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Abstract

The accurate representation of morphodynamic processes and the ability to propagate changes in the riverbed over a wide range of
space and time scales make the design and implementation of appropriate numerical schemes challenging. In particular, requirements of
accuracy and stability for medium and long term simulations are difficult to meet. In this work, the derivation, design, and implemen-
tation of a discontinuous Galerkin finite element method (DGFEM) for sediment transport and bed evolution equations are presented.
Numerical morphodynamic models involve a coupling between a hydrodynamic flow solver which acts as a driving force and a bed evo-
lution model which accounts for sediment flux and bathymetry changes. A space DGFEM is presented based on an extended approach
for systems of partial differential equations with non-conservative products, in combination with two intertwined Runge–Kutta time
stepping schemes for the fast hydrodynamic and slow morphodynamic components. The resulting numerical scheme is verified by com-
paring simulations against (semi-)analytical solutions. These include the evolution of an initially symmetric, isolated bedform; the for-
mation and propagation of a step in a straight channel due to a sudden overload of sediment discharge; the propagation of a travelling
diffusive sediment wave in a straight channel; and, the evolution of an initially flat bed in a channel with a contraction. Finally, a com-
parison is made between a numerical simulation and field data of a trench excavated in the main channel of the Paraná river near Paraná
city, Argentina.
� 2008 Elsevier B.V. All rights reserved.
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1. Introduction

Quantifying the interaction between sediment transport
and water flow plays an important role in many river and
coastal engineering applications. Traditionally, research
on river processes was primarily based on field observa-
tions and laboratory scale modelling. Laboratory scale
models have been essential for understanding complex river
processes and as design and verification tools, despite their
high cost of construction, maintenance and operation.
Field measurements are also costly and difficult to realize
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especially for large-scale systems. An alternative that has
been growing in popularity and acceptance is mathematical
and numerical modelling of river flows. River modelling is
the simulation of flow conditions based on the formulation
and solution of a mathematical model or a discretization
thereof expressing conservation laws. Predictions of mor-
phodynamic changes of the bed in natural channels inte-
grate different physical mechanisms acting within the
system according to their time response, i.e., we are dealing
with a multi-scale problem. These relevant mechanisms
that drive morphodynamic changes of alluvial rivers are:
(i) hydrodynamics, with conservation laws of mass and
momentum; (ii) bed evolution, with a conservation law
for sediment mass; and, (iii) sediment transport, with
predictors for the sediment carrying capacity of the river.
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The entire system is often referred to as a morphodynamic

model.
There are particular difficulties associated with solving

hyperbolic partial differential equations, including the prop-
agation of sediment bores or discontinuous steps in the bed-
form, which must be overcome by a good numerical scheme.
There exist many different numerical methods to solve the
system of conservation laws of water and sediment. We have
chosen the discontinuous Galerkin finite element method
(DGFEM) for the numerical solution of the morphodynam-
ic model. Among other advantages, the accuracy and local
nature of the numerical scheme make it suitable for these
morphodynamic problems. Furthermore, conservation of
the transported quantity is satisfied on a local or elemental
level. For a DGFEM discretization of hydrodynamic shal-
low water flows, we refer to [1]. Here we extend and refine
that method to include the bed evolution as well. A partly
non-conservative formulation is used that allows the appli-
cation of the unified space and space–time discontinuous
Galerkin discretization for hyperbolic systems of partial dif-
ferential equations with non-conservative products devel-
oped in [2] to solve the entire morphodynamic model. In
our case, the non-conservative product consists of the topo-
graphic terms present in the momentum equations. For the
diffusive term in the bed evolution equation, we used the pri-
mal formulation of [3–5]. Additionally, we made use of
advanced time stepping schemes to deal with the multi-scale
property of the morphodynamic problem. In summary,
novel in this work are: (I) the application of the discontinu-
ous Galerkin finite element discretization to systems with
non-conservative products developed in [2] to solve the
hydrodynamic and bed evolution model; (II) the implemen-
tation of the primal formulation to deal with the downhill
rolling sediment term present in the sediment transport for-
mula; (III) the verification of the results of the DGFEM with
a survey of original (semi-)analytical solutions; and, (IV) the
validation of these computed results against measurements.

The outline of the paper is as follows. The governing
equations and the scaling are introduced in Section 2.
The spatial discretization of the DGFEM is introduced in
Section 3. A time discretization is required to solve the
ordinary differential equations that emerge from the spatial
finite element discretization. Numerical complications arise
due to the presence of a small parameter � in front of the
time derivatives in the depth and momentum equations.
Here, � expresses the ratio of the fast hydrodynamic time
scale and the slow sediment transport time scale. However,
a set of differential–algebraic equations emerges in the limit
�! 0. The essentials of the time stepping procedure for
space DGFEM are described in Section 3.6. In Section 4,
the numerical scheme is verified by comparing simulations
with (semi-)analytical solutions. A comparison between the
numerical model and field data of a trench excavated in the
main channel of the Paraná river (Argentina) is used as val-
idation test in Section 5. At several instances, we also men-
tion the intercomparison of the space DGFEM presented
here with the space–time DGFEM developed in [2], and
extended here to our morphodynamical application. Con-
clusions are drawn in Section 6.

2. Governing equations and scaling

A system of hydrodynamic and bed evolution equations
is introduced. Both the hydrodynamic and morphodynam-
ic components of this system are based on a depth-average
over the water column. We present these hydrodynamic
and morphodynamic components first in separation before
combining them.

2.1. Hydrodynamic shallow water equations

The shallow water equations (SWE) in nearly conserva-
tive form read (cf. [6])

ot�h
� þ $� � ðh�u�Þ ¼ 0;

ot� ðh�u�Þ þ $� � ðh�u�u�Þ þ g$�ðh�2=2Þ
¼ �gh�$�b� � s�b=q

�; ð2:1Þ

where partial derivatives are denoted by ot� ¼ o=ot� and so
forth; $� ¼ ðox� ; oy� ÞT with transpose ð�ÞT; u�ðx�; t�Þ ¼
ðu�ðx�; t�Þ; v�ðx�; t�ÞÞT is the depth-averaged velocity as
function of horizontal coordinates x� ¼ ðx�; y�ÞT and time
t�; and the free surface resides at z� ¼ h� þ b� with
h�ðx�; t�Þ the total water depth and b�ðx�; t�Þ the elevation
of the bottom topography above datum, both measured
along the vertical coordinate z�, and aligned against the
direction of the acceleration of gravity of magnitude g. A
relationship for the bed resistance term s�b ¼ ðs�bx; s

�
byÞ

T

must be specified and the classical quadratic dependency
on the depth-averaged velocity is adopted:

s�b ¼ q�C�f ju�jðu�; v�Þ
T with ju�j ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u�2 þ v�2

p
; ð2:2Þ

a constant friction coefficient C�f , and constant density q�.

2.2. Sediment continuity equation

The evolution of the bed b�ðx�; t�Þ is governed by a sed-
iment continuity equation [7–10]

ot�b
� þ $� � q�b ¼ 0 ð2:3Þ

with volumetric bed load sediment flux q�bðx�; t�Þ ¼
ðq�bx; q

�
byÞ

T through a vertical cross section of the bed. We
adopt a simple power-law form of transport for noncohe-
sive sediment of uniform grain size [7], and include the
downslope gravitational transport component that general-
izes ideas going back to the earlier work of [11]. Thus, we
close (2.3) with

q�b ¼ a�ju�jbðu�=ju�j � j�$�b�Þ; ð2:4Þ

where a� is a proportionality factor including the bed mate-
rial porosity, b a constant, and the diffusive term with
j�$�b� is a bed slope correction term accounting for the
preferred downslope transport of sediment with nondimen-
sional proportionality constant j�. For various slowly



2932 P.A. Tassi et al. / Comput. Methods Appl. Mech. Engrg. 197 (2008) 2930–2947
varying alluvial flows, it has been deduced that 1 < b 6 3.
However, larger values of b may be attained when the bed
is covered by dunes. Most empirical bed load sediment
transport functions available are given in forms akin to
(2.4) with q�b depending monotonically on the flow speed,
and a� constant [12].

Finally, the system (2.1),(2.2),(2.3) and (2.4) is consid-
ered in a bounded domain X � R2. It is completed with ini-
tial conditions h�ðx�; 0Þ; u�ðx�; 0Þ, and b�ðx; 0Þ, and
boundary conditions such as in- and outflow, and/or slip
flow along solid walls. The sediment transport equation
emerges as a mixed hyperbolic and parabolic equation,
and extra boundary conditions are required involving b�

and the sediment flux. Relevant boundary conditions will
be discussed later in the applications.
2.3. Scaling

It is convenient to treat the governing equations in non-
dimensional form for computational reasons and to clarify
the coupling of the hydrodynamics to the dynamics of the
bed. Sediment transport of the bed occurs on a transport
time scale much longer than the flow time scale (cf. [13]).
It is, of course, possible to scale the dimensionless results
back to dimensional results a posteriori, and for a range
of scalings with the same dimensionless numbers.

First, we consider a simple solution to systems (2.1) and
(2.3). Uniform one-dimensional flow down an inclined
plane along x� with constant slope S0 satisfies

u�ðx�; t�Þ ¼ ðu�0; 0Þ
T
; s�b ¼ ðs�b0; 0Þ

T
; q�bðx�; t�Þ ¼ ðq�b0; 0Þ

T
;

h�ðx�; t�Þ ¼ h�0; u�0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gh�0S0=C�f

q
; q�0 ¼ h�0u�0;

q�b0 � a�u�b0 ; s�b0 ¼ q�C�f u�20 ;

ð2:5Þ

given the water discharge q�0, sediment flux q�b0, and con-
stant friction coefficient C�f . This solution suggests the use
of the following scaling:

x ¼ x�=l�0; t ¼ t�=t�0; h ¼ h�=h�0; b ¼ b�=h�0;

u ¼ u�=u�0; qb ¼ q�b=ða�u
�b
0 Þ; and t�0 ¼ h�0l�0=q�b0; ð2:6Þ

where l�0; t
�
0; h

�
0 and u�0 are characteristic length, time, depth

and velocity scales, respectively. We have chosen t�0 to be
the sediment transport time scale associated with the ero-
sion and deposition of sediment.

Substitution of the above scaling (2.6) into system (2.1)–
(2.3) and (2.4) yields the nondimensional system

�othþ$ �ðhuÞ¼0; ð2:7aÞ
�otðhuÞþ$ �ðhuuÞþF�2$ðh2=2Þ¼�F�2h$b�Cf ujuj; ð2:7bÞ
otbþ$ �qb¼0; ð2:7cÞ

with the nondimensional sediment flux

qb ¼ juj
bðu=juj � j$bÞ; ð2:7dÞ
where qb ¼ ðqbx; qbyÞ
T and $ ¼ ðox; oyÞT. In this system, the

following parameters have emerged: the nondimensional
friction coefficient Cf ¼ cC�f ¼ ðl

�
0=h�0ÞC�f , the ratio between

the flow velocity and surface gravity-wave speed or Froude
number F ¼ u�0=

ffiffiffiffiffiffiffi
gh�0

p
, a scaled j ¼ j�h�0=l�0, and the ratio

between sediment and hydrodynamic discharge � ¼ a�u�0
b=

u�0h�0 ¼ q�b0=q�0.
Most rivers transport far less sediment than water, so

the condition �� 1 prevails even during floods. The
parameter � typically attains values in the range 10�3–
10�6 [14], which at leading order in � makes the hydrody-
namic equations stationary and algebraic. For �� 1 the
hydrodynamic equations are therefore nearly quasi-station-

ary on the sediment time scale.

3. Space discontinuous Galerkin discretization

3.1. Concise formulation

To facilitate the discretization, the scaled system (2.7a)–
(2.7d) is written concisely as follows:

AirotU r þ F ik;k þ GikrUr;k � ðT idijU j;kÞ;k ¼ Si ð3:1Þ

for i; j; r ¼ 1; 2; 3; 4 and k ¼ 1; 2 with

U ¼

h

hu

hv

b

26664
37775; A ¼

� 0 0 0

0 � 0 0

0 0 � 0

0 0 0 1

26664
37775; ð3:2Þ

F ðUÞ ¼

hu hv

hu2 þ F�2h2=2 huv

huv hv2 þ F�2h2=2

jujb�1u jujb�1v

26664
37775; ð3:3Þ

G1ðUÞ ¼

0 0 0 0

0 0 0 F�2h

0 0 0 0

0 0 0 0

26664
37775;

G2ðUÞ ¼

0 0 0 0

0 0 0 0

0 0 0 F�2h

0 0 0 0

26664
37775; ð3:4Þ

T 1 ¼ T 2 ¼ T 3 ¼ 0, and T ¼ T 4 ¼ jjujb, and

SðUÞ ¼

0

�Cf juju
�Cf jujv

0

26664
37775: ð3:5Þ

Derivatives in space are denoted by the comma subscript
notation ð�Þ;k ¼ oxk ð�Þ with k ¼ 1; 2 and x ¼ ðx1; x2ÞT. The
only non-conservative terms in (3.1) are the topographic
terms in the momentum equations.

The weak formulation starts with a first-order reformu-
lation of system (3.1), as follows:
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AirotUr þ F ik;k þ GikrU r;k � di4Hk;k ¼ Si for i; r ¼ 1; 2; 3; 4;

ð3:6aÞ
Hk ¼ TU 4;k and k ¼ 1; 2: ð3:6bÞ
3.2. Space elements, function space and operators

The flow domain X � R2 is a bounded area which in
turn is partitioned into N el elements Kk. It consists of seg-
ments oXs demarcating a fixed boundary and open bound-
ary segments oXo such that oX ¼ oXs [ oXo. The
tessellation of the domain X is

Th ¼ Kkj
[N el

k¼1

Kk ¼ Xh and

(

Kk \ Kk0 ¼ 0 if k 6¼ k0; 1 6 k; k0 6 N el

)
; ð3:7Þ

such that Xh ! X as h! 0 with h the smallest radius of all
circles completely containing the elements Kk 2Th. Here
Kk is the closure of Kk (and likewise for X). A reference ele-
ment bK is introduced with the mapping

F Kk
: bK 7!Kk : �n 7!x :¼

X
j

xjvjð�nÞ; ð3:8Þ

where �n ¼ ðn1; n2Þ are the reference coordinates, xj are the
coordinates of the local nodes of the element, with
j ¼ 1; . . . ;N k; vjð�nÞ the standard shape functions used in fi-
nite elements, and N k the number of nodes in element k.
For quadrilateral elements N k ¼ 4 and for triangular ele-
ments N k ¼ 3. In general, the element boundary oKk is con-
nected through faces S either to its neighboring elements
or to the boundary of the domain.

In each reference element bK a set of polynomials of
order p is defined, represented by P kðbK Þ with k ¼ 0; . . . ;
np � 1 for positive integers p and np. For the discontinuous
Galerkin discretization of (3.6a) we define the space V h of
discontinuous test functions

V h ¼ fV 2 ðL2ðXhÞÞ4j8Kk 2Th : V jKk
� F K 2 ðPpk

ðKkÞÞ4g
ð3:9Þ

with PpkðKkÞ the usual space of polynomials on Kk of de-
gree equal to or less than pk 6 p and L2ðXhÞ the space of
square integrable functions on Xh. For the discontinuous
Galerkin discretization of (3.6b) we define the space W h

of discontinuous test vector functions

W h ¼ fW 2 ðL2ðXhÞÞns	d j8Kk 2Th : W jKk
� F Kk

2 ðPpk
ðKkÞÞns	dg ð3:10Þ

for dimension d ¼ 2. These definitions are such that for
system size ns ¼ 4 we have $V h � W h.

For a function V 2 V h and function W 2 W h the traces
on an element boundary oK are defined as

V L ¼ lim
e#0

V ðx� enLÞ and W L ¼ lim
e#0

W ðx� enLÞ ð3:11Þ
with nL the unit outward normal vector of the boundary
oK, also KL and KR are the elements left or right of a face
S. Faces S of elements are either internal faces SI or
boundary faces SB. The averages or means of a function
V 2 V h on an internal and boundary face are

V ¼ ðV L þ V RÞ=2 on SI; V ¼ V L on SB; ð3:12Þ

such that at a boundary face we always take the interior or
left value. Likewise, for a function W 2 W h the mean values
are

W ¼ ðW L þ W RÞ=2 on SI; W ¼ W L on SB:

ð3:13Þ

The jumps of a function V 2 V h on an internal and bound-
ary face are

sV tk ¼ V LnL
k þ V RnR

k on SI; sV tk ¼ V LnL
k on SB

ð3:14Þ

such that at a boundary face we always take the interior left
value, and where nL and nR are the outward normal vectors
of elements KL and KR with nR ¼ �nL. Likewise, for a func-
tion W 2 W h the jumps are

sW tk ¼ W L
k nL

k þ W R
k nR

k on SI; sW tk ¼ W L
k nL

k on SB:

ð3:15Þ

A useful property for V 2 V h and W 2 W h on internal faces
is

sV iW ktk ¼ V i sW ktk þ sV itk W k : ð3:16Þ

Hereafter, we will often combine the sum over internal and
boundary faces by defining a suitable ghost value UR at the
boundary faces.

In the next section, we will also use the following rela-
tion for the element boundary integrals which occur in
the weak formulationX

Kk

Z
S

V L
i W L

k nL
k dS ¼

X
S2SI

Z
S

sV iW ktkdS

þ
X
S2SB

Z
S

V L
i W L

k nL
k dS: ð3:17Þ

On internal faces, the following relations hold:

F ¼ F and s F tk ¼ 0: ð3:18Þ
3.3. Weak formulation

A flux formulation is obtained after multiplying (3.6a)
by an arbitrary test function V 2 V h, using the non-conser-
vative weak formulation in [2] (their expression (A.11)) for
the hyperbolic terms, integrating the diffusive term by
parts, and summing over all elements
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X
Kk

Z
Kk

V iAirotUr � V i;kF ik þ V iGikrU r;k þ V i;kdi4Hk � V iSið Þ

	 dK þ
X
S

Z
S

�
ðV L

i � V R
i Þð F ik nL

k þ eH nc
i Þ

þ V i

Z 1

0

Gikrð/ðs; U L;URÞÞ o/r

os
ðs; UL;URÞdsnL

k

�
dS

�
X

Kk

Z
oK

V L
i di4H

L
k nL

k dS ¼ 0 ð3:19Þ

with dK an elemental area and dS a line element on a face
S, eH nc

i a stabilizing flux term in the non-conservative treat-
ment, defined later. A linear path /ðs; U L;URÞ ¼ U Lþ
sðUR � ULÞ connecting the left and right states across the
discontinuity is adopted. The integrals containing the lin-
ear path are either evaluated analytically or with two-point
Gauss quadrature. For details on the non-conservative dis-
continuous Galerkin formulation for the hyperbolic part,
we refer to [2].

3.4. The auxiliary variable

Our aim is to eliminate in (3.19) the auxiliary variable
Hk for the interior elements. Storage space is thus saved.
Multiplication of (3.6b) by arbitrary test functions
W 2 W h, integration by parts back and forth, and summa-
tion over the elements yieldsX

Kk

Z
Kk

W kðHk � TU 4;kÞdK �
X

Kk

Z
oK

W L
k T Lð bU 4 � UL

4ÞnL
k dS

¼ 0; ð3:20Þ
where we introduced a numerical flux bU 4 only in the for-
ward integration by parts. The boundary term in (3.20) is
analyzed again by changing the elemental summation to
a face summation, and the use of relations (3.16) and
(3.18), to obtainX

Kk

Z
oK

W L
k T Lð bU 4 � U L

4ÞnL
k dS

¼
X
S2SI

Z
S

sW kT ð bU 4 � U 4ÞtkdS

þ
X
S2SB

Z
S

W L
k T Lð bU 4 � UL

4ÞnL
k dS: ð3:21Þ

We now introduce the numerical flux

bU 4 ¼
U 4 at SI;

U B
4 at SB:

�
ð3:22Þ

With this choice for the numerical flux at the internal faces
and by using relations (3.17) and (3.18), we obtain:
½W kT ð bU 4 � U 4Þ
k ¼ � W kT sU 4tk. Hence, (3.20) becomesX

Kk

Z
Kk

W kðHk � TU 4;kÞdK

¼ �
X
S2SI

Z
S

W kT sU 4tkdS

�
X
S2SB

Z
S

W L
k T LðUL

4 � UB
4 ÞnL

k dS: ð3:23Þ
To obtain an explicit expression for the auxiliary variable,
we define a global lifting operator R 2 W h, which is defined
in the weak sense as: find an R 2 W h such that for all
W 2 W hX

Kk

Z
Kk

W kRkdK¼
X
S2SI

Z
S

TW k sU 4tkdS

þ
X

S2SB

Z
S

W L
k T LðUL

4�UB
4 ÞnL

k dS: ð3:24Þ

Details on the solvability of (3.24) are given in Appendix A.
Finally, we apply (3.24) to expression (3.23) to obtain a
weak expression for the auxiliary variable:X

Kk

Z
Kk

W kðHk � TU 4;kÞdK ¼ �
X

Kk

Z
Kk

W kRkdK: ð3:25Þ

As a result of the above manipulations in (3.25) and the
arbitrariness of W k, our aim to determine Hk has been
reached. From (3.25), we find that

Hk ¼ TU 4;k �Rk; ð3:26Þ

almost everywhere in Xh.
3.5. Primal formulation

The primal formulation can be obtained using the
expression (3.25). Since $V h � W h, the special case
W k ¼ ð0; 0; 0; V 4;kÞ can be considered in (3.25), and the aux-
iliary variable H can be replaced in the element integral of
(3.19). Therefore,X

Kk

Z
Kk

V 4;kHkdK ¼
X

Kk

Z
Kk

V 4;kðTU 4;k �RkÞdK: ð3:27Þ

The element boundary terms in (3.19) can be treated as
follows:X
Kk

Z
oK

V L
i di4H

L
k nL

k dS ¼
X
S2SI

di4

Z
S

sV iHktkdS

þ
X
S2SB

di4

Z
S

V L
i H

L
k nL

k dS

¼
X
S2SI

di4

Z
S

V i sHktk þ sV itk Hk dS

þ
X
S2SB

di4

Z
S

V L
i H

L
k nL

k dS ð3:28Þ

¼
X
S2SI

di4

Z
S

sV itk Hk dS

þ
X
S2SB

di4

Z
S

V L
i H

L
k nL

k dS; ð3:29Þ

where we used relations (3.16) and (3.17) and invoked con-
tinuity of the flux such that sHktk ¼ 0 on internal faces.
The average Hk is defined as

Hk ¼
TU 4;k � gRS

k on SI;

T BUB
4;k � gRS

k on SB;

(
ð3:30Þ
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where, to reduce the width of the stencil, a local lifting oper-

ator RS
k was introduced satisfyingX

Kk

Z
Kk

W kR
S
k dK ¼

R
S

TW k sU 4tkdS on SI;R
S

W L
k T LðU L

4 � U B
4 ÞnL

k dS on SB

(
ð3:31Þ

for all W k 2 W h with g > 0 a stabilization constant. In all
simulations we use g ¼ 4.

Substitution of (3.26), (3.29) and (3.30) into (3.19) yields
the final weak formulationX

Kk

Z
Kk

ðV iAirotUr � V i;kF ik þ V iGikrUr;k

þ V i;kdi4ðTU 4;k �RkÞ � V iSiÞdK

þ
X
S

Z
S

�
ðV L

i � V R
i Þð F ik nL

k þ eH nc
i Þ

þ V i

Z 1

0

Gikrð/ðs; U L;URÞÞ o/r

os
ðs; UL;URÞdsnL

k

�
dS

�
X
S2SI

Z
S

di4sV itk TU 4;k � gRS
k dS

�
X

S2SB

Z
S

di4V L
i ðT BU B

4;k � gRS
k ÞnL

k dS ¼ 0: ð3:32Þ

For conservative systems, the flux ð F ik nL
k þ eH nc

i Þ is usu-
ally combined into one conservative, numerical flux at
the element faces, such as the HLLC flux used before in
[1] for the hydrodynamic part.

The non-conservative stabilizing flux vectoreH nc
i ðU L;UR; nL

kÞ follows from Rhebergen et al. [2] as

eH nc
i ¼

1
2
sF iktk þ 1

2

R 1

0 Gikrð/ðs;UR;ULÞÞ o/r
os ðs;UR;U LÞdsnL

k

if SL > 0;
1
2
ðSRU �i þ SLU �i � SLUL

i � SRUR
i Þ; if SL < 0< SR;

� 1
2
sF iktk þ 1

2

R 1

0 Gikrð/ðs;U L;URÞÞ o/r
os ðs;UL;URÞdsnL

k ;

if SR < 0:

8>>>>>>><>>>>>>>:
ð3:33Þ

The expression for the star state solution U �i in (3.33) is

U �i ¼
SRUR

i � SLU L
i þ ðF L

ik � F R
ikÞnL

k

SR � SL

� 1

SR � SL

	
Z 1

0

Gikrð/ðs; U L;URÞÞ o/r

os
ðs; U L;URÞdsnL

k : ð3:34Þ

The left and right wave speeds are SL and SR, respectively.
These are determined by taking the smallest and largest of
the (approximate) four real eigenvalues of the hyperbolic
part of the system (2.7). The eigenvalues used follow from
the matrix ðoF ik=oUr þ GikrÞnL

k for the case � ¼ 1 valid in
(pseudo-)time, see §3.6. The hyperbolic part of the corre-
sponding system in the direction x̂ normal to a face can
be written as
otðhuÞ þ ox̂ðhuqþ F�2h2nx=2Þ þ F�2hnxox̂b ¼ 0;

otðhvÞ þ ox̂ðhvqþ F�2h2ny=2Þ þ F�2hnyox̂b ¼ 0;

othþ ox̂ðhqÞ ¼ 0; otbþ ox̂ðjujb�1qÞ ¼ 0

ð3:35Þ

with q ¼ nxuþ nyv and nL
k ¼ ðnx; nyÞT. For the eigenvalue

analysis it is easier to rewrite (3.35) as

othþ ox̂ðhqÞ ¼ 0; otuþ qox̂uþ F�2nxox̂ðhþ bÞ ¼ 0;

otbþ ox̂ðjujb�1qÞ ¼ 0; otvþ qox̂vþ F�2nyox̂ðhþ bÞ ¼ 0:

ð3:36Þ
The approximate eigenvalues k corresponding to the sys-
tem (3.36) follow from the polynomial

0 ¼

q� k hnx hny 0

F�2nx q� k 0 F�2nx

F�2ny 0 q� k F�2ny

0 nxd nyd �k

��������
��������

¼ ðk� qÞðk3 � 2qk2 þ kðq2 � F�2ðd þ hÞÞ þ F�2qdÞ
ð3:37Þ

with approximation d ¼ bjujb�1 based on the one-dimen-
sional problem, cf. [15]. In the one-dimensional case,
q ¼ u, the eigenvalue k ¼ q is absent and d ¼ bqb�1. We
emphasize that the following eigenvalues calculated are
classical, exact solutions to the above quartic polynomial,
which itself is an approximation of the matrix associated
with system (3.36). The cubic polynomial has real eigen-
values provided its determinant D ¼ Q3 þ R2 < 0 with

R ¼ �18qð�F�2ðhþ dÞ þ q2Þ � 27F�2qd þ 16q3

54
;

Q ¼ � q2 þ 3F�2ðhþ dÞ
9

;

ð3:38Þ

and after some algebra we find that D < 0.
The four eigenvalues are

k ¼ q; k ¼ 2
ffiffiffiffiffiffiffiffi
�Q

p
cosðh=3Þ þ 2q=3;

k ¼ 2
ffiffiffiffiffiffiffiffi
�Q

p
cosðh=3þ 2p=3Þ þ 2q=3 and

k ¼ 2
ffiffiffiffiffiffiffiffi
�Q

p
cosðh=3þ 4p=3Þ þ 2q=3;

ð3:39Þ

with h ¼ cos�1ðR=
ffiffiffiffiffiffiffiffiffi
�Q3

p
Þ. It is also possible to calculate

the exact eigenvalues of the system but at great computa-
tional expense. The evaluation of the above approximate
eigenvalues turns out to be so efficient that further simpli-
fication is unnecessary. Finally, the algebraic system corre-
sponding to the weak formulation (3.32) and details on the
global and local lifting operators Rk and RS

k defined in
(3.24) and (3.31) are given in Appendix A.

The numerical flux in the weak formulation (3.32)–
(3.34) reduces to the HLL numerical flux when the topog-
raphy is constant. Rest flow stays at rest even for variable
bottom topography as was shown in [2].

3.6. Time stepping method and solver

A time discretization is required to solve the ordinary
differential equations that emerge from the spatial finite
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element discretization. Numerical complications may arise
due to the presence of a small parameter � in front of the
time derivatives in the depth and momentum equations.
However, at leading order, in the limit �! 0 a coupled dif-
ferential–algebraic system emerges. We therefore derive a
new time stepping scheme for solving the system in the
limit �! 0 next.

Consider first the continuum system (2.7a)–(2.7c)
extended with a fast, hydrodynamic time scale s ¼ t=� such
that ot ! os=�þ ot. Dependencies then become
h ¼ hðx; t; sÞ and so forth. The resulting extended system
reads

oshþ �othþ $ � ðhuÞ ¼ 0; ð3:40aÞ
osðhuÞ þ �otðhuÞ þ $ � ðhuuÞ þ F�2$ðh2=2Þ
¼ �F�2h$b� Cfujuj; ð3:40bÞ

osb=�þ otbþ $ � qb ¼ 0 ð3:40cÞ

together with (2.7d). This extension, albeit more compli-
cated than the actual system of interest, is more amenable
to asymptotic analysis. The variables h; hu and b as func-
tions of fx; t; sg are expanded in a perturbation series in �

hðx; t; sÞ ¼ hð0Þðx; t; sÞ þ �hð1Þðx; t; sÞ þ Oð�2Þ;
uðx; t; sÞ ¼ uð0Þðx; t; sÞ þ �uð1Þðx; t; sÞ þ Oð�2Þ;
bðx; t; sÞ ¼ bð0Þðx; t; sÞ þ �bð1Þðx; t; sÞ þ Oð�2Þ

ð3:41Þ

with Oð�2Þ denoting terms of order �2 or higher. Next, we
substitute (3.41) into (3.40) and evaluate the result at lead-
ing order in �.

At leading order, Oð1=�Þ in the sediment equation
(3.40c), we find that osb

ð0Þ ¼ 0 such that bð0Þ ¼ bð0Þðx; tÞ is
independent of the fast time scale. At Oð1Þ, we therefore
have

osh
ð0Þ þ $ � ðhð0Þuð0ÞÞ ¼ 0; ð3:42aÞ

osðhð0Þuð0ÞÞ þ $ � ðhð0Þuð0Þuð0ÞÞ þ F�2$ðhð0Þ2=2Þ
¼ �F�2hð0Þ$bð0Þ � Cfu

ð0Þjuð0Þj; ð3:42bÞ
osb

ð1Þ þ otb
ð0Þ þ $ � ðjuð0Þjbðuð0Þ=juð0Þj � j$bð0ÞÞÞ ¼ 0 ð3:42cÞ

in which hð0Þ and uð0Þ depend on x; t and s; but bð0Þ only on x

and t.
To avoid secular growth, the sediment transport equa-

tion (3.42c) is averaged over the fast time scale to obtain

otb
ð0Þ þ $ � ðhjuð0Þjb�1

uð0Þi � hjuð0Þjbij$bð0ÞÞ ¼ 0; ð3:43Þ

where h�i denotes the fast time averaging. Eqs. (3.42a) and
(3.42b) only depend parametrically on the slow, sediment
time scale t for example through bð0Þðx; tÞ as no slow time
derivatives ot appear. If we therefore solve hð0Þ and uð0Þ in
(3.42a) and (3.42b) first, in particular on the fast time scale,
we can subsequently use it in the averaged Eq. (3.43). If the
long-time fast average is constant on the fast time scale s,
the stationary fast time solution dominates and we have
actually solved the original system for the case � ¼ 0. For
(rapidly) oscillating boundary data, no stationary solution
may exist, in which case the averaging is required.

A leading-order numerical approach, for the stationary
hydrodynamic solutions in the limit Dt! 0 (e.g., system
(2.7) with � ¼ 0), is therefore to solve the discrete hydrody-
namic continuity and momentum equations on the fast
time scale s till stationarity is reached. The discretization
of bðx; tÞ is then fixed on the fast time scale, and the discret-
ized sediment equation is subsequently solved separately.
We intertwine a fifth-order Runge–Kutta scheme for the
fast or pseudo-time s for the mass and momentum equa-
tions, designed to be a dissipative time integration scheme
to efficiently reach the steady-state in pseudo-time in [16],
and an accurate explicit time discretization for the sediment
equation (the third order Runge–Kutta scheme used in
[17,1]). Another approach is to calculate the steady hydro-
dynamic state first, and use the corresponding velocity in
the sediment equation, to be solved subsequently. We also
used this separate approach with success but it is formerly
only first order in time because one then only uses the pre-
vious, old value of the velocity in the sediment equation
also at the intermediate steps, or, vice versa, one only uses
the previous, old value of b in the hydrodynamic equations
and not at the intermediate time values of b. The inter-
twined time stepping schemes guarantee the third-order
accuracy in time used in the sediment equation provided
a steady-state criterion is reached for the hydrodynamics.
We considered the steady hydrodynamic state to be
achieved when the residue is smaller than 10�5, following
the approach in [16]; the residue is defined here as the entire
steady space discontinuous Galerkin finite element discret-
ization for the hydrodynamics. Further details are rele-
gated to Appendix A.4.

Besides the space DGFEM, we also applied and
extended the space–time DGFEM, developed in [2] for
hyperbolic systems with non-conservative products, to
our morphodynamic system. In all verifications with
j ¼ 0 the space and space–time DGFEM’s have been com-
pared, successfully. Local artificial friction was only
required for the test case in section 4.2. This slope limiter
was only introduced when the jumps of certain variables
across faces were too large, cf. [20,16].

4. Verification

In this section, the accuracy of our numerical scheme,
for (2.7) with � ¼ 0, is demonstrated by several test cases,
also in comparison with exact solutions. In the following
test cases, we use linear polynomials yielding formal sec-
ond-order accuracy in space. The time stepping scheme is
second- and third-order for the space–time and space dis-
continuous finite element discretizations, respectively.

4.1. Evolution of an isolated bedform

Consider the evolution of an initially symmetric, iso-
lated bedform subject to steady, unidirectional flow in a
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Fig. 2. Exact (circle) and DGFEM numerical simulation (solid line) with
j = 0.0.
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domain x 2 ½0; 1
. The setup consists of a channel with a
small, but finite amplitude perturbation of the bed level ini-
tially centered at xp, with amplitude A and width 2d:

bðx; 0Þ ¼
A� A cos p

d ðx� xp þ dÞ
� �

; if jðx� xpÞj 6 d;

0:0; otherwise;

8><>:
ð4:1Þ

where A ¼ 0:05; d ¼ 0:1 and xp ¼ 0:5. At the left boundary
we set h ¼ hðx # 0; tÞ, hu ¼ 1, and b ¼ 0, and at the right
boundary h ¼ 1; hu ¼ huðx " 1; tÞ, and b ¼ 0. As initial con-
dition, the water surface elevation hðx; 0Þ þ bðx; 0Þ ¼ 1 and
flow velocity uðx; 0Þ ¼ 1. For this test we adopt
b ¼ 3;F ¼ 0:1, and Cf ¼ 0:0. In Fig. 1, we show the evolu-
tion of the solution with j ¼ 0:0, computed from time
t ¼ 0:0 to t ¼ 0:04. Fig. 2 shows the initial condition and
the exact and numerical solutions of the isolated bedform
computed at time 0:04. Table 1 shows that the scheme is
second-order accurate by computing the L2 and L1 norms
of the numerical error in b with respect to the exact solu-
tion. In comparison, both space and space–time DGFEM’s
converge and agree with one another. Fig. 3 shows the evo-
lution of the isolated bedform with j ¼ 0:01 and j ¼ 0:1,
respectively.

This exact solution for j ¼ 0, used in Table 1, is derived
as follows. In the limit �! 0 and j! 0 on the slow time
scale and in one spatial dimension, the system (2.7a)–
(2.7d) satisfies

oxðhuÞ ¼ 0; ð4:2aÞ

oxðhu2 þ 1

2
F�2h2Þ ¼ �F�2hoxb� Cf juju; ð4:2bÞ

otbþ oxðjujb�1uÞ ¼ 0: ð4:2cÞ

For Cf ¼ 0 and by using upstream values u0; b0 and h0 with
discharge Q ¼ h0u0 and Bernoulli constant B0 ¼ u2

0=2 þ
F�2ðh0 þ b0Þ, this system reduces to
t

0

0.01

0.02

0.03

0.04

x
0 0.2 0.4 0.6 0.8 1

Fig. 1. Evolution of an isolated bedform from time t = 0.0 to 0.04 with
j = 0.0 using a mesh of 160 elements.
1

2
u3 þ ðF�2b� B0Þuþ F�2Q ¼ 0; h ¼ Q=u ð4:3Þ

in which we consider flows with a subcritical root u ¼ uðbÞ
as solution. Substitution of (4.3) into the sediment equation
in (4.2c) then yields a conservation law in the variable b.
Further manipulation gives

otbþ bjuðbÞjb�1 ouðbÞ
ob

oxb ¼ 0; ð4:4Þ

which has the following implicit solution till the time of
wave breaking:

x ¼ xi þ kðbÞt; b ¼ biðxiÞ or

b ¼ biðx� kðbÞtÞ with kðbÞ ¼ bjuðbÞjb�1F�2uðbÞ
F�2Q=uðbÞ�uðbÞ2 :

ð4:5Þ
4.2. Graded river

In this test, the dynamics induced by a sudden overload
of sediment to a base flow solution is considered in a
straight channel with unitary width. The exact base state
flow solution is given by u0 ¼ ðu0; v0ÞT ¼ ðu0; 0ÞT ¼
ð1; 0ÞT; h0 ¼ 1, qb ¼ ðq0

b; 0Þ
T ¼ ð1; 0ÞT. Assuming a bed

slope S0 ¼ 0:0001, Froude number F ¼ 0:1, and j ¼ 0:0,
the base state leads to the relation Cf ¼ S0F

�2 ¼ 0:01.
The aggradation of the channel starts when an increase of
the bottom topography bð0; tÞ ¼ bð0; 0Þ þ d for t > 0 is
considered at the beginning of the inlet, here with
d ¼ 0:0012. For this test we consider a domain x 2 ½0; 5

divided into 80 cells. At the left boundary we set
h ¼ hðx # 0; tÞ; hu ¼ 1, and b ¼ 0:0012 and for the right
boundary h ¼ 1; hu ¼ huðx " 5; tÞ, and b ¼ �0:0005. As ini-
tial condition, the water depth hðx; 0Þ ¼ 1, the flow velocity
uðx; 0Þ ¼ 1, and the bottom elevation has a constant bed
slope S0. Fig. 4 shows the evolution of the bottom topogra-



Table 1
The L2 and L1 error norm of bottom level b and convergence rates with order p for the space and space–time DG solutions

N Space DG Space–time DG

L2 error p L1 error p L2 error p L1 error p

40 8.7626e�04 4.2634e�03 1.0006e�03 4.1827e�03
80 2.1120e�04 2.1 1.1714e�03 1.9 1.5085e�04 2.8 9.5121e�04 2.1
160 4.9064e�05 2.1 2.7252e�04 2.1 3.6876e�05 2.0 1.9613e�04 2.3
320 1.1558e�05 2.1 5.9797e�05 2.2 9.4587e�06 2.0 4.5131e�05 2.1
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Fig. 3. Evolution of an isolated bedform from time t = 0.0 to 0.04 for (a) j = 0.010 and (b) j = 0.1, both using a mesh of 80 elements.
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phy and the water depth from time t ¼ 0:0 to 1.4. For this
test, we compute the solution with space and space–time
DG discretizations, obtaining the same, good results. The
evolution of the bed level from time t ¼ 0:0 to t ¼ 1:4 with
j ¼ 0:1 is shown in Fig. 5.

4.3. Travelling wave solution

In this test, a travelling sediment wave is examined in
detail to assess the discretization of the downslope gravita-
X
0

0.2
0.4

0.6
0.8

1.0
1.2

1.4

b

-0.0005

0

0.0005

0.001

0.0015

a

1 2 3 4 50 1 2 3 4 5

Fig. 4. Profiles of (a) bottom level b(x) and (b) water depth h(x) i
tional term present in the bed evolution equation. Assum-
ing unidirectional and one-dimensional flow, travelling
wave solutions [18] can be found after substituting
b ¼ bðnÞ into (2.7a)–(2.7d) for � ¼ 0 and n ¼ x� ct to
obtain

b0 ¼ ð�cbþ ub � QÞ=jub ð4:6Þ

with b0 ¼ onb; c the wave speed, Q the integration constant,
and u ¼ uðbÞ the flow velocity, i.e., the subcritical root of
the stationary hydrodynamic equations (4.3). Eq. (4.6) is
X

h

0.9986

0.9988

0.999

0.9992

0.9994

0.9996

0.9998

1

1.0002
0.2 0.4 0.6 0.8 1.0 1.2 1.4

0 1 2 3 4 5

b

n a straight channel from time t = 0.0 to t = 1.4 with j = 0.0.
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Fig. 5. Evolution of the bottom level in a straight channel from time t = 0.0 to 1.4 with j = 0.1.
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solved using a fourth-order Runge–Kutta discretization for
small Dn. For the simulations we use b ¼ 3; j ¼ 1; c ¼ 1;
Table 2
The L2 and L1 error norms of b and convergence rates with order p for
the space DG solution

N Space DG

L2 error p L1 error p

10 1.542e�01 1.460e�01
20 3.840e�02 2.0 4.756e�02 1.6
40 8.278e�03 2.2 1.022e�02 2.2
80 2.151e�03 1.9 1.997e�03 2.3

x

b

0 1 2 3 4 5

-0.8

-0.6

-0.4

-0.2

0

Fig. 6. DGFEM (solid) and ‘‘exact” solution of (4.6) (dashed) solutions of
the test with a travelling sediment wave moving from left to right from
time t = 0 to 8 using a mesh of 20 elements.
Q ¼ 1;F ¼ 0:1, and Q ¼ 1. Fig. 6 shows the travelling wave
DGFEM and the ‘‘exact” solution of (4.6) from time t ¼ 0
to 8 in a domain x 2 ½0; 5
. Table 2 confirms the good, sec-
ond-order accuracy of the discretization, including the pri-
mal formulation for the diffusive terms.
5. Validation

The applicability of our numerical schemes is shown in
two test cases: the evolution of a trench in a natural chan-
nel, and the hydraulic and sediment transport through a
contraction.
5.1. Evolution of a trench in the Paraná river

A sub-fluvial tunnel underneath the Paraná river links
the Santa Fe and Paraná cities in Argentina. During the
flood of 1983, the tail of a 7 m high dune almost uncovered
part of the tunnel, nearly leading to its collapse. Subse-
quently, as part of a study program aimed to further pro-
tect the underwater structure, a trench was dug in the
main channel during the months of October–December
of 1992 to analyze the bedload transport nearby the tunnel
axis [14]. To test our DGFEM model, a comparison is
made between observations and a numerical simulation
of the evolution of the trench excavated in the main chan-
nel of the Paraná river.

For the numerical model, we used b ¼ 3 and the Froude
number F ¼ 0:07950 was computed based on the character-
istic scales h�0 ¼ l�0 ¼ 15:30 m, and q�0 ¼ u�0h�0 ¼ 14:9 m2 s�1.
These hydrological estimates were taken from [14]. We
chose t�0 ¼ 22:5 days and thus derive a� ¼ 1:31	
10�4 m2�b=s1�b and � ¼ 8:1	 10�6, cf. Section 2.3. The lat-
ter flux ratio lies between the quoted values of 10�5 and
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Fig. 7. Boundary conditions at the left boundary are determined from the
data at the boundary and a reconstruction using interior values. To
reconstruct the missing boundary data, the velocity of a dip was estimated
and the minimum value of the topography was traced back to the left
boundary. The missing data point seems so far from the available data due
to a propagation of a depression in the bottom level entering the domain.
This can be assessed by analyzing the field data, see Fig. 8.
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10�6 in [14]. For the Paraná trench test case, the dimen-
sional values are displayed in the figures, even though we
compute them in dimensionless form.

In a domain x 2 ½Ll; Lr
, with Ll ¼ �19:6 (circa �300 m)
and Lr ¼ 5:18 (circa 80 m); upstream boundary conditions
are set to h ¼ hðx # Ll; tÞ; hu ¼ 1, and b ¼ bðLl; tÞ given by
the measured and reconstructed values of the bed topogra-
phy at the beginning of the trench. Between October 30th
Fig. 8. Profiles of the numerical evolution of the bottom in a trench from Octo
correspond to October 23rd, October 27th, October 30th, November 11st, Nov
indicates the direction of the flow.
and November 11th, the missing data at the left boundary
were estimated as shown in Fig. 7. Downstream boundary
conditions are h ¼ 1; hu ¼ huðx " Lr; tÞ, and b ¼ bðx " Lr; tÞ.
Initial water depth is hðx; 0Þ ¼ 1� bðx; 0Þ, and the initial
velocity uðx; 0Þ corresponds with the steady hydrodynamic
results determined by the subcritical root uðx; 0Þ ¼
uðbðx; 0ÞÞ, see (4.3), with bðx; 0Þ based on the topography
field data measured on October 23rd, 1992. The value
j ¼ 0:45 was chosen to match the measured data better.
The simulation was performed for a period of 45 days
and we present a comparison between measured and simu-
lated profiles for October 23rd to December 7th 1992 in
Fig. 8. Details of the profiles are shown in Fig. 9. Compar-
ison of simulations with field data show that the main char-
acteristics of the profile, such as the propagation speed of
the large, localized step with a planar avalanche face span-
ning the width of the trench and the dip flowing into the
domain, are well captured by our DGFEM simulations.
At the end of the trench, extrapolated boundary conditions
for bðx; tÞ were assigned and a discrepancy between simula-
tions and measurements is found for time t > 1 because of
the coarse reconstruction of the missing field data at the
entrance boundary.
5.2. Hydraulic and sediment transport through a contraction

Stationary hydraulic and sedimentary flows are consid-
ered through a channel with fixed vertical walls and a local-
ized smooth contraction in the middle of the channel. The
main reason to consider the bed evolution of hydraulic flow
through contraction is to explore the bed evolution in this
geometry with an eye to its potential for laboratory exper-
iments. Furthermore, we compare our simulations with the
ber 23rd to December 7th 1992. Measured profiles (dashed or jagged lines)
ember 16th, November 19th, December 1st, and December 7th. The arrow



Fig. 9. Profiles of the numerical evolution of the bottom in a trench (measured: dashed or jagged lines); (a) October 27th; (b) October 30th; (c) November
11th; and (d) December 7th.
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ones of Kubatko et al. [19]. Two-dimensional flow and sed-
iment discharge simulations will be presented for two test
cases. For the first case, we compare simulations for
j ¼ 0 with an asymptotic solution based on cross-section-
ally averaged equations solely depending on the down-
stream direction x and time t. The resulting variables are
the mean velocity, the mean depth and the mean height
of the topography. In the averaging procedure perturba-
tions to these means are neglected as these will be small
if the constriction is slowly varying in x and the channel
sufficiently wide. The variations in flow scales across the
channel are then small compared to the downstream scales
of interest.

First, consider asymptotic solutions in a channel of
varying width r ¼ rðxÞ with vertical walls. A cross-sectional
average of the system (2.7) for j ¼ 0, while neglecting per-
turbations of mean quantities, leads to the following one-
dimensional system:

�otðhrÞ þ oxðhruÞ ¼ 0; ð5:1aÞ

�otðhruÞ þ ox hru2 þ 1

2
F�2rh2

� �
¼ 1

2
F�2h2oxr � F�2hroxb� Cf rjuju; ð5:1bÞ

otðbrÞ þ oxðrjujb�1uÞ ¼ 0: ð5:1cÞ

Steady-state solutions of (5.1) are sought. These satisfy

oxðhruÞ¼0; ð5:2aÞ

ox hru2þ1

2
F�2rh2

� �
¼1

2
F�2h2oxr�F�2hroxb�Cf rjuju; ð5:2bÞ

oxðrjujb�1uÞ¼0 ð5:2cÞ
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with unknowns b ¼ bðxÞ; h ¼ hðxÞ; u ¼ uðxÞ for a given
channel width r ¼ rðxÞ. After introducing a hydrodynamic
discharge Q ¼ u0h0r0; sediment discharge rate Se ¼ rub

0; and
upstream constant values u0; h0; r0; b0; the solution of (5.2)
becomes

uðxÞ ¼ Se

rðxÞ

� �1=b

; hðxÞ ¼ Q
rðxÞuðxÞ ;

bðxÞ ¼ b0 þ h0 � hðxÞ þ F2 1

2
ðu2

0 � uðxÞ2Þ

� F2

Z x

x0

Cf juð~xÞjuð~xÞ
hð~xÞ d~x ð5:3Þ
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for the case j ¼ 0 and Cf ¼ 0 and Cf > 0 are displayed in
Fig. 10(a,b). In the latter Fig. 10(b), we notice the
graded river flow upstream of the contraction, as in
Section 4.2.

Second, we consider the corresponding numerical test
case. At the inflow boundary we set h ¼ hðx # �5; tÞ;
hu ¼ 1; hv ¼ 0 and b ¼ 0; and, for the outflow boundary
h ¼ 1; hu ¼ huðx " 5; tÞ; hv ¼ hvðx " 5; tÞ, and b ¼ 0. Initial
conditions for hðxÞ and bðxÞ are given by the asymptotic
solution (5.3). A mesh of (11 + 40 + 6) 	 10 elements was
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used in the inflow, contraction, and outflow region for both
calculations with space and space–time discontinuous
Galerkin finite element methods. In Fig. 11, we compare
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ical and asymptotic solutions are highly similar, as
expected.

Converging and diverging river channels can typically be
found in nature. For the second validation, we examine the
morphodynamic evolution of an initially flat bed channel
in a converging channel [19]. Now, the constriction is
50% of the total width of the channel. At the inflow bound-
ary, variables are set to h ¼ hðx # �2; tÞ; hu ¼ 1; hv ¼ 0,
and b ¼ 0; and, at the outflow boundary h ¼ 1; hu ¼
huðx " 2; tÞ; hv ¼ hvðx " 2; tÞ, and b ¼ 0. Initial water depth
and discharge correspond with the steady hydrodynamic
results obtained with a preliminary simulation in which
the bed is considered fixed and with F ¼ 0:1. Figs. 12–15
show the discharge huðxÞ; hvðxÞ, and bed elevation bðxÞ
at time t ¼ 0:005, respectively. As observed in [19], the
bed experiences erosion in the converging part of the chan-
nel due to an increase in the flow velocity and the develop-
ment of a mound in the diverging part of the channel, see
Figs. 14 and 15; it is a product of a decreasing velocity,
see Figs. 12 and 13. In the simulation, the water surface
remains rather flat hðxÞ þ bðxÞ � 1 as expected for low
Froude numbers. Our results compare qualitatively well
with those presented in [19], and are in good agreement
with alternative simulations using the space–time
DGFEM, cf. [20]. Laboratory experiments based on the
proposed geometry are of further interest to validate these
numerical results.

The CPU times for the space and space–time discontin-
uous Galerkin finite element methods were 5 and 17 h,
respectively. Both codes were not optimized. The space–
time code was a test code used for checking set up for cal-
culations in four dimensions; here we used only one ele-
ment and zero flux in the fourth direction (doubling the
load). Major speed improvement of the space–time code
can be obtained by employing multigrid methods [16],
which are under development in our hpGEM software
environment [21].

6. Conclusions

In this paper, we applied the discontinuous Galerkin
finite element discretization of [2], concerning hyperbolic
systems with non-conservative products, to a morphody-
namic model for shallow flows over varying bottom topog-
raphy. It is a system of coupled hyperbolic–parabolic
equations. The computation time is greatly reduced by a
hybrid approach with both conservative and intrinsically
non-conservative terms, for the hyperbolic part of the sys-
tem, instead of a treatment in which all terms are treated in
a non-conservative way. The non-conservative term con-
cerned is the topographic term in the hydrodynamic
momentum equations. The sole diffusive term in the sedi-
ment equation has been treated using a primal formulation.
Further extensions including (diffusive) turbulent closure
terms in the momentum equations are in progress. In addi-
tion, a variety of numerical solutions of shallow water
flows over a movable bed have been presented and illus-
trated in an extensive suite of verification and validation
tests. The discontinuous Galerkin scheme used showed
very good agreement between model simulations versus
(semi-)analytical solutions. Moreover, its ability to capture
travelling discontinuities without generating spurious oscil-
lations has been demonstrated. The method also allowed
the computation of realistic bed profiles, such as the evolu-
tion of a trench dredged in a section of the Paraná river,
Argentina. For this validation test, our model was able to
capture timescales of sediment transport over a dredged
river section refilled by an advancing sediment wave front.
Our DGFEM method also suitably approximated the flow
and sediment transport through a contraction in channel
width, a situation present in many natural channels.
Finally, a laboratory experiment would be timely in vali-
dating both the mathematical and numerical modelling
for the latter contraction experiment.
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Appendix A. Algebraic system

A.1. Basis functions and approximations

For each element Kk 2Th, polynomial approximations
of the trial function U and the test functions V are defined
as

Uðt; xÞjKk
:¼ bU mðtÞwmðxÞ and V ðxÞjKk

:¼ bV lwlðxÞ;
m; l ¼ 0; . . . ; np ðA:1Þ

with ð̂�Þ the expansion coefficients, w the polynomial basis
functions and np the number of degrees of freedom. We
have split the approximations of the test and trial functions
in the space element K into mean and fluctuating parts. The
basis functions are defined as

wmðx; tÞ ¼
1 if m ¼ 0;

/mðxÞ � cm otherwise

�
ðA:2Þ

with

cm ¼
1

jKkj

Z
Kk

/mðxÞdx ðA:3Þ

and basis functions /m ¼ 1; f1; f2; f1f2 of polynomial order
one in terms of the reference coordinates f1; f2 for quadri-
lateral elements or only the first three functions for triangu-
lar elements, and jKkj ¼

R
Kk

dK is the area of the element
Kk.
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A.2. Lifting operators

By (3.24) and the fact that $V h � W h, the global lifting
operator is defined in [4,5] byX

Kk

Z
Kk

W kRkdK ¼
X
S2SI

Z
S

TW k sU 4tkdS

þ
X

S2SB

Z
S

W L
k T LðU L

4 � bU B
4 ÞnL

k dS:

ðA:4Þ

The local lifting operator RS is approximated by polyno-
mial approximations as

RSðxÞ ¼ bRjwjðxÞ ðA:5Þ

with bRj the expansion coefficients of the approximation. By
definition, see (3.31), we find that the local lifting operator
is only non-zero on the two elements KL and KR directly
connected to a face S 2SI; henceZ

KL
k

W kR
S
k dK þ

Z
KR

k

W kR
S
k dK ¼

Z
S

TW k sU 4tkdS:

ðA:6Þ
Since W is an arbitrary test function, (A.6) is equivalent
[4,5] toZ

Km
k

W kR
S
k dK ¼ 1

2

Z
S

W m
k T msU 4tkdS; ðA:7Þ

where m ¼ L;R is the index of the left and right elements
connected to the face S, respectively. Replacing RS by
its polynomial expansion, we obtain the following
expression:

bRm
kj

Z
Km

k

wlwjdK ¼ 1

2

Z
S

wm
l T msU 4tkdS: ðA:8Þ
X

b
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Fig. 16. Profiles of bottom level b(x, t) in a straight channel at time t = 0.5 for (
stepping scheme.
The coefficients of the polynomial expansion are
bRm
kj ¼

1

2
ðM�1

jl Þ
m

Z
S

wm
l T msU 4tkdS: ðA:9Þ
Similarly, at boundary faces the polynomial expansion of
the local lifting operator is
bRL
kj ¼ ðM�1

jl Þ
L

Z
S

wL
l T LðU L

4 � U B
4 ÞnL

k dS: ðA:10Þ
The element mass matrices denoted by Mlj ¼
R

Kk
wlwjdK

are readily inverted.
A.3. Discretized algebraic system

After discretizing in space, replacing the trial function U

and the test function V by their polynomial approximation
and inverting the mass matrix in (3.32), we arrive at the fol-
lowing system of ordinary differential equations for the
expansion coefficients bU of the variables U:
M
d bU
dt
¼Lð bU Þ ðA:11Þ
with M akin to the matrix defined in Section A.2 and the
operator Lð bU Þ defined as
Lilð bU Þ ¼ X
K2Th

ð�Ail þBil þ Eil �FilÞ

�
X

S2SI;B

ðCil þDil � Gil �Hil þIilÞ: ðA:12Þ
X

b
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a) an effectively first-order time stepping scheme and (b) a third-order time
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Here the terms A;B;C;D, and E are given by

Ail ¼
Z

K
wlGikrU r;kdK;

Bil ¼
Z

K
wlSidK;

Cil ¼
R
S
ðwL

l � wR
l Þð F ik nL

k þ ~Hnc
i ÞdS at S 2 SI;R

S
wL

l ðF B
iknL

k þ eH ncB

i ÞdS at S 2 SB;

(

Dil ¼

R
S

wl

R 1

0 GikrðUR
r � U L

r ÞdsnL
k

	 

dS at S 2SI;R

S
wL

l

R 1

0
GikrðU B

r � UL
r ÞdsnL

k

	 

dS at S 2SB;

8><>:
Eil ¼

Z
K

wl;kF ikdK ðA:13Þ
and the terms F;G;H, and I by

Fil ¼
Z

K
wl;kdi4TU 4;k dK;

Gil ¼
R
S

di4 Twl;k ðUL
4 � UR

4 ÞnL
k dS at S 2SI;R

S
di4w

L
l;kT LðU L

4 � UB
4 ÞnL

k dS at S 2SB;

(

Hil ¼
R
S

di4swltk TU 4;k dS at S 2 SI;R
S

di4w
L
l T LU L

4;knL
k dS at S 2 SB;

(

Iil ¼
g
R
S

di4ðwL
l � wR

l Þ RS
k nL

k dS at S 2SI;

g
R
S

di4w
L
lR

S
k nL

k dS at S 2SB:

(
ðA:14Þ
A.4. Time stepping scheme

To march in time, in the limit �! 0, the full system of
governing equations (2.7a)–(2.7c) obtains a special cou-
pling in time as in (3.42a), (3.42b) and (3.43). There-
fore, we distinguish a slow, sediment time scale t and a
fast, hydrodynamic time scale s, and split (A.11) as
follows:
M
d bU h

ds
¼L1ð bU hðs; tÞ; bðtÞÞ and M

db̂
dt

¼L2ðh bU hi; bÞ; ðA:15Þ
where bU h concerns the hydrodynamic part. We aim to
march (A.15) to steady-state in s and solve (A.15) in t.
Consequently, a suitable time discretization is the
following:
Algorithm 1. Time stepping algorithm for the morphody-
namic model. ð�Þ: time stepping algorithm for the flow
component (a five-stage explicit Runge–Kutta scheme with
appropriate coefficients ~a; ~b, see [16]); ð��Þ: stage of a
classical three-stage TVD explicit Runge–Kutta scheme
[17,1] for the bed component.

Fig. 16 shows results obtained with the proposed first-
order time stepping algorithm and the third-order time
integration procedure for the graded river test. No visual
differences between both time integration procedures were
seen.
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