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multiplicity one.
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1. Introduction

Sampling theory is concerned with the problem of reconstruction of functions, in a pointwise manner, from the knowl-
edge of their values at a prescribed discrete set of points. Resolution of concrete situations in this theory generally involves
the characterization of a class (usually a linear set) of functions to be interpolated, the specification of a set of sampling
points to be used for all the functions in the given class, and the derivation of an interpolation formula.

The cornerstone for many works on sampling theory is the Kramer sampling theorem [17] and its analytic extension [11].
Orthogonal sampling formulae often arise as realizations of this theorem. The celebrated Whittaker–Shannon–Kotel’nikov
sampling theorem [16,24,31] is also a particular case of the Kramer’s theorem, although historically the former came first
and motivated the latter (for a recent survey on these issues see [9]).

Orthogonal sampling formulae have been obtained in connection with differential and difference self-adjoint boundary
value problems (see for instance [4,13,32] and, of course, the paper due to Kramer himself [17]), and also by resorting to
Green’s functions methods [5,6], among other ODE’s techniques. These results suggest that the spectral theory of operators
should provide a unifying approach to sampling theory. Following this idea, a general method for obtaining analytic, orthog-
onal sampling formulae has been derived in [25] on the basis of the theory of representation of simple symmetric operators
due to M.G. Krein [18–21]. Roughly speaking, the technique given in [25] is based on the following: By [18–20], every closed
simple symmetric operator A in a Hilbert space H generates a bijective isomorphism between H and a space of functions
Ĥ with certain analytic properties. If the operator A satisfies some additional conditions, all of its self-adjoint extensions
have discrete spectrum and every function f in Ĥ can be uniquely reconstructed, as long as one knows the value of f at
the spectrum of any self-adjoint extension of A.

The self-adjoint extensions of a symmetric operator with deficiency indices (1,1) constitute a family of singular rank-one
perturbations of one of these self-adjoint extensions [3, Sections 1.1–1.3]. Therefore, the methods developed in [25] also hold
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for singular rank-one perturbations, provided that these operators correspond to a family of self-adjoint extensions of some
simple symmetric (hence densely defined) operator. We cannot use, however, a family of bounded rank-one perturbations
in applications to sampling theory without making substantial changes to the results of [25]. Krein’s approach to symmetric
operators with equal deficiency indices does not work for bounded rank-one perturbations since operators of this kind may
only be seen as self-adjoint extensions of a certain not densely defined, Hermitian operator [3, Section 1.1].

The main motivation of the present work is to develop a method in sampling theory analogous to [25] for the case
of bounded rank-one perturbations. Accordingly, this work illustrates the use of spectral and operator methods in dealing
with various aspects of sampling theory. It is worth pointing out that, in a sense, this article (and also [25]) may be seen
as a particular realization of the abstract sampling theory on reproducing kernel Hilbert spaces developed in [15,23] (see
also [12]). Indeed, as we shall see, we obtain in this work, from the spectral properties of a family of rank-one perturbations,
the objects assumed as a starting point of the investigations carried out in [12,15,23].

With the motivation stated above in mind, we begin by constructing a representation space for bounded rank-one per-
turbations in some sense similar to that of Krein for simple symmetric operators. Elements of this representation space
are the functions to be interpolated. Then we obtain a general Kramer-type analytic sampling formula which turns out to
be a Lagrange interpolation formula. We also characterize the space of interpolated functions as a space of meromorphic
functions that is related to a de Branges space. Examples are discussed in the last part of this work.

2. Preliminaries

The following review is based on the classical theory of rank-one perturbations of self-adjoint operators, as discussed in
detail by Donoghue [10], Simon [27], Gesztesy and Simon [14], and Albeverio and Kurasov [3].

In a Hilbert space H, let us consider a self-adjoint operator A with discrete and simple spectrum. Discreteness means
that the spectrum consists only of isolated eigenvalues of finite multiplicity. Simplicity means that there is a vector μ ∈ H,
called cyclic, such that {(A − zI)−1μ: z ∈ C} is a total set in H. Because of the simplicity, the eigenspaces Ker(A − xI),
where x is in the spectrum, are one-dimensional. The conditions imposed on A imply that the space H is separable.

Let us fix a cyclic vector μ and assume ‖μ‖ = 1. We define the family of bounded rank-one perturbations of A as
follows.

Ah := A + h〈μ, ·〉μ, h ∈ R, (2.1)

where the inner product is taken, from now on, anti-linear in its first argument. Naturally, Dom(Ah) = Dom(A) for any
h ∈ R. Elementary perturbation theory implies that all the elements of (2.1) have discrete spectrum. Moreover, since μ
is cyclic for every Ah with h ∈ R, it follows that the spectrum of Ah , henceforth denoted by Sp(Ah), is simple for h ∈ R

[10, Section 1]. As pointed out in [3, Section 1.1], the operators Ah may be seen as self-adjoint extensions of some Hermitian
operator, in the sense of [30], with non-dense domain.

Alongside (2.1), we consider the family of functions

Fh(z) := 〈
μ, (Ah − zI)−1μ

〉
, z /∈ Sp(Ah), h ∈ R. (2.2)

In the sequel F0 will be denoted by F . By the spectral theorem, Fh(z) is the Borel transform of the spectral function
mh(t) = 〈μ, Eh(t)μ〉, where Eh(t) is the spectral resolution of the identity corresponding to Ah . Hence, Fh(z) is a Herglotz
meromorphic function having simple poles at the eigenvalues of Ah .

From the second resolvent identity [30, Theorem 5.13] one obtains

(Ah − zI)−1 = (A − zI)−1 − h
〈
(Ah − zI)−1μ, ·〉(A − zI)−1μ, h ∈ R. (2.3)

This equation yields the well-known Aronzajn–Krein formula [27, Eq. (1.13)]

Fh(z) = F (z)

1 + hF (z)
, h ∈ R. (2.4)

The spectral properties of the whole family (2.1) are contained in (2.4). Indeed, one can easily show that the function Fh/Fh′ ,
h �= h′ , is also Herglotz and its zeros and poles are given by the poles of Fh′ and Fh respectively [26]. Thus, the spectra of
any two different elements of the family (2.1) interlace, i.e., between two neighboring eigenvalues of one operator there is
one and only one eigenvalue of any other. Also, (2.4) implies that x0 ∈ R is a pole of Fh if and only if

1

F (x0)
+ h = 0. (2.5)

Therefore, for any x ∈ R which is not a zero of F , there exists a unique h ∈ R such that x is an eigenvalue of Ah . One
may extend this result to every x ∈ R by considering an infinite coupling constant h = ∞ in (2.1) (see [27, Section 1.5],
[3, Section 1.1.2]). From the properties of F (z), it is shown that A∞ also has simple discrete spectrum (see footnote in
[1, p. 55]) and Sp(A∞) = {x ∈ R: F (x) = 0}. Thus, for any x ∈ R, there exists a unique h ∈ R ∪ {∞} such that x is an
eigenvalue of Ah .

The main peculiarity of A∞ , that separates it from the family Ah with finite h, is its domain. Indeed, for the kind of
perturbations considered here, the domain of A∞ is the set {ϕ ∈ Dom(A): 〈ϕ,μ〉 = 0} ([3, Section 1.1.1], [27, Theorem 1.15]).
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3. Sampling theory

Based on the theory of rank-one perturbations, we construct in this section a linear space of meromorphic functions Ĥμ

and derive an interpolation formula valid for all the elements in Ĥμ .
In our considerations below, the vector-valued function

ξ(z) := (A − zI)−1μ

F (z)
, z ∈ C \ Sp(A∞),

plays an important role. Note that ξ(z) is well defined for z ∈ Sp(A) and is analytic in its domain of definition.

Lemma 1. For any x ∈ R \ Sp(A∞), there exists (a unique) h ∈ R such that

ξ(x) ∈ Ker(Ah − xI). (3.1)

Similarly,

(A − xI)−1μ ∈ Ker(A∞ − xI) (3.2)

for every x ∈ Sp(A∞).

Proof. We first consider x /∈ Sp(A) ∪ Sp(A∞). Let h �= 0 be such that x ∈ Sp(Ah) (we already know that there is always
such h). We have

Ahξ(x) = 1

F (x)
Ah(A − xI)−1μ =

(
1

F (x)
+ h

)
μ + x

F (x)
(A − xI)−1μ.

The first assertion of the lemma follows from the last expression and (2.5). When x ∈ Sp(A), the statement follows by a
limiting argument based on the fact that A is closed.

We now prove the last assertion of the lemma. Define P := 〈μ, ·〉μ. By virtue of [27, Theorem 1.18, Remark 2], there is a
cyclic vector η that obeys

(A∞ − zI)−1η = 1

F (z)
(I − P )(A − zI)−1μ, z /∈ Sp(A) ∪ Sp(A∞). (3.3)

Clearly, η ∈ Dom(A∞). We compute the projection of η along the eigenspace associated to x ∈ Sp(A∞). Using (3.3) and
some ε > 0 sufficiently small, we obtain

[
E∞(x + 0) − E∞(x − 0)

]
η = 1

2π i

∫
|x−z|=ε

(A∞ − zI)−1ηdz = 1

2π i

∫
|x−z|=ε

[
1

F (z)
(A − zI)−1 − I

]
μdz

=
(

Res
z=x

1

F (z)

)
(A − xI)−1μ.

Since the last expression is different from zero, (3.2) is proven. �
Definition 1. For any ϕ ∈H, let Φμ be the mapping given by

(Φμϕ)(z) := 〈
ξ(z),ϕ

〉
, z ∈ C \ Sp(A∞).

We sometimes shall denote Φμϕ by ϕ̂ .

The mapping Φμ is a linear injective operator from H onto a certain space of meromorphic functions Ĥμ := ΦμH. The
injectivity may be verified with the aid of (3.1). Some properties that characterize the set Ĥμ will be accounted for in the
next section.

Proposition 1. Given some fixed h ∈ R, let {x j} j = Sp(Ah). Define Gh(z) := 1/Fh(z) = h + 1/F (z). Then, for every f (z) ∈ Ĥμ , we
have

f (z) =
∑

x j∈Sp(Ah)

Gh(z)

(z − x j)G ′
h(x j)

f (x j), z ∈ C \ Sp(A∞). (3.4)

The series converges absolutely and uniformly on compact subsets of the domain.
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Proof. Because of the assertion (3.1) of Lemma 1, {ξ(x j)} j is a complete orthogonal set in H. Hence

ϕ̂(z) = 〈
ξ(z),ϕ

〉 = ∑
x j∈Sp(Ah)

〈ξ(z), ξ(x j)〉
‖ξ(x j)‖2

ϕ̂(x j), (3.5)

where the series converges absolutely by virtue of the Cauchy–Schwarz inequality and uniformly on compacts because
‖ξ(z)‖ is continuous in C \ Sp(A∞); see the proof of [25, Proposition 1] for a more detailed argument of this sort.

Now, the first resolvent identity implies〈
ξ(z), ξ(w)

〉 = (z − w)−1
[

1

F (w)
− 1

F (z)

]
.

In conjunction with (2.5) and the convention 1/∞ = 0 when h = 0, the last equation gives rise to the identity〈
ξ(z), ξ(x j)

〉 = −(z − x j)
−1

[
h + 1

F (z)

]
.

Finally, note that

G ′
h(w) = − 1

F 2(w)
F ′(w) = − 1

F 2(w)

〈
μ, (A − w I)−2μ

〉 = −〈
ξ(w), ξ(w)

〉
.

Evaluation of the last expression at w = x j yields the desired result. �
Remark 1. Eq. (3.5) is an orthogonal sampling formula of Kramer-type [17]. Since the function Gh(z) has simple zeros at the
points of Sp(Ah), expression (3.4) is indeed a Lagrange interpolation formula.

4. Spaces of interpolated functions

The present section is devoted to the characterization of the space of functions Ĥμ introduced by means of the mapping
Φμ of Definition 1. Note that Ĥμ is determined by the way we have defined ξ(z), which in turn only depends on the choice
of the operator A and the cyclic vector μ. More precisely, if we define

ξh(z) := (Ah − zI)−1μ

Fh(z)
, z ∈ C \ Sp(A∞), h ∈ R,

then (2.3) and (2.4) imply that ξh(z) = ξ0(z) = ξ(z) so Ĥμ has no dependency on the perturbation parameter h. This
parameter however does enter in the selection of the sampling points and, as we will see below, it also determines different
choices for the inner product associated to Ĥμ .

The following statement gives an explicit description of Ĥμ .

Proposition 2.

Ĥμ =
{

f (z) = c +
∑

xn∈Sp(A∞)

cn

z − xn
: c, cn ∈ C,

∑
xn∈Sp(A∞)

|cn|2 F ′(xn) < ∞
}
,

where the series above converges absolutely and uniformly on compact subsets of C \ Sp(A∞).

Proof. Let G denote the set defined by the right-hand side of the statement.
Given xn ∈ Sp(A∞), it follows from (3.2) of Lemma 1 that ω(xn) := (A − xn I)−1μ is the associated eigenvector (up to

normalization). Taking into account the first resolvent identity, we get

ω̂(xn)(z) = 1

F (z)

〈
(A − zI)−1μ, (A − xn I)−1μ

〉 = 1

F (z)

[
F (z)

z − xn
+ F (xn)

]
= 1

z − xn
.

The expression after the first equality above also implies that ‖ω(xn)‖2 = F ′(xn). Recalling the definition of Dom(A∞), it
follows that the set

B := {μ} ∪ {∥∥ω(xn)
∥∥−1

ω(xn)
}

xn∈Sp(A∞)

is an orthonormal basis in H. Now, take an arbitrary element ϕ of H and expand it on the basis B . By applying Φμ to ϕ
and using the Cauchy–Schwarz inequality, we conclude that Ĥμ ⊂ G .

The inclusion G ⊂ Ĥμ follows from noticing that any f (z) ∈ G is the image under Φμ of an element in H of the form
cμ + ∑

xn∈Sp(A∞) cnω(xn). �
Note that, by virtue of Proposition 2, the only entire functions in Ĥμ are the constant functions. Also, one easily verifies

that any constant function in Ĥμ is the image under Φμ of a vector in Span{μ}.
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Lemma 2. The space Ĥμ has the following properties:

(i) If f (z) ∈ Ĥμ has a non-real zero w, then g(z) := z−w
z−w f (z) also belongs to Ĥμ .

(ii) The evaluation functional f (·) �→ f (z) is continuous for every z ∈ C \ Sp(A∞).
(iii) For every f (z) ∈ Ĥμ , f ∗(z) := f (z) belongs to Ĥμ .

Proof. We have f (z) = 〈ξ(z),ϕ〉 for some ϕ ∈H. Given w such that f (w) = 0, consider η = (A − w I)(A − w I)−1ϕ . A short
computation yields g(z) = 〈ξ(z), η〉, thus showing (i). Assertion (ii) is rather obvious so the proof is omitted. On the basis
of Proposition 2 one verifies (iii). �

In what follows we show that Ĥμ can be endowed with several Hilbert space structures, each one determined by the
spectral functions mh(x), h ∈ R.

Lemma 3. Let h ∈ R and {x j} j = Sp(Ah). Then the spectral function mh(x) is given by

mh(x) =
∑
x j�x

∥∥ξ(x j)
∥∥−2

.

Proof. Let us recall first the following well-known results [27, Theorem 1.6]

lim
ε→0

ε Re Fh(x + iε) = 0,

lim
ε→0

ε Im Fh(x + iε) = lim
ε→0

∫
R

ε2 dmh(y)

(y − x)2 + ε2
= mh

({x}),
and also the identity

(Ah − zI)−1μ = 1

1 + hF (z)
(A − zI)−1μ.

Consider x j ∈ Sp(Ah). It suffices to verify that mh({x j}) = ‖ξ(x j)‖−2. By resorting to the equalities mentioned above,
a straightforward computation shows that〈

ξ(x j − iε), ξ(x j − iε)
〉 = 1

|F (x j + iε)|2
〈(

A − (x j + iε)I
)−1

μ,
(

A − (x j + iε)I
)−1

μ
〉

= 1

|Fh(x j + iε)|2
〈(

Ah − (x j + iε)I
)−1

μ,
(

Ah − (x j + iε)I
)−1

μ
〉

= 1

[ε Re Fh(x j + iε)]2 + [ε Im Fh(x j + iε)]2

∫
R

ε2 dmh(y)

(y − x j)
2 + ε2

→ 1

mh({x j}) , ε → 0.

The proof is now complete. �
Remark 2. For h �= 0, this result is in fact statement (ii) of [27, Theorem 2.2].

Proposition 3. For arbitrary h ∈ R, the map Φμ is a unitary transformation from H onto L2(R,dmh).

Proof. Φμ is a linear isometry from H into L2(R,dmh). Indeed,

〈
ϕ̂(·), ψ̂(·)〉h :=

∫
R

〈
ϕ, ξ(x)

〉〈
ξ(x),ψ

〉
dmh(x) =

∑
x j∈Sp(Ah)

〈ϕ, ξ(x j)〉〈ξ(x j),ψ〉
‖ξ(x j)‖2

= 〈ϕ,ψ〉.

Now consider f (x) ∈ L2(R,dmh). This means that∥∥ f (·)∥∥2
h =

∑
x ∈Sp(A )

| f (x j)|2
‖ξ(x j)‖2

< ∞.
j h
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Define

η =
∑

x j∈Sp(Ah)

f (x j)

‖ξ(x j)‖2
ξ(x j),

which is clearly an element in H. It is not difficult to verify that ‖ f (·) − η̂(·)‖h = 0. �
Remark 3.

1. Proposition 3 also implies that Ĥμ becomes a Hilbert space when it is equipped with the inner product 〈·,·〉h . By
statements (i) and (iii) of Lemma 2, Ĥμ satisfies∥∥∥∥ (·) − w

(·) − w
f (·)

∥∥∥∥
h

= ∥∥ f (·)∥∥h and
∥∥ f ∗(·)∥∥h = ∥∥ f (·)∥∥h,

where w is a non-real zero of f (z).
2. Statement (ii) of Lemma 2 implies that Ĥμ is a reproducing kernel Hilbert space [23]. A short computation using the

unitarity of Φμ shows that the reproducing kernel is k(z, w) := 〈ξ(z), ξ(w)〉, in others words,

f (w) = 〈
k(·, w), f (·)〉h, w ∈ C \ Sp(A∞),

for every f (z) ∈ Ĥμ . A similar expression for k(z, w) has been obtained in [25] and also discussed in a more abstract
setting in [12,15,23].

3. Let us define C := Φ−1
μ ĈΦμ , where (Ĉ f )(z) = f (z) for f ∈ Ĥμ . Because of statement (iii) of Lemma 2 and Proposition 3,

it follows that C is a complex conjugation with respect to which both A and μ are real.

The previous results show that Ĥμ looks like an axiomatic de Branges space [8, Theorem 23], the difference being that
Ĥμ is a space of meromorphic functions.

Since Sp(A∞) is void of finite accumulation points, there exists entire functions having Sp(A∞) as its zero set [22, Vol. 2,
Section 4.6, Theorem 10.1]. Let p(z) be one of these entire functions chosen so that p(z) = p(z). This last property is found
among the entire functions with all zeros in Sp(A∞) since Sp(A∞) ⊂ R.

Now define B̂μ := p(z)Ĥμ . Since the functions in Ĥμ may have simple poles only at Sp(A∞), B̂μ is a linear space of
entire functions. We then have the following corollary to Lemma 2 and Proposition 3, whose proof is omitted:

Corollary 1. The space B̂μ , equipped with the inner product〈
F (·), G(·)〉h :=

∫
R

F (x)G(x)

|p(x)|2 dmh(x),

is an axiomatic de Branges space. Moreover, the mapping f (z) �→ F (z) = p(z) f (z) is a linear isometry from Ĥμ onto B̂μ .

In view of Corollary 1 and the results of Section 3, there are sampling formulae analogous to (3.4) and (3.5) for functions
in the de Branges space B̂μ . We consider that sampling in both spaces, Ĥμ and B̂μ , may be of interest in applications.

We conclude this section with a comment about the representation of the operators Ah as operators on Ĥμ . A simple
computation shows that, for every h ∈ R, Ah is transformed by Φμ into a quasi-multiplication operator, in the sense that

Âhϕ(z) = 1

Fh(z)
〈μ,ϕ〉 + zϕ̂(z) (4.1)

for every ϕ ∈ Dom(A). This is obviously the multiplication operator in Φμ Dom(A∞). Moreover, (4.1) reduces to the multi-
plication operator in a weak sense; indeed,〈

ϕ̂(·), Âhψ(·)〉h = 〈
ϕ̂(·), (·)ψ̂(·)〉h

for every ϕ,ψ ∈ Dom(A).

5. Examples

Rank-one perturbations of a Jacobi matrix. Consider the following semi-infinite Jacobi matrix⎛⎜⎜⎜⎜⎜⎜⎝

q1 b1 0 0 · · ·
b1 q2 b2 0 · · ·
0 b2 q3 b3

0 0 b3 q4
. . .

.

.
.
. . . . .

⎞⎟⎟⎟⎟⎟⎟⎠ (5.1)
. . . .
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with qn ∈ R and bn > 0 for n ∈ N, and define in the Hilbert space l2(N) the operator J in such a way that its matrix
representation with respect to the canonical basis {δn}∞n=1 in l2(N) is (5.1). By this definition, J (cf. [2, Section 47]) is the
minimal closed symmetric operator satisfying

〈δn, Jδn〉 = qn, 〈δn+1, Jδn〉 = 〈δn, Jδn+1〉 = bn,

〈δn, Jδn+k〉 = 〈δn+k, Jδn〉 = 0, n ∈ N, k ∈ N \ {1}.
The Jacobi operator J may have deficiency indices (1,1) or (0,0) [1, Chapter 4, Section 1.2], [28, Corollary 2.9]. For this
example we consider J to be self-adjoint, i.e., the case of deficiency indices (0,0). We also assume that J has only discrete
spectrum. Our family of self-adjoint operators is given by

Jh := J + h〈δ1, ·〉δ1, h ∈ R. (5.2)

It is relevant to note that δ1 is a cyclic vector for J since the matrix elements bn are always assumed to be different from
zero.

One can study J through the following second order difference system

bn−1 fn−1 + qn fn + bn fn+1 = zfn, n > 1, z ∈ C, (5.3)

with boundary condition

q1 f1 + b1 f2 = zf1. (5.4)

If one sets f1 = 1, then f2 is completely determined by (5.4). Having f1 and f2, Eq. (5.3) gives all the other elements of a
sequence { fn}∞n=1 that formally satisfies (5.3) and (5.4). fn is a polynomial of z of degree n − 1, so we denote fn =: Pn−1(z).
The polynomials Pn(z), n = 0,1,2, . . . , are referred to as the polynomials of the first kind associated with the matrix (5.1).
The polynomials of the second kind Q n(z), n = 0,1,2, . . . , associated with (5.1) are defined as the solutions of

bn−1 fn−1 + qn fn + bn fn+1 = zfn, n ∈ N \ {1},
under the assumption that f1 = 0 and f2 = b−1

1 . Then

Q n−1(z) := fn, ∀n ∈ N.

Q n(z) is a polynomial of degree n − 1.
Let P (z) = {Pn(z)}∞n=0 and Q (z) = {Q n(z)}∞n=0. Then, classical results in the theory of Jacobi matrices [1] give us the

following expression for ξ(z) defined in Section 3,

ξ(z) = P (z) + 1

F (z)
Q (z),

where F (z) is the function given by (2.2) with h = 0. In this context F (z) is referred to as the Weyl function of J and may
be determined by

F (z) = − lim
n→∞

1

wn(z)
, wn(z) := Pn(z)

Q n(z)
, (5.5)

where the convergence is uniform on any compact subset of C \ Sp( J ) [1, Sections 2.4, 4.2].
The operator J∞ corresponds in this case to the operator in l2(2,∞) whose matrix representation is (5.1) with the first

column and row removed.
For any f ∈ Ĥδ1 there is a sequence {ϕk}∞k=1 ∈ l2(N) such that

f (z) =
∞∑

k=1

(
Pk−1(z)ϕk + ϕk

F (z)
Q k−1(z)

)
.

Note that the poles of f are the eigenvalues of J∞ .
By Proposition 1 we have the following interpolation formula

f (z) = lim
n→∞

∑
x j∈Sp( Jh)

h − wn(z)

(x j − z)w ′
n(x j)

f (x j), h ∈ R. (5.6)

Indeed, one can write (5.6) on the basis of (3.4) using the uniform convergence of the limit and the series in (5.5) and (3.4),
respectively, and the fact that w ′

n(z) is also uniform convergent.

One-dimensional harmonic oscillator. On H = L2(R,dx), we consider the differential operator

A := − d2

+ x2,

dx2
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which is essentially self-adjoint on C∞
0 (R). The eigenvalues are 2n + 1 for n ∈ N ∪ {0}; the corresponding eigenfunctions are

φn(x) = π−1/4(2nn!)−1/2
e−x2/2 Hn(x),

where Hn(x) are the Hermite polynomials.
A cyclic vector for the operator A is

μ(x) =
∞∑

n=0

1

(n!)1/2
φn(x) = 1

π1/4
e− 1

2 (x2−2
√

2x+1), (5.7)

where the last equality follows from a quick look to the generating function of the Hermite polynomials.
Now, for every z /∈ Sp(A),

F (z) = 〈
μ, (Ah − zI)−1μ

〉 = ∞∑
n=0

1

n!(2n + 1 − z)
.

An elementary argument involving series of partial fractions then shows that

F (z) = 1

2 cos π z
2

π∫
−π

e− cos θ+i sin θ ei 1−z
2 θ dθ. (5.8)

(See, for instance, [7].)
The mapping Φμ is defined by the vector-valued function

ξ(z; x) = [(A − zI)−1μ](x)

F (z)
= 1

F (z)

∞∫
−∞

K (z; x, y)μ(y)dy,

where the Green’s function K (z; x, y) is given by (see [29])

K (z; x, y) = − π1/2

2( 1+z
2 ) cos π z

2

×
{

D z−1
2

(21/2x)D z−1
2

(−21/2 y), y � x,

D z−1
2

(−21/2x)D z−1
2

(21/2 y), y > x.
(5.9)

In the last expression, D p(x) denotes the parabolic cylinder function of order p. Therefore, the associated linear space Ĥμ

is the set of functions of the form

f (z) = 1

F (z)

∞∫
−∞

∞∫
−∞

K (z; x, y)μ(y)ϕ(x)dy dx, ϕ(x) ∈ L2(R,dx). (5.10)

These functions may have simple poles at the zeros of the function F (z).
As we have said before, different sets of sampling points are given by Sp(A + h〈μ, ·〉μ), h ∈ R. For h = 0, we have

Sp(A) = {2n + 1: n ∈ N ∪ {0}} so in that case

f (z) =
∞∑

n=0

G(z)

(z − 2n − 1)G ′(2n + 1)
f (2n + 1), G(z) := 1/F (z),

for every f (z) of the form (5.10).
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