1, τ2, τ3, τ4) + V ′(τ1, τ2, τ3, τ4) +W ′(τ1, τ2, τ3, τ4) , (C.15)

and

U ′(τ1, τ2, τ3, τ4) =
∫
dτdz

z2 ∂µK̄(z,τ ;τ1)K(z,τ ;τ2)∂µK̄(z,τ ;τ3)K(z,τ ;τ4) , (C.16)

V ′(τ1, τ2, τ3, τ4) =
∫
dτdz

z2 ∇µ
(
∂νK̄(z,τ ;τ1)∂νK(z,τ ;τ2)∂µK̄(z,τ ;τ3)

)
K(z,τ ;τ4) , (C.17)

W ′(τ1, τ2, τ3, τ4) =
∫ ∞
−∞

dτ ∂zK̄(z,τ ;τ1)K(z,τ ;τ2)K̄(z,τ ;τ3)K(z,τ ;τ4)
∣∣∣
z=ε

. (C.18)

The integrals U ′ and V ′ clearly originate from the bulk current Jbulk, while W ′ arises from
the boundary term in (C.13). With this the 4-point function becomes

〈O(τ1)Ō(τ2)O(τ3)Ō(τ4)〉 = −
√

2
λ

[
T ′(τ1, τ2, τ3, τ4) + (τ1 ↔ τ3)

]
. (C.19)

The equivalence between the above derivation and the standard calculation using Wit-
ten diagrams can be shown by a simple manipulation of the integrals (C.16)–(C.18). Indeed,
one verifies by integration by parts that

U ′(τ1, τ2, τ3, τ4) = −U(τ1, τ2, τ3, τ4)− U(τ1, τ4, τ3, τ2)−W ′(τ1, τ2, τ3, τ4) , (C.20)
V ′(τ1, τ2, τ3, τ4) = −2V (τ1, τ2, τ3, τ4) , (C.21)

where U(τ1, τ2, τ3, τ4) and V (τ1, τ2, τ3, τ4) are defined in (3.27) and (3.28), respectively.
Then, using the manifest symmetry V (τ1, τ2, τ3, τ4) = V (τ3, τ4, τ1, τ2), the 4-point correlator
becomes

〈O(τ1)Ō(τ2)O(τ3)Ō(τ4)〉 =
√

2
λ

[
T (τ1, τ2, τ3, τ4)+(τ1 ↔ τ3)+(τ2 ↔ τ4)+(τ1, τ2 ↔ τ3, τ4)

]
,

(C.22)
with

T (τ1, τ2, τ3, τ4) = U(τ1, τ2, τ3, τ4) + V (τ1, τ2, τ3, τ4) . (C.23)

This is precisely the expression corresponding to the Witten diagram in figure 1.
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