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Abstract—The aim of this work was to use the Partial Least
Squares Regression (PLS) technique to fit simple models for
the interpretation of an underlying complex process. In this
study, the technique was used to build a statistical model for
molecular kinetic data obtained from hemodialyzed patients.
By using PLS we derived statistical linear models for the
prediction of the equilibrated urea concentration which
would be reached 30–60 min after the end of the dialysis
session. Models with an average relative prediction error
(RPE) of less than 0.05% were achieved. The model
predictive accuracy was evaluated in a cross-center study
yielding an RPE<3%. The chosen model was robust to
variations such as sampling extraction time demonstrating a
high capacity for modeling kinetics. It also was found to be
useful for bedside monitoring. Finally, the PLS technique
allowed identification of the most important co-variables in
the model and of those patients with outlier patterns in their
molecular dynamics.

Keywords—Kinetic modeling, Equilibrated urea, Hemodial-

ysis adequacy, Statistical modeling.

INTRODUCTION

Over the last few years, clinical trials related to
diverse molecules as biomarkers of the dialysis process
have been carried out worldwide.9,19,20 There has been
an outstanding technical growth in hemodialysis
technique as well as in the development of mathe-
matical approaches, which have contributed to our
understanding of the kinetics of hemodialysis.7,16

However, statistical modeling of molecular biomarker
behavior, urea being one of the most important, has so
far not been fully addressed.

One of themain problems in dialysis kineticmodeling
is the increase of the blood molecular concentrations

following the dialysis session (‘‘molecular rebound’’). In
the case of urea, the most popular target biomarker, its
equilibrium concentration is reached between 30 and
60 min after the end of the session. Most hemodialysis
adequacy indices used in practice are based on the
molecular concentration at the end of the ses-
sion,5,14,15,23,27–29 although this could lead to inadequate
hemodialysis (HD) dose estimation. By contrast, the use
of an equilibrated concentration of the biomarker pro-
duces a better evaluation of treatment since it is inde-
pendent of marker kinetic behavior.14–16,27 In clinical
practice, waiting for the achievement of the equilibrated
urea concentration is usually impractical. Therefore, the
availability of a model able to predict subject-specific
equilibrated concentration will be very helpful.

Although the kinetics of urea is non-linear, its
extraction from blood follows some exponential family
model as a function of time, we predict its equilibrated
concentration after the end of the treatment session by
means of a linear statistical model. In this study, we
have employed a statistical approach based on PLS
regression to predict equilibrated urea as a function of
three timed samples of urea concentration (measured
at 0, 120, and 240 min into the dialysis session) and
anthropometric data from patients. It is important to
appreciate that the underlying non-linear kinetics of
urea drive the statistical model but that the statistical
model itself may be linear, i.e., the non-linear urea
kinetics only provide data for input into the model; the
model does not attempt to describe those kinetics, only
to predict an outcome.

A linear statistical model is based on linear combi-
nations of unknown parameters which must be esti-
mated from patient data. Statistical models involve
two stages: model identification and estimation. The
first one relies on prior knowledge or basic assump-
tions about the problem at hand resulting in a
hypothesized mathematical structure. The model can
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be expressed as E(Y) = F(X, B), where E(Y) is the
expected value of the output vector, F is a function, X
is a matrix of input variables and B is a vector of
parameters that need to be estimated. In this way a set
of potential mappings has been defined. The second
stage, estimation, includes the selection of a specific
mapping (a ‘proper’ B) from the set of possible ones,
choosing the parameter vector B that performs with
least error (Y - F(X, B)) on the available dataset.18

The basic assumption in our approach for modeling
kinetics was that F was a linear function, i.e., E(Y) =
b1x1 + b2x2 + ÆÆÆ + bpxp. There are several techniques
to find a proper B when using a linear model. However,
many of them, such as ordinary least squares, are very
sensitive to correlated input variables.8 In the case of
equilibrated urea concentration prediction, the input
variables were intradialysis urea concentrations and
anthropometric data, which strongly correlate within a
patient. The multiple co-linearity problem can be
overcome by the technique known as Partial Least
Squares regression (PLS).30 PLS regression not only
generalizes but also combines features from principal
component analysis, to deal with correlated co-variables,
and multiple regression to fit linear models.1,26 It is
particularly useful when one or several dependent
variables (outputs) must be predicted from a large and
potentially highly correlated set of independent vari-
ables (inputs). In this study, PLS regression was applied
to estimate the B coefficients of several linear models in
order to predict the equilibrated urea concentration at
the end of the dialysis session from variables correlated
by patient-specific effects. The input variables were the
intradialysis urea concentrations (U0, U120, U240), the
body weight and ultrafiltration patient data. The linear
approach was good in terms of prediction errors. In
addition, it was easy to apply, particularly when prior
knowledge is limited.

METHODS

The Knowledge Discovery in Data Base (KDD)
strategy was used as the analysis framework.10 Thus,
several steps involving different KDD stages such as
problem/data understanding, collection, cleaning,
preprocessing, analysis-modeling, and results inter-
pretation were implemented.

Data Understanding and Collection

The Patients

One hundred and nine stable patients were selected
from two dialysis units as follows: 61 from Unit 1
(mean age 56 ± 3.5 years and mean time on dialysis
(MTD) 32 ± 12.3 months) and 48 from Unit 2 (mean

age 58 ± 18.0 years and MTD of 42 ± 23.5 months).
All patients were from Buenos Aires, Argentina and
were subjected to chronic HD treatment for at least
3 months. The selection criteria to include patients in
the study were: (1) patients without infection or
hospitalization in the last 30 days; (2) patients with an
A-V fistula (70% autologous fistula and 30% pros-
thetic fistula) with a blood flow rate (QB) of ‡300 mL/
min; and (3) patients having consented to participate
in the study. The study protocol complied with the
Helsinki Declaration and was approved by the Ethical
Committee of the Catholic University of Córdoba.

All patients received HD three times a week with
Baxter� machines (model 1550) using variable bicar-
bonate and sodium. Hollow-fiber polysulfone (Frese-
nius F6 and F8) and cellulose diacetate (FB170 and
210, Nissho Corp.) dialyzers were used. For the pur-
pose of this study, all patients were dialyzed over
240 min and the flows of blood (QB) and dialysate
(QD) were fixed at 300 and 500 mL/min, respectively.

It is known that hemodialysis dose is influenced by
several factors including dialysis time, hemodialysis
schedule, and blood and dialysate flow.6 To decrease
the complexity, such variables were handled externally,
fixing their values to control their effects on the
equilibrated urea prediction model.

The Input and Output Variables

Blood samples were obtained at the mid-week HD
session. They were taken from the arterial line at dif-
ferent times to obtain urea determinations: (1) predi-
alysis urea (U0), at the beginning of the procedure; (2)
intradialysis urea (U120), in the middle of the HD ses-
sion (at 120 min from the beginning); (3) postdialysis
urea (U240), at the end of the HD session.

For the intradialysis urea (U120) and postdialysis
urea (U240), QB was slowed to 50 mL/min and blood
was sampled 15 s later. At this point, access recircu-
lation ceased and the dialyzer inlet blood reflected the
arterial urea concentration.

Regarding the protocols for intradialysis samples, it
is worth noting that originally Smye et al.28 proposed
taking them within 60 min from the beginning of the
session and at 20 min before its finalization. We,
however, decided to take the intradialysis sample
120 min after the beginning of the HD session (U120),
which allowed us to compare our results with those
reported by Ghu et al.15

Urea (U) determinations were performed in tripli-
cate on each blood sample, using two autoanalyzers
(Hitachi 704 in Unit A and Technicon RA 1000 Bayer
in Unit B). The urea averages were calculated and
recorded with an accuracy of 1% for both machines.
For information about the pre- and posttreatment
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status of the patient, we used the pre- and postdialysis
body weights (BW0, BW240). Both variables are com-
monly used in clinical practice to decide the treatment
schedule as well as to calculate the treatment dose.16

These variables were recorded in the same dialysis
session when the blood samples were taken.

The output variable was the equilibrated urea. For
the purpose of this study, the patients were retained
one hour in the dialysis center and the equilibrated
urea levels (Ueq) were extracted 60 min after the end of
HD. The summary statistics for the input and output
variables are shown in Table 1.

Data Preprocessing

The collected input variables (U0, U120, U240, BW0,
and Uf, where Uf = BW0 - BW240) have different
units and ranges so, for the sake of comparison, they
were all standardized.

Data Analysis-Modeling

Model Fitting

We can express the equilibrated urea concentration
for the ith patient in a linear model as:

Ui
eq ¼ lþ b1 �Ui

0 þ b2 �Ui
120 þ b3 �Ui

240 þ b4�
Bwi

0 þ b5 �Ufi þ ei
ð1Þ

where l is the model intercept (overall mean), bj
(j = 1...5) represents the influence of each input vari-
able on the concentration of urea at equilibrium which
needs to be estimated, and ei is the error term associated
to the equilibrated urea recorded in the ith patient.

In matrix form the linear model in Eq. (1) is
expressed as

Y ¼ lþ X � Bþ E ð2Þ

where YN·1 is a N · 1 vector of observed equilibrated
urea from the ‘‘N’’ patients, lN·1 is the vector of a con-
stant value representing the model intercept, XN·p is the

standardized input variable matrix, in this specific case

p = 5andXN�5 ¼ UN�1
0 ;UN�1

120 ;U
N�1
240 ;BW

N�1;UfN�1
� �

.

The parameter vector Bp·1 contains the regression
coefficients (bj) and EN·1 is the vector of error terms.

Generally, B is estimated by means of Ordinary
Least Squares (OLS). However, when the input vari-
ables are correlated, as in this case, the PLS technique
is more appropriate since correlation among input
variables (multicollinearity) could produce instability
in the estimated regression coefficients. Here the coef-
ficients were learned from the data by means of the
PLS regression which described the common structure
between the standardized output (Y) and input vari-
ables (X) in such a way that B maximizes the covari-
ance between them.1 In the PLS algorithm,1,30 X and Y

are expressed as:

XN�p ¼ TN�A � Pp�A� �0 þHN�p ð3Þ

YN�1 ¼ UN�A � C1�A� �0 þ RN�1 ð4Þ

where A £ p and H and R are error matrices. The
columns of T and U (X and Y are ‘‘score’’ matrices)
provide a new representation of the X and Y variables
in an orthogonal space that allows us to estimate
properly the coefficients of B taking into account the
multicollinearity problem.

The columns (factors) of the score matrices are
useful for representing the variability among patients
both in the input and output variables.

The matrices P and C are the projections (‘‘load-
ings’’) of the X and Y columns into the new set of
variables in T and U. The T matrix is calculated as
T = X Æ W where W = U(P¢U)-1. In the PLS algo-
rithm, U and P are built iteratively26 by means of
matrix products between consecutive deflations of the
original matrices X and Y. Thus, the T matrix is also a
good estimator of Y, so

YN�1 ¼ TN�A � C1�A� �0 þ EN�1 ð5Þ

where C1·A is the ‘‘loadings’’ matrix of Y that projects
it over the new space represented by T. The error term
in G represents the deviations between the observed
and predicted responses.

Replacing T in the above equation yields:

Y ¼ X �W � C0 þ E ¼ X � Bþ E ¼ Ŷþ E ð6Þ

where Ŷ is the predicted output.
The number of factors chosen has an impact on the

estimation of the regression coefficients (see below). In
a model with ‘‘A’’ factors, the B coefficients are cal-
culated as follows:

Bp�1 ¼Wp�A C1�A� �0 ð7Þ

TABLE 1. Summary statistics of the patient data distribution.

U0 U120 U240 Bw UF Ueq

Min. 59 31 21 45.3 0 23

1st Qu. 127 64 40 59.4 1.9 50

Median 149 77 49 71.3 2.7 59

Mean 149.5 79.65 53.18 71.81 2.666 62.69

3rd Qu. 169 96 62 83.8 3.3 76

Max. 221 144 98 119 5.5 112

The concentration units are mg/dL and anthropometric units are

kilograms. Min: minimum; 1st Qu: first quantile; 3rd Qu: third

quantile; Max: Maximum.
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Model Evaluation

The database was divided in two sets: the training
set with 65% of the patients (chosen at random), and
the validation set, which contained the remainder. The
training set was used to fit the model via a cross-
validation technique21 with 20 partitions of size n of
this training dataset for choosing the optimal num-
ber of factors. At each run and for models with
none, then one to five PLS factors the Root Mean
Square Error of Prediction was calculated as

RMSEP ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

Pn
i¼1 Ui

eq � Ûi
eq

� �2
r

where Ui
eq is the

observed equilibrated urea and Ûi
eq the predicted one.

The RMSEP reported for each model is the average
value across the 20 runs. To evaluate the relative
importance of the regression coefficients in B, the
Variable Importance on Prediction (VIP) scores4 were
analyzed by means of the leave-one-out method.

Once the model was fitted, the validation dataset
was used to evaluate the adjusted model in a ‘‘real
environment.’’ The following statistics were used as
measures of prediction accuracy: the prediction error
PEi ¼ Ui

eq � Ûi
eq and the relative prediction error

RPEi ¼ 100 PEi
.
Ui

eq

� �
where Ui

eq is the observed
equilibrated urea from the validation dataset.

In clinical practice, the intradialysis extraction time
and the duration of the session may fluctuate. As a
consequence, some variation in the input variables
U120 and U240 could be expected. To simulate this
variation and to evaluate its impact on the prediction,
the adjusted model was tested with perturbed input
variables (U120 and/or U240). The perturbation was
obtained by adding to the original input variables a
normal random noise with zero mean and a standard
deviation equal to 1% or 5% of overall U120 and U240

means. A RPE obtained from the differences between
the prediction with and without perturbation was
calculated.

RESULTS

Model Evaluation

By carrying out an analysis of the first PLS factors,
it was possible to observe the patient variability in a
new orthogonal space, corrected for the multicolline-
arity among input variables. In Fig. 1, the two
X-scores or factors with the highest variance are
shown. They represented 71% of the total X variation
related to Y. In the figure, each point represents a
patient and the label represents the value of the
patient’s equilibrated urea. The first factor (the one
with the highest variance) positively correlated with
the equilibrated urea since the patients with high

equilibrated urea values were those with high positive
values of the factor. In Fig. 1 the dotted lines split the
representation space into meaningful quadrants since
they hold patients with different relationships between
input variable profiles and the Ueq.

Similar to the X-scores (Eq. 3), the Y-scores (Eq. 4)
also provide a view of the observed equilibrated urea in
a new, output, space. The first two factors (Fig. 2) hold
77.6% of the total variance relating Y and X. The first
factor from the Y-scores also correlates with Ueq in a
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the X-score matrix. Each point represents a patient and the
point-label for a given Ueq level.
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positive way. However, in this space it is easy to
observe that one patient’s score behaves very differ-
ently from the rest (patient with Ueq = 95).

Plotting the first X-score against the first Y-score
(Fig. 3), the linear relationship between both spaces
became clear. This observation is in agreement with the
linear relationship assumed between Y and X except for
the patient with Ueq = 95. This patient also behaved
differently in theY-score space, suggesting that he could
be treated as an outlier in Y for the linear model.

A new model was fitted leaving out this particular
patient. The variation in the input and output variables

explained by models with one to five factors is shown
for both the dataset containing all patients and the
dataset without the patient regarded as an outlier
(Table 2). The elimination of the patient with Ueq =
95 only affected the percentage of explained variance
of Y.

Model Selection

As stated above, diminishing the number of factors
in the model (A< p) could benefit the prediction
process by avoiding the inclusion of noise in the B

coefficients. Table 3 shows the RMSEP across all
cross-validation runs. The row named ‘‘Diff’’ con-
tained the expected difference in RMSEP between two
models: one with ‘‘A’’ factors and the other with
‘‘A + 1’’ where A = 0, 1, 2, 3, 4. The number of
factors for the final model was chosen based on the
minimum value of Diff. For both datasets (including
or not the patient with Ueq = 95), the model with 3

components was chosen.

Prediction Accuracy

Results in Table 4 show the performance for all the
models (the chosen one and the remainders) using data
from the validation set. It is important to note that the
model with the first three PLS factors generalized very
well, achieving a PE of 0.75 ± 7.68 mg/dL and RPE
of 0.05 ± 12.95%.

The three PLS factor model yields the following
expression to predict equilibrated urea for a specific
patient:
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FIGURE 3. The plane spanned by the first PLS factor of the
responses (Y) against inputs variables (X).

TABLE 2. Percent of variability in input and output variables explained by PLS models with one to five factors.

PLS factors

PLS model trained with all data

PLS model trained without the Ueq = 95

in the training set

1 2 3 4 5 1 2 3 4 5

Cumulative % of variation for input variables (X) 54.47 71.95 83.45 97.59 100 54.35 71.59 83.43 97.64 100

Cumulative % of variation for output variable (Ueq) 72.73 77.56 79.32 76.64 79.66 81.44 86.41 88.56 88.91 88.93

Models fitted from the whole dataset and excluding an outlier case (patient with Ueq = 95).

TABLE 3. The RMSEP for Ueq prediction models built with none to five PLS factors.

PLS factor

All data PLS model trained without the Ueq = 95 in the training set

None 1 1 & 2 1, 2, 3 1, 2, 3, 4 1, 2, 3, 4, 5 None 1 1 & 2 1, 2, 3 1, 2, 3, 4 1, 2, 3, 4, 5

RMSEP 2.15 1.32 1.10 1.04 1.04 1.05 2.13 1.17 0.85 0.77 0.77 0.78

Diff 0.839 0.22 0.06 0.001 0.006 0.96 0.32 0.08 0.002 0.003

Models fitted from the whole dataset and excluding an outlier case (patient with Ueq = 95).

Diff: difference between models built with A and A + 1 PLS factors.
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Û
i

eq ¼ 1:1547þ 0:0012 �Ui
0 þ 0:2071 �Ui

120

þ 0:8047 �Ui
240 þ 0:0418 � Bwi

0 � 0:4465 �Ufi

ð8Þ

In Fig. 4, the boxplots of the VIP-scores for each
input variable are shown. The boxplots represent the
empirical distributions of the scores measuring the
importance of each variable. They were obtained by a
cross-validation procedure.4 The higher the VIP-score
for a variable, the more important the variable is for
the prediction.4 The box-plots also suggested that U240

was the most important variable in explaining the
equilibrated urea, followed by U120 and U0. By means

of the cross-validation strategy it was demonstrated
that the VIP-scores were stable (small variability)
across different training datasets.

The extraction of an intradialysis sample could be
troublesome since it needs a trained technician and the
implementation of a pump stopping procedure.22,24

For this reason, a model without the U120 concentra-
tion was also built. The summary statistics of the
prediction errors for the reduced model (without U120,
Eq. 9), with different numbers of PLS factors also
suggested that a three PLS factor-based model should
be chosen (Table 5).

The three PLS factors-based models yield the fol-
lowing equation:

Û
i

eq ¼ 2:2058þ 0:0691 �Ui
0 þ 0:9673 �Ui

240

� 0:042 � Bwi
0 þ 0:543 �Ufi

ð9Þ

The model showed above achieved a PE = 0.84 ±
8.05 mg/dL and RPE = 0.04 ± 13.90%, being highly
competitive with the full model.

Many authors include in the adequacy equations the
normalized Uf (Uf divided by the Bw0 weight).

3,5,28 In
this study a model with the normalized Uf was also
fitted by means of a three factor PLS model with the
normalized Uf:

Û
i

eq ¼ 2:9058þ 0:0057 �Ui
0 þ 0:1722 �Ui

120

þ 0:858 �Ui
240 � 0:0257 � Bwi

0 þ 28:3644 � Ufi

Bwi
0

The model yielded similar results (PE = 1.04 ±
7.78 mg/dL and RPE = 0.45 ± 13.09%.) to previous
models. Thus, the normalization of Uf seems to be
irrelevant in this context.

TABLE 4. RMSEP (mg/dL), PE, and RPE for the validation set with models built with one to five PLS factors.

Factors 1 1, 2 1, 2, 3 1, 2, 3, 4 1, 2, 3, 4, 5

RMSEP 7.74 7.59 6.98 7.10 7.12

PE ± Sd 0.60 ± 8.53 0.02 ± 8.39 0.75 ± 7.68 0.96 ± 7.79 0.96 ± 7.79

RPE ± Sd (%) -1.12 ± 14.35 -1.55 ± 14.31 0.05 ± 12.95 0.35 ± 13.02 0.32 ± 13.09

Sd: Standard Deviation.

U0 U240 Bw0 Uf

0.
4

0.
6

0.
8

1.
0

1.
2

1.
4

VIP scores

U120

FIGURE 4. VIP scores distributions for predictor variables
(U0, U120, U240, Bw, and Uf) under a cross-validation test.

TABLE 5. Fitting evaluation criteria for models built with one to four PLS factors, removing the U120 input variable.

Fitting criteria

PLS factors

1 1, 2 1, 2, 3 1, 2, 3, 4

RMSEP 7.58 7.79 7.32 7.36

PE ± Sd 0.73 ± 8.34 0.13 ± 8.61 0.84 ± 8.05 0.98 ± 8.08

RPE ± Sd (%) -0.94 ± 14.79 -1.55 ± 15.34 0.04 ± 13.90 0.23 ± 13.91

Sd: Standard Deviation.
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From the data presented in Table 6 it is possible to
note that the fitted model was robust to variations in
the intradialysis time extraction and session length
(average RPE lesser than 0.6).

The residual density distribution of the fitted model
(Eq. 8) is also shown in Fig. 5. The ‘‘normal-like’’
distribution suggested a random behavior of them.

In Table 7, the PLS model with three PLS factors
(Eq. 8) was compared against a PLS model built with
data from Unit 1 and tested with data from Unit 2 and
vice-versa. It is possible to observe that the PLS model
with three PLS factors was able to generalize well
achieving, in the cross-center test, a maximum RPE of
2.68 ± 14.78% (expressed in absolute units).

DISCUSSION

Molecular dynamics occurring during the dialysis
process are very complex since they can be affected by
different phenomena such as recirculation and volume
sequestration.2,16,17,25 Multiple variables are involved
in the underlying process and most of them are patient-
dependent. These variables display high variability and
co-variability, making their use difficult in the devel-
opment of linear models by the ordinary least squares
(OLS) estimation process. In this paper, we demon-
strate an application of Partial least squares regres-
sion30 to obtain a linear statistical model to predict the
equilibrated urea concentration. The model was based
on correlated hemodialysis variables and anthropo-
metric patient data.

The linear modeling strategy to predict equilibrated
molecular concentrations is not very restrictive on
biological assumptions. It is simpler and easier to
apply than kinetics models which strongly depend on
prior knowledge. Although the underlying molecular
kinetics could well be non-linear, the linear statistical
approach for predicting the equilibrated urea concen-
tration from kinetic and anthropometric patient data
may be good enough in terms of practical prediction
errors.

PLS regression is a powerful tool for building linear
models with correlated input variables such as kinetic
studies where patients are observed several times. PLS
handles multicollinearity among predictor variables by
means of their transformation into a new space (built
by the factors). The linear combination coefficients for
these transformations are obtained in such a way that
the first factors have most of the information (percent
of variation) relating the input variables with the out-
put variables. Moreover, the PLS factors are orthog-
onal among themselves, so the interaction terms
between factors do not need to be accounted for in the
modeling. In addition, the visual representation of
patient variability is free of multicollinearity problems.
The plotting of the first factors allows an analysis of
patient variability based on the simultaneous study of
all predictors and the response. From the analysis
of the VIP scores it is also possible to identify those
variables with greater contributions to the output
explanation. Several statistical approaches can be used
to evaluate linear fitting with regard to its postdictive
and predictive capabilities. The application of the PLS
method is not restricted just to equilibrated urea as a
dependent variable since it is general enough to be
applied to any other biological molecules with an
unknown behavior.

In this study, we have derived a linear statistical
model to estimate the molecular equilibrated concen-
tration at the end of the dialysis session without a need

TABLE 6. Relative Prediction Error under different noise
levels for U120, U240 input variables independently and

simultaneously.

Noise level (%)

U120 U240 Both

Mean ± Sd Mean ± Sd Mean ± Sd

1.00 0.00 ± 0.33% 0.07 ± 0.77% 0.20 ± 0.85%

5.00 0.08 ± 1.59% 0.54 ± 3.99% 0.17 ± 4.44%

Sd: Standard Deviation.
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FIGURE 5. Residuals density distribution for PLS model
fitted with three PLS factors.

TABLE 7. Evaluation of the PLS model with three factors
(Eq. 8) for the mixed and cross-center data analysis.

Mixed data Unit 1 Unit 2

PE ± Sd 0.75 ± 7.68 2.56 ± 10.73 0.0 ± 9.91

RPE ± Sd (%) 0.05 ± 12.95 1.95 ± 14.78 -2.68 ± 14.78

Sd: Standard Deviation.
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to retain the patients for a longer time to take the
equilibrated concentration measure. The VIP analysis
suggested that U240 followed by U120 were the most
important input variables for Ueq prediction. We had
previously reached a similar conclusion using an arti-
ficial neural network (ANN) approach.26 Therefore,
the VIP scores of sample urea concentrations suggest a
correlation over time between urea concentrations.
The last measured ureas have the most important role
in predicting the equilibrated urea, and this is probably
due to the time-dependent kinetic process underlying
the dialysis.13 However, the PLS regression already
accounts for this type of correlation.

The selected model used three PLS factors, which
suggested that in the new space the problem can be
adequately represented with three dimensions. These
factors explained 83% and 79% of the X and Ueq

variance, respectively. On the other hand, it is highly
probable that the residual variance, considering the
random distribution of the residuals, could be attrib-
uted to inherent noise in the data (Fig. 5).

The selected model with all input variables (pre-
dictors) presented in Eq. (8) was very accurate (PE =
0.75 ± 7.68 mg/dL). The model was robust to varia-
tions of the input variables, especially those that could
be affected by different times of measurement such as
U120 and U240. The relative prediction error was small
(RPE = 0.05 ± 12.95%) and had a standard devia-
tion lower than that obtained when other prediction
approaches were applied to the same dataset.14,15,26

Thus, on applying non-linear deterministic27 and
ANN14 approaches to the same dataset to obtain
the predicted Ueq for each patient,10,14 the achieved
RPEs were -12.68 ± 34.3% and -1.88 ± 13.46%,
respectively.

Some authors have used kinetics or adequacy
models with ultrafiltration normalized by body
weight.3,5,6,29 However, such normalization in the fit-
ted linear model did not produce any improvement of
the actual prediction accuracy obtained by using the
raw ultrafiltration data.

Important medical knowledge has been gained from
empirical models using sample data that represent well
the target population. These approaches can also be
statistically validated in several ways. Here, the gen-
eralization capability of the proposed linear model was
also tested by means of a cross-unit test. A PLS-based
model was built, trained with the patients from Unit1
and tested with the patients from Unit 2, and vice-
versa. The relative prediction errors of the PLS-based
model built with patients from Unit 1 and Unit 2
were RPE = 1.95 ± 14.78% and RPE = -2.68 ±
14.78%, respectively. As expected, these RPE were
slightly higher than those achieved using data from
both centers mixed together. However, they were

smaller than those obtained from the neural network
approach in a cross-unit test.14

Using the new space provided by the PLS regression
test, data from patients who behaved differently from
the rest were easily recognized. This information could
be very useful for clinical/treatment analysis of these
patients.

The use of an intradialysis sample (U120) provided
valuable information to predict the equilibrated urea.
Smye et al.27 were among the first to use an intradi-
alysis sample to model Ueq. In clinical practice the
extraction of an additional blood urea sample could be
very problematic. To overcome this limitation, a PLS-
based linear model excluding U120 as predictor can also
be accurately used.

It has been reported that the adequacy of the session
based on the Kt/V equation, recommended by the
National Kidney Foundation Dialysis Outcome
Quality Initiative (DOQI) guidelines22 and the Euro-
pean Renal Association (ERA-guidelines)24 conferred
better results when urea equilibration has occurred or
when good estimation is provided.10–12,14 In this
context, we demonstrate that the PLS-based model can
provide a reliable estimate of the equilibrated urea,
which in turn could be used in dose adequacy
evaluation.
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FERNÁNDEZ et al.



predict equilibrated Kt/V in the HEMO study. Kidney Int.
52:1395–1405, 1997.
7Depner, T. A. History of dialysis quantification. Semin.
Dial. 12(S1):14–19, 1999.
8Draper, N. R., and H. Smith. Applied Regression Analysis,
3rd edn. USA: John Wiley, 1998.
9Eknoyan, G., G. J. Beck, A. K. Cheung, et al. Effect of
dialysis dose and membrane flux in maintenance hemodi-
alysis. N. Engl. J. Med. 347:2010–2019, 2002.

10Fernández, E. Data mining and neural networks for dial-
ysis kinetic analysis. PhD Thesis, Santiago de Compostela
University, Spain (in Spanish), 2003.

11Fernández, E. A., R. Valtuille, J. Presedo, and P. Willshaw.
Comparison of different methods for hemodialysis evalu-
ations by means of ROC curves: from artificial intelligence
to current methods. Clin. Nephrol. 64(3):205–213, 2005.

12Fernández, E. A., R. Valtuille, J. Presedo, and P. Willshaw.
Comparison of standard and artificial neural network
estimators of hemodialysis adequacy. Artif. Organs
29(2):159–165, 2005.

13Fernández, E. A., R. Valtuille, P. Willshaw, and M. Bal-
zarini. Molecular kinetics modeling in hemodialysis: on-line
molecular monitoring and spectral analysis. ASAIO J.
53(5):582–586, 2007.

14Fernández, E. A., R. Valtuille, P. Willshaw, and C. A.
Perazzo. Using artificial intelligence to predict the equili-
brated blood urea concentration. Blood Purif. 19(3):271–
285, 2001.

15Ghu, J., J. Yang, I. U. Chen, and Y. Lai. Prediction of
equilibrated BUN by an artificial neural network in high
efficient hemodialysis. Am. J. Kidney Dis. 3:638–646, 1998.

16Gotch, F. A. Kinetic modeling in hemodialysis. In: Clinical
Dialysis, 2nd edn., edited by A. R. Nissenson, R. N. Fine,
and D. Gentile. Norwalk, CT: Appleton and Lange, 1990.

17Kaufman, A. M., D. Schneditz, S. Smye, H. D. Polaschegg,
and N. W. Levin. Solute disequilibrium and multicom-
partmental modeling. Adv. Ren. Replace. Ther. 2(37):319–
329, 1995.

18Kennedy, R. L., L. Yuchun, B. Van Roy, C. D. Reed, and
R. P. Lippman. Solving Data Mining Problems Through
Pattern Recognition. New Jersey: Prentice Hall, 1998.

19Locatelli, F. Dose of dialysis, convection and hemodialysis
patients outcome – what the HEMO study doesn’t tell us:
the European viewpoint. Nephrol. Dial. Transplant.
18:1061–1065, 2003.

20Locatelli, F., T. Hannedouche, S. Jacobson, et al. The
effect of membrane permeability on ESRD: design of a
prospective randomized multicentre trial. J. Nephrol.
12:85–88, 1999.

21Mevik, B. H., and H. R. Cederkvist. Mean Squared Error
of prediction (MSEP) estimates for principal component
regression (PCR and partial least squares regression
(PLSR). J. Chemomet. 18(9):422–429, 2004.

22NKF-K/DOQI Clinical Practice Guidelines for Hemodi-
alysis Adequacy: update. Am. J. Kidney Dis. 48(S1):S2–90,
2006.

23Roa, L. M., and M. Prado. The role of urea kinetic
modeling in assessing the adequacy of dialysis. Crit. Rev.
Biomed. Eng. 32(5–6):461–539, 2004.

24Section II. Haemodialysis adequacy. Nephrol. Dial. Trans-
plant. 17(S7):16–31, 2002.

25Sharma, A., P. Espinosa, L. Bell, A. Tom, and C. Rodd.
Multicompartmental urea kinetics in well-dialyzed chil-
dren. Kidney Int. 58:2138–2146, 2000.

26Shawe-Taylor, J., and C. N. Kernel. Methods for Pattern
Analysis. Cambridge: Cambridge University Press, 2005.

27Smye, S., J. Tattersal, and E. Will. Modeling the post-
dialysis rebound: the reconciliation of current formulas.
ASAIO J. 45(6):562–569, 1999.

28Smye, S. W., E. J. Will, and E. J. Lindley. Postdialysis and
Equilibrium urea concentrations. Blood Purif. 20:189, 2002.

29Tattersal, J., D. Detakats, P. Chamney, R. Greenwood,
and K. Farrington. The post dialysis rebound: predicting
and quantifying its effect on Kt/V. Kidney Int. 50(6):2094–
2102, 1996.
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