
 

 

 

  
Abstract—Microarrays technique allows the simultaneous 

measurements of the expression levels of thousands of mRNAs. By 
mining this data one can identify the dynamics of the gene 
expression time series. By recourse of principal component analysis, 
we uncover the circadian rhythmic patterns underlying the gene 
expression profiles from Cyanobacterium Synechocystis. We applied 
PCA to reduce the dimensionality of the data set. Examination of the 
components also provides insight into the underlying factors 
measured in the experiments. Our results suggest that all rhythmic 
content of data can be reduced to three main components. 
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I. INTRODUCTION 
OLECULAR biology has traditionally focused on the 
study of individual genes considered in isolation as a 

method for determining gene function. However, given the 
availability of complete genomes from an ever-increasing list 
of organisms and in order to determine the principles 
underlying complex biological processes, it became necessary 
to simultaneously investigate the expression patterns of large 
numbers of genes, taking into consideration temporal, as well 
as, anatomical patterns. In this sense, the study of gene 
expression has been greatly facilitated by microarray 
technology. The anticipated flood of biological information 
produced by these experiments will open new perspectives 
into genetic analysis. Expression patterns have already been 
used for a variety of inference tasks such as identify gene 
clusters based on co-expression [1], [2], define metrics that 
measure a gene's involvement in a particular process [3], 
predict gene regulatory circuits [4]. Data on large-scale 
temporal gene expression patterns may provide for inferences 
on the causal links between genes expressed over the course 
of phenotypic change [5]-[7]. 

One of the challenges of bioinformatics is to develop 
effective ways to asses global gene expression data. A 
rigorous approach to gene expression analysis must involve an 
up-front characterization of the data structure. In addition to a  
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broader utility in analysis methods,principal component 
analysis (PCA) can be valuable tool in obtaining such a 
characterization. Furthermore, the gene expression data is 
currently rather noisy, and PCA can detect and extract small 
signals from noisy data. PCA is an exploratory multivariate 
statistical technique for simplifying complex data sets [8], and 
gene expression data are well suited to analysis using PCA. 
Given m observations on n variables, the goal of PCA is to 
reduce the dimensionality of the data matrix by finding r new 
variables, where r is less than n. Termed principal 
components, these r new variables together account for as 
much of the variance in the original n variables as possible 
while remaining mutually uncorrelated and orthogonal. Each 
principal component is a linear combination of the original 
variables, and so it is often possible to ascribe meaning to 
what the components represent. Principal components analysis 
has been used in a wide range of biomedical problems, 
including the analysis of microarray data in search of outlier 
genes [9] as well as the analysis of other types of expression 
data [10], [11]. DNA microarray data sets are currently 
appearing in the literature available, where most initial 
analysis have focused on characterizing the waveform of gene 
expression over time, and in clustering genes based on this 
waveform or other features. When clustering genes based on 
expression information, it can be important to determine if the 
experiments have independent information or are highly 
correlated. 

The paper is organized as follows: in Sec. II we describe 
the IT technique for modeling expression and establish a 
model based distance between two temporal profiles. We 
applied the method to online available data in Sec. III. Sec. IV 
discusses and summarizes the results obtained. 

II. METHODS 

A. Experimental data 
Kucho et al. monitored genome-wide mRNA levels, for 

3,070 Cyanobacterium Synechocystis chromosomal genes 
simultaneously, over two circadian cycle period, 48 hours, at 
4-hours intervals [12]. RNA samples were isolated from two 
independent cyanobacterial cultures. Each RNA sample was 
used for three independent microarray experiments. Thus, a 
maximum of six data points per gene was obtained for each 
time point of a biological replicate (i.e., three technical 
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replicates x two spots). Each biological replicate was treated 
independently with the same procedure until the final step of 
the cycling gene characterization of their rhythmicity and 
phase. Spots meeting any of the following criteria were 
flagged and not used for the analysis: (i) the GenePix Pro did 
not find the spot area automatically, (ii) the net signal intensity 
was ≤ 0, (iii) the percentage of saturated pixels in the spot area 
was ≥ 25, and (iv) severe noise was present.         Genes 
carrying fewer than one unflagged data at any time point were 
removed from our analysis. The data are available from 
KEGG database http://www.genome.ad.jp/kegg/expression. 
We normalize each gene expression time series to media zero 
and maximum of 1.0; as it is sometimes recommendable when 
attempting PCA on measurements that are not on a 
comparable scale. 

B. Principal component analysis technique 
We considered a set of m time series S1,…, Sj,…, Sm, each 

one corresponding to the temporal expression of each gene. 
The time series corresponding to gene j is defined by  
Sj = x1,j,…,xi,j,…,xn,j, where xi,j is the expression level of the  i-
th gene in the j-th time point. Thus xi,j can be considered as the 
elements of a matrix X of size mxn. 

Principal component can ve consider as a linear 
transformation, known as Karhunen--Loève expansion, of the 
expression data from the genes x array space to the reduced  
eigenarrays x eigengenes space of size rxr, where r is the 
rank of the matrix X. The equation for singular value 
decomposition of X is the following: 

 
tX UDV=                                          (1) 

 
 where U  is a mxn matrix, D is an nxn diagonal matrix, and V t  
is also an nxn matrix. The columns of U are called the left 
singular vectors, {uk}, and form an orthonormal basis for the 
array expression profiles, named eigenarrays. The rows of    V 

t contain the elements of the right singular vectors, {vk}, and 
form an orthonormal basis for the eigengenes. The elements of 
D are only nonzero on the diagonal, and are called the 
singular values. Furthermore, dk > 0 for 1≤ k ≤ r, and di = 0 
for (r + 1) ≤ k ≤ n. By convention, the ordering of the singular 
vectors is determined by high-to-low sorting of singular 
values, with the highest singular value in the upper left index 
of the D matrix. Note that for a square, symmetric matrix X, 
singular value decomposition is equivalent to diagonalization, 
or solution of the eigenvalue problem. 

We calculate the PCA first calculate V t and D by 
diagonalizing the product Xt X as follows 

 
2 t

tX X VD V=                                    (2)  
 

and we can compute U=XVD-1, where the (r+1),...,n columns 
of V for which dk = 0 are ignored in the last matrix 
multiplication. The remaining n-r singular vectors in V or U 

were calculated using the Gram-Schmidt orthogonalization 
process. 

The diagonal elements of D correspond to eigenexpression 
levels and, following Alter et al. [13], one can define the 
fraction of eigenexpression as: 
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indicates the relative significance of the l-th eigengene and 
eigenarray in terms of the fraction of the overall expression 
captured. The eigengenes and eigenarrays are unique, except 
in degenerate subspaces, defined by subsets of equal 
eigenexpression levels, and except for a phase factor of ±1, 
such that each eigengene (or eigenarray) captures both 
parallel and antiparallel gene (or array) expression patterns.  

III. RESULTS 
The PCA procedures were applied to genes expression time 

series from both cyanobacterial cultures independently. One 
culture, named arbitrarily 1, the criterions described in 
Experimental data section lead to 2542 genes expression time 
series, while in the other culture, hereafter named 2, we 
obtained 2908 genes expression time series, in both cases of 
length 12 time points. 

Considering the culture 1, our analysis indicates that the 
circadian expression data can be summarized in two variables. 
Fig. 1a displays the 12 eigengenes in 12 arrays sorted by the 
corresponding eigenexpression levels, while in Fig. 1b we 
show a bar chart of the fractions of eigenexpression. We can 
see that first eigengene v1 captures about 35% of the overall 
expression. This eigengene describes an initial transient which 
increase and then decrease in the dataset expression. On the 
other hand, eigengenes v2 and v3 show oscillating circadian 
expression periods during the array. The expression fraction 
of the both circadian eigengenes represent around 31% (Fig. 
1b). The phases difference between them is almost 6 hs, or 
equivalently T/4 where T is the period of the oscillation. This 
means that every gene with circadian expression can be 
described in terms of these eigengenes, consequently, we 
interpret that v2 and v3 represent circadian oscillations in the 
expression dataset. In Fig. 1c we depict a line-joined graphs of 
the expression levels of eigengenes v2 (red) and v3 (blue), the 
fit dashed graphs of periodic functions corresponds to 
trigonome tricfunctions 

 
0.07 cos[ / ] 0.34cos[2 / ] 0.20sin[2 / ]x T x T x Tπ π π+ −                     (4) 

 
0.16cos[ / ] 0.05sin[ / ] 0.16cos[2 / ] 0.21sin[2 / ]x T x T x T x Tπ π π π+ − −    (5) 
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Fig. 1 (a) Raster display of the expression of 12 eigengenes vi, with overexpression (red), no change in expression (black), and 

underexpression (green) derived from culture 1. (b) Bar chart of the fraction of eigenexpression pl  of each eigengene. (c) Line-joined graphs of 
the expression levels of  v2 (red) and v3 (blue) in the 12 arrays, and dashed graphs of trigonometric function (4) and (5) of period T~24 hs. 

 
 

 
Fig. 2 (a) Raster display of the expression of 12 eigengenes vi, with overexpression (red), no change in expression (black), and 

underexpression (green) derived from culture 2. (b) Bar chart of the fraction of eigenexpression pl of each eigengene. (c) Line-joined graphs of 
the expression levels of v1 (green), v2 (red) and  v3 (blue) in the 12 arrays, and dashed graphs of their respective fit trigonometric function. 

 
 
 
On the other hand, when considering culture 2, the PCA 

analysis indicates that there are three eigengenes related to 
circadian expression. Fig. 2a displays the 12 eigengenes in 12 
arrays, while in Fig. 2b we show a bar chart of the fractions of 
eigenexpression. We can see that the first 3 eigengenes v1 
(green), v2 (red) and v3 (blue) captures about 70% of the 
overall expression. These eigengenes describes oscillatory 
behavior during the array. These eigengenes are not the same 
eigengenes that obtained from culture 1, however they differ 
in the phases. 

We consider the expression of the 2542 genes in the 
subspace spanned by eigengenes v2 and v3, which is inferred 
to approximately represent all circadian expression 
oscillations. We associated to each gene the parameter r as 

 

2 2
2 3correlation with  correlation with   r v v= +          (6) 

 
Indicating the distance from origin of the (v2, v3) plane to the 
point representing the gene expression in that plane. One may 
expect that genes that have almost all of their expression in 
this subspace with r ~ 1, where; have a circadian rhythm, and 
that genes that have almost no expression in this subspace, 
with r ~ 0, are not regulated by the circadian clock at all. If we 
consider genes r ≥ 0.9 we are able to identify 78 genes which 
exhibited strong circadian rhythm. Fig. 3 show the correlation 
of each gene with v2 and v3. The 78 selected circadian genes 
(red circles) are out of the dashed circle with, 
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Fig. 3  Correlation of each gene with v2 and v3, for all genes in the 

subspace associated with the circadian cycle. Red dots correspond to 
the genes which have high projection onto this subspace.  
 
 
 
while r = 0.9 no-circadian genes are in blue. 

PCA also can aids in data visualization. In this sense, we 
also have sorted all circadian genes according to the phase, 
defined by arctan (v2/ v3). Fig. 4 depict the normalized gene 
expression profile for these circadian genes. All these genes 
were also classified by Kucho et al. as circadian genes [12].  

IV. DISCUSSION AND CONCLUSIONS 
We have shown that PCA provides a useful mathematical 

framework to process and to model genome-wide expression 
data, in which both the mathematical variables and operations 
may be assigned biological meaning. Application of PCA to 
the Cyanobacterium Synechocystis dataset reveals that PCA 
can identify periodic patterns in time series data. In 
conclusion, we propose that PCA should be added to the 
current arsenal of technique being used for processing and 
visualization data.  
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Fig. 4 Expression profile of circadian genes. Relative expression 

at each time point was normalized to mean zero and amplitude one. 
Overexpression (red), no change in expression (black), and 
underexpression (green). 
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