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Abstract A clique-transversal of a graph G is a subset of vertices intersecting all the cliques
of G. It is NP-hard to determine the minimum cardinality τc of a clique-transversal of G.
In this work, first we propose an algorithm for determining this parameter for a general
graph, which runs in polynomial time, for fixed τc. This algorithm is employed for finding
the minimum cardinality clique-transversal of 3K2-free circular-arc graphs in O(n4) time.
Further we describe an algorithm for determining τc of a Helly circular-arc graph in O(n)

time. This represents an improvement over an existing algorithm by Guruswami and Pandu
Rangan which requires O(n2) time. Finally, the last proposed algorithm is modified, so as
to solve the weighted version of the corresponding problem, in O(n2) time.
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The aim of this work is to describe algorithms for finding the clique-transversal number
for general graphs and for subclasses of circular-arc graphs: Helly circular-arc graphs and
3K2-free circular-arc graphs.

Clique transversals have been studied since the paper by Tuza (1990). See also the early
paper by Payan (1979). The first NP-hardness result for clique-transversals is by Erdös et al.
(1992). The following are some classes of graphs admitting polynomial time algorithms for
the problem of determining a minimum clique-transversal: strongly chordal graphs (Chang
et al., 1993, 1996; Guruswami and Pandu Rangan 2000); chordal graphs with bounded clique
size (Guruswami and Pandu Rangan 2000); k-trees with bounded k (Chang et al. 1996);
dually chordal graphs (Brandstädt et al. 1997); comparability graphs (Balachandran et al.
1996); balanced graphs (Bonomo et al. 2006; Dahlhaus et al. 1998); distance hereditary
graphs (Lee et al. 2002); short-chorded graphs with no 3-fans nor 4-wheels (Durán et al.
2002); Helly circular-arc graphs (Guruswami and Pandu Rangan 2000).

Let G be an undirected connected graph, V (G) and E(G) its vertex and edge sets, re-
spectively, |V (G)| = n and |E(G)| = m. For v ∈ V (G), denote by N(v) the set of neighbors
of v, and N [v] = N(v) ∪ {v}. Write N(v) = V (G) \ N [v]. Say that v is universal when
N [v] = V (G). A complete set of G is a set of pairwise adjacent vertices. A clique is a max-
imal complete set. A dominating set of G is a set W ⊆ V (G) such that every vertex outside
W is adjacent to some vertex of W . Let V a family of subsets of V (G), and W ⊆ V (G).
Say that W is a transversal of V when W intersects each set of V . A transversal of the set of
cliques of G is called a clique-transversal of G.

We employ the following notation.

• τc(G), minimum cardinality of a clique-transversal of G

clique-transversal number
• τ̃c(G), minimum weight of a clique-transversal of G

• γ (G), minimum cardinality of a dominating set of G

domination number
• γ̃ (G), minimum weight of a dominating set of G

A circular-arc (CA) model for G is a pair (C,A), where C is a circle and A is a collection
of arcs of C, such that each arc Ai ∈ A corresponds to a vertex vi ∈ V (G), and Ai,Aj inter-
sect precisely when vi, vj are adjacent, i �= j . A circular-arc (CA) graph is one admitting a
CA model. When traversing the circle C, we will always choose the clockwise direction. If
s, t are points of C, write (s, t) to mean the arc of C defined by traversing the circle from s

to t . Call s, t the extremes of (s, t), while s is the start and t the end of the arc. For Ai ∈ A,
write Ai = (si, ti). Without loss of generality, all arcs of C are considered as open arcs, no
two extremes of distinct arcs of A coincide and no single arc entirely covers C.

A Helly circular-arc (HCA) graph G is a CA graph admitting a CA model whose arcs sat-
isfy the Helly property. That is, every pairwise intersecting subfamily of arcs of A contains
a common point. Such a model is called a Helly circular-arc (HCA) model for G. Gavril
(1974) has characterized HCA graphs as exactly those admitting a clique matrix having the
circular 1’s property for columns. This characterization leads to an algorithm for recogniz-
ing HCA graphs, which builds an HCA model in O(n3) time if that model exists. Recently,
other characterizations of HCA graphs have been formulated, by Joeris et al. (2006) and
by Lin and Szwarcfiter (2006). Linear time algorithms for recognizing HCA graphs and
constructing HCA models can be obtained using these characterizations.



Ann Oper Res (2008) 157: 37–45 39

Fig. 1 Graph 3K2

A 3K2-free circular-arc graph is a circular-arc graph which does not contain the graph of
Fig. 1 as an induced subgraph.

Helly circular-arc graphs form an important class of circular-arc graphs. Some properties
of interval graphs are captured more closely by Helly circular-arc graphs than by other
classes of circular-arc graphs. On the other hand, 3K2-free circular-arc graphs contain Helly
circular-arc graphs and their cliques preserve some of the properties of the latter class.

In this work, we propose an algorithm for determining the minimum cardinality clique-
transversal of a general graph, which runs in polynomial time, whenever the clique-
transversal number is fixed. We also describe efficient algorithms for finding clique-
transversals in certain subclasses of circular-arc graphs. The considered classes are Helly
circular-arc graphs and 3K2-free circular-arc graphs. For Helly circular-arc graphs, we pro-
pose algorithms for the cardinality and weighted version of this problem. For 3K2-free
circular-arc graphs, we describe an algorithm for minimum cardinality clique-transversal.
The complexity of the proposed algorithm for the cardinality problem in HCA graphs is
O(n). This represents an improvement over the existing algorithm by Guruswami and Pandu
Rangan (2000), whose complexity is O(n2). As usual for many algorithms on circular-arc
graphs, we assume that the graph is given by its circular-arc model, with the extremes of the
arcs circularly sorted. If they are not sorted we would need to add an extra O(n logn) time
for the sorting. All the mentioned algorithms for HCA graphs suppose that an HCA model
is given.

1 Clique-transversals in general graphs

In the sequel, we consider the question of finding the clique-transversal number for an arbi-
trary graph.

The theorem below describes conditions for an arbitrary graph G to have clique-
transversal number at most k.

Theorem 1 Let G be a graph and k ≥ 1. Then τc(G) ≤ k if and only if G has k vertices
v1, . . . , vk , such that the family of subsets N(v1), . . . ,N(vk),⊆ V (G) admits no transversal
formed by a complete set of V (G).

Proof Assume τc(G) ≤ k and let {v1, . . . , vk} be a clique-transversal of G. By contrary,
suppose that N(v1), . . . ,N(vk) has a transversal W , which is a complete set of G. Because
W is a complete set, W is contained in some clique M of G. Since W is a transversal of
N(v1), . . . ,N(vk), at least one vertex of M is not adjacent to vi , 1 ≤ i ≤ k. Consequently,
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M ∩ {v1, . . . , vk} = ∅. The latter contradicts {v1, . . . , vk} to be a clique-transversal of G.
Consequently, N(v1), . . . ,N(vk) has no transversal formed by a complete set of G.

Conversely, by hypothesis τc(G) > k. By contradiction, assume that G has k vertices
{v1, . . . , vk} such that N(v1), . . . ,N(vk) has no transversal formed by a complete set of G.
Because τc(G) > k, there exists some clique M such that M ∩ {v1, . . . , vk} = ∅. Then M

contains a vertex w ∈ N(vi), for each i. The collection of such vertices w form a complete
set W with cardinality at most k, and which is a transversal of N(v1), . . . ,N(vk), contrary
to the assumption. Consequently, no such vertices v1, . . . , vk may exist. �

The above theorem conducts to the following algorithm for determining whether the
clique-transversal number of an arbitrary graph G is at most k, for a given k.

Algorithm 1 (Deciding if the clique-transversal number of a general graph is at most k)
For each k-subset V ′ = {v1, . . . , vk} ⊆ V (G), consider all subsets W ⊆ V (G) \ V ′, with
|W | ≤ k. For each pair V ′,W , verify (i) if W is a transversal of N(v1), . . . ,N(vk) and (ii) if
W is a complete set of G. If, for some V ′, (i) or (ii) fails for all subsets W ⊆ V (G) \ V ′,
then V ′ is a clique-transversal of G, τc(G) ≤ k and stop. Otherwise, τc(G) > k.

The complexity of the above algorithm can be determined as follows. There are at most
(nk )nk pairs of subsets V ′,W to be considered. For each V ′, we can restrict to consider
only those subsets W which are already a transversal of N(v1), . . . ,N(vk), that is, which
satisfy (i). To verify (ii), we make k(k−1)

2 comparisons. Consequently, the overall time com-

plexity is O( n2k

(k−2)! ), with O(m + nk) space.
By applying τc(G) times the above algorithm, we can compute the value of τc(G) in

O(n2τc(G)) time. The complexity is therefore a polynomial in n, for fixed τc(G).

2 Intersection segments

Let G be a graph admitting a CA model (C,A). For A ∈ A, denote by V (A) the vertex of
G corresponding to A. Similarly, for A′ ⊆ A, V (A′) = ∪A∈A′V (A). If V (A) is a universal
vertex then A is a universal arc. If an arc A ∈ A contains some point p ∈ C then say that
A is an arc of p. Denote by A(p) the collection of arcs of p. Clearly, V (A(p)) is complete
set of G. For p,p′ ∈ C say that p (properly) dominates p′ when A(p) (properly) contains
A(p′). When A(p) = A(p′) then p,p′ are equivalent. Say that p ∈ C is complete point
when no point of C properly dominates p. In addition when V (A(p)) is a clique of G then
p is a clique point of C. Such a clique is called a Helly clique. Clearly, G might contain
cliques that are no Helly. However, if (C,A) is a Helly model then all its cliques are Helly.
In this case, there is a one-to-one correspondence between cliques of G and non equivalent
clique points of C. On the other hand, any non Helly clique contains at least three vertices.
Furthermore, among the arcs of A corresponding to the vertices of a non Helly clique there
exist always three of them which together cover the entire circle.

We describe a method for finding sets of complete points of a CA graph. These sets will
be employed in the algorithms proposed in the later sections. The following concepts are
central for our methods.

Denote A = {A1, . . . ,An} and Ai = (si, ti), 1 ≤ i ≤ n. A segment is an arc of C formed
by two consecutive extremes of the arcs of A, when traversing C. Clearly, there are 2n

segments, which exactly cover C, except for their extreme points. Also, each arc of A cor-
responds to a sequence of consecutive segments. All points belonging to a same segment
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are equivalent. An intersection segment is a segment of the type (si, tj ), that is, its start
point is the start point of some arc Ai ∈ A, while its end point is the end point of an arc
Aj ∈ A. Write Ii = (si, tj ). A point pi ∈ Ii is called an intersection point. There are at most
n intersection segments.

In order to relate intersection points to complete points, we employ the following ad-
ditional notation. An intersection segment Ii = (si, tj ) is simple when Ai ∪ Aj �= C, and
universal otherwise. That is, Ii is universal when Ai and Aj cover the entire circle. A point
belonging to a simple segment is a simple point, whereas one inside a universal segment is
a universal point.

Next, we consider some special subsets of points of C which are of interest. Define
the following four subsets. A complete (simple) (universal) (clique) point representation of
C is a maximal set of complete (simple) (universal) (clique) non equivalent points of C.
Represent these sets by P,S,U,Q, respectively. We describe how to construct them.

Let P ′,P ′′ ⊆ C be two subsets of points of C. Then P ′,P ′′ are isomorphic when there
exists a bijection f between these sets such that p′ and f (p′) are equivalent, for all p′ ∈ P ′.
Clearly, any two complete (intersection) (simple) (universal) (clique) point representations
are isomorphic. That is, P,S,U,Q are all unique, up to isomorphism. Consequently, we
can write P = S ∪ U ′, where U ′ ⊆ U . Also, Q ⊆ P , with Q = P precisely when (C,A)

is a Helly model. Clearly, Q corresponds to the set of Helly cliques of G. Moreover, the
Helly cliques can be further bipartitioned, as follows. Let Mi be a Helly clique of G and pi

the clique point of Q corresponding to Mi . Then Mi is a simple clique or universal clique,
according whether pi is a simple or universal point, respectively.

The following algorithm proposed in (Durán et al. 2006) constructs a complete point
representation P of C, given a CA model (C,A) for a graph G. In fact, the algorithm
constructs explicitly the simple point representation S and then finds U ′ ⊆ U , such that
P = S ∪ U ′. The algorithm is divided into two steps. Step 1 constructs S and a set U ′′ ⊇ U ,
which contains U and possibly some additional equivalent points. Step 2 determines U ′
by including in it one universal point (the one with lowest index), for each collection of
equivalent complete points. The algorithm employs a list L to contain this collection.

Algorithm 2 (Constructing a complete point representation of a CA graph)

STEP 1: Identify the segments of C. Define S = U ′′ = ∅. For each segment (x, y) of C, if
x is the start of some arc Ai ∈ A and y the end of Aj ∈ A then let pi be a point of
(x, y) and perform the following additional test: if Ai ∪ Aj �= C, include pi in S,
otherwise include pi in U ′′.

STEP 2: Define U ′ = ∅. For each universal point pi ∈ U ′′, let Ii = (si, tj ) be its correspond-
ing universal segment. For each pi ∈ U ′′, apply the following procedure. Com-
pute A(pi). Define L = {i}. Traverse the arc (sj , ti) ⊆ C, segment by segment,
in the order as they appear. In case of an intersection segment (sk, tl) ⊆ (sj , ti ),
choose a point pk ∈ (sk, tl), compute A(pk), and if A(pi) = A(pk) then include
k in L. After all segments contained in (sj , ti) have been traversed then include
pr in U ′ precisely in the case where pi is not properly dominated by any pk , and
r = min{k ∈ L}. At the end, P = S ∪ U ′.

Algorithm 2 constructs S and U ′′ in O(n) time and U ′ ⊆ U ′′ in O(n2) time. Conse-
quently, we require O(n2) time for constructing P . For determining U , possibly we need
to eliminate equivalent points from the subset U ′ constructed in Step 1. It can be easily
performed in overall O(n2) time.
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Finally, consider the determination of the clique point representation Q of C. To obtain
Q ⊆ P , we need to remove from P those points p ∈ P , such that V (A(p)) is not a clique.
With this purpose, apply the following algorithm, proposed in (Durán et al. 2006). Given P

the algorithm constructs Q in O(m) time.

Algorithm 3 (Constructing a clique point representation of a CA graph) Define Q := P . For
each complete point p ∈ P , perform the following operations. Denote by (si, tj ) the inter-
section segment corresponding to p. Define so := sj . Traverse the arc (tj , ti), identifying the
extreme points q of the arcs Ak ∈ A, such that q is the first extreme of Ak , in the traversal.
For each such extreme q , do the following: if q = sk and tk ∈ (s0, si) then Q := Q \ {p} and
terminate the iteration corresponding to p (p is not a clique point); if q = tk and sk ∈ (s0, si)

then assign s0 := sk . At the end, Q is the required clique point representation.

3 Clique-transversals in HCA graphs

In this section, we describe a method for finding a minimum clique transversal of an HCA,
for the weighted and cardinality versions of the problem.

Let G be an HCA graph and (C,A) an HCA model for it. Let Mi be a clique of G and
pi the clique point of C corresponding to it. Denote by G′ the graph obtained from G, by
adding a new vertex wi , for each clique Mi of G, making wi adjacent exactly to the vertices
of Mi . Clearly, G′ is also an HCA graph, as an HCA model for it can be obtained from
(C,A), by including in A a new arc A′

i for each clique Mi of G. Each A′
i includes pi and

is contained in the intersection of the arcs of pi , but containing none of the extremes of
this intersection. Note that each A′

i creates a new intersection segment in G′. Call G′ the
simplicial augmentation of G.

The following theorem relates clique-transversals of G and dominating sets of G′.

Theorem 2 Let G be an HCA graph, G′ its simplicial augmentation and W ⊆ V (G). Then
W is a clique-transversal of G if and only if W is a dominating set of G′.

Proof Let (C,A) be an HCA model for G. Denote by Q the clique point representation of
C. Let AQ be a family of |Q| arcs of C, each one containing exactly one clique point of
Q and no extremes of arcs of A. It follows that (C,A ∪ AQ) is an HCA model for G′. Let
AW ⊆ A be the set of arcs of A corresponding to the vertices of W .

Assume that W is a clique-transversal of G. Then the vertices of W meet each clique Mi

of G. That is, each clique point pi ∈ Q is covered by some arc of AW . On the other hand,
each arc of A∪AQ contains some clique point pi ∈ Q. Hence, the collection AW intersects
all arcs of A∪AQ, meaning that W is a dominating set of G′.

Conversely, suppose that W ⊆ V (G) is a dominating set of G′. Then each arc of A∪AQ

intersects some arc of AW . In particular, for any clique point pi ∈ Q, the arc A′
i ∈ AQ which

contains pi ∈ Q intersects some arc Aw ∈ AW . We know that any arc of A ∪ AQ which
intersects A′

i must contain A′
i . Consequently, Aw contains pi , meaning that W is indeed a

clique-transversal of G. �

We handle separately CA graphs having two arcs covering the entire circle.

Theorem 3 Let (C,A) be a CA model of a graph G. If there are two arcs A1,A2 ∈ A which
entirely cover C then τc(G) ≤ 2.
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Proof Let M be any clique of G and A(M) = {Ai ∈ A/V (Ai) ∈ M}. If A1 or A2 contains
some arc Ai ∈ A(M) different from A1 and A2, then V (A1) or V (A2) belongs to M . If
A1 and A2 do not contain any arc of A(M) different from A1 and A2, then ∀Ai ∈ A(M),
Ai ∩ A1 �= ∅ and Ai ∩ A2 �= ∅, because A1 and A2 entirely cover C. In this case, V (A1) and
V (A2) are vertices of M . Consequently, V (A1)and V (A2) form a clique transversal of G. �

In the sequel, we apply Theorems 2 and 3 for finding the clique-transversal number of an
HCA graph G, given by its HCA model (C,A). The following algorithm computes τc(G).

Algorithm 4 (Clique-transversal number of an HCA graph) Start by verifying if A contains
a universal arc. If affirmative, τc(G) = 1. Otherwise, construct the simple and universal point
representations S and U of G, respectively. If U �= ∅ then τc(G) = 2. Otherwise, find the
collection of arcs AS and the HCA model (C,A∪AS) of the simplicial augmentation G′ of
G. Then τc(G) = γ (G′).

Clearly, τc(G) = 1 precisely when G has a universal arc. Otherwise and when U �= ∅
there are two arcs which cover C, meaning that τc(G) = 2. Otherwise, U = ∅ implies that
the clique point representation Q equals S. This means that Q = P = S. Consequently, the
construction of Q reduces to that of S, which can be done in O(n) time, running Step 1 of
Algorithm 2. The construction of AS and of the HCA model of G′ can also be done in linear
time. In order to compute γ (G′), apply the algorithm by Hsu and Tsai (1991), which runs
in O(n) time. Consequently, the overall complexity is O(n).

The above algorithm can be modified for the weighted problem. Let G be a graph given
by its HCA model (C,A), and where there is a non negative weight assigned to each of its
vertices.

Algorithm 5 (Minimum weight of a clique-transversal of an HCA graph) Construct the
clique point representation Q of C, and the family of arcs AQ. Find the HCA model
(C,A ∪ AQ) of the simplicial augmentation G′ of G. Define the weights of the vertices
of G′, as follows. For v ∈ V (G), the weight of v in G′ is the same as its weight in G, while
the weight of a vertex v ∈ V (G′) \ V (G) is infinite. Then τ̃c(G) = γ̃ (G′).

The infinite weights assure that the minimum dominating set of G′ is formed solely by
vertices of G. By Theorem 2, the algorithm is correct.

The construction of Q requires O(n2) time, by Algorithms 2 and 3. The determination
of γ̃ (G′) can be done in O(n + m) time, applying the algorithm by Chang (1998). The
remaining operations can de implemented in O(n) time. Therefore the algorithm terminates
within O(n2) time.

4 Clique-transversals in 3K2-free CA graphs

Finally, we consider the problem of finding τc(G) for a 3K2-free CA graph G.

Theorem 4 Let G be a graph which is not HCA, and contains no 3K2 as induced subgraph.
Then τc(G) ≤ 3.

Proof Let (C,A) be a CA model for G. As G is not an HCA graph, there are three arcs
A1,A2,A3 ∈ A, which entirely cover C. If two of these arcs cover C then it holds that
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τc(G) ≤ 3 by Theorem 3. So, we can assume that A1,A2,A3 do not have a common point.
Suppose there is some clique M which is not covered by the subset of vertices V (A1), V (A2)

and V (A3). That is, there exists an arc A′
1, corresponding to some vertex of M , such that

A′
1 ∩ A1 = ∅, but A′

1 ∩ A2, A′
1 ∩ A3 �= ∅. The latter can be justified as follows: A′

1 ∩ A1 = ∅,
otherwise V (A1) ∈ M , while A′

1 ∩ A2, A′
1 ∩ A3 �= ∅, because A1,A2,A3 cover the entire

circle and A′
1 can not be strictly contained in A2 nor A3. Similarly, there exist arcs A′

2 and
A′

3 also corresponding to vertices of M , satisfying A′
2 ∩ A2 = A′

3 ∩ A3 = ∅, but A′
2 ∩ A1,

A′
2 ∩ A3, A′

3 ∩ A1, A′
3 ∩ A2 �= ∅. In this situation, the subset of vertices corresponding to

the arcs {A1,A2,A3,A
′
1,A

′
2,A

′
3} induces a 3K2 in G, which contradicts the hypothesis.

Consequently, M is covered by V (A1), V (A2) and V (A3). Therefore V (A1), V (A2) and
V (A3) form a clique transversal of G. �

The above proof also implies that if G is a 3K2-free CA graph and τc(G) > 3 then every
CA model for G is in fact an HCA model.

Theorem 4 leads to the following algorithm for determining the clique-transversal num-
ber of a 3K2-free CA graph G, with a given CA model (C,A).

Algorithm 6 (Clique-transversal number of a 3K2-free CA graph) Start by verifying if G

contains a universal vertex. If affirmative then τc(G) = 1. Otherwise, apply Algorithm 1
with k = 2, to verify if τc(G) ≤ 2. If affirmative, τc(G) = 2. Otherwise, check if there are
three arcs A1,A2,A3 ∈ A which cover C. If negative, then (C,A) is an HCA model and
determine τc(G) by applying Algorithm 4. When A1,A2,A3 cover C, verify if there are
other three arcs A4,A5,A6 ∈ A covering C (in this case, A1, . . . ,A6 form a 3K2 in G). In
the affirmative case, the algorithm exhibits such a subgraph. Otherwise, τc(G) = 3.

This algorithm is robust, in the sense that either it determines the clique transversal num-
ber of the graph, or it exhibits a forbidden 3K2 induced subgraph.

As for the complexity, the dominating step is that of applying Algorithm 1 with k = 2.
Consequently, the algorithm terminates in O(n4) time.

5 Conclusions

Table 1 summarizes the problems that have been considered in this paper, together with the
complexities of the corresponding proposed algorithms.

In all cases, the algorithms determine the cardinality or the weight of the corresponding
minimum clique-transversal set. There is no difficulty to modify them so as to compute the
actual minimum or maximum sets.

It remains open the complexity of determining the clique-transversal number of general
CA graphs.

Table 1 Complexities

Problem Graph Class Version Proposed alg. Previous alg.

Clique-
transversal
number

HCA Cardinality O(n) O(n2)

Weighted O(n2) –

3K2-free CA Cardinality O(n4) –

Weighted ? –

General Cardinality O(n2τc(G)) –
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