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Abstract

A family of evolution equations describing a power-law nonlinear diffusion process coupled with a local Verhulst-like

growth dynamics, and incorporating a global regulation mechanism, is considered. These equations admit an

interpretation in terms of population dynamics, and are related to the so-called conserved Fisher equation. Exact time-

dependent solutions exhibiting a maximum nonextensive q-entropy shape are obtained.

r 2006 Elsevier B.V. All rights reserved.
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1. Introduction

There has been in recent years an intense research effort in connection with the study of exact solutions of
diverse evolution equations involving nonlinear diffusion terms [1–26]. A comprehensive and up to date
discussion on many aspects of these lines of enquiry can be found in the monograph [1]. Research on evolution
equations endowed with nonlinear power-law diffusion terms has been greatly stimulated by the fact that these
equations often admit exact solutions exhibiting a maximum q-entropy (q-maxent) form [27,28]. That is, they
admit solutions maximizing a power-law q-entropy [27] under appropriate, simple constraints [1,22]. The
q-maxent probability distributions, and the associated thermostatistical formalism, have attracted consider-
able interest during the last decade and have been applied to the study of diverse systems and processes in
physics, biology, economics, and other fields (see Refs. [27–33] and references therein). The q-maxent solutions
of evolution equations involving nonlinear, power-law diffusion have played an important role in some of
these developments. To give just a couple of examples, we can mention the successful generalization of the
Black–Scholes equation in mathematical finance advanced by Borland [31], and the general framework for
e front matter r 2006 Elsevier B.V. All rights reserved.
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determining from experimental data the degree of nonextensivity exhibited by a system, proposed by Frank
and Friedrich [32].

An interesting new version of the celebrated Fisher equation has been recently advanced by Newman,
Kolomeisky and Antonovics (NKA) [34]. The standard Fisher equation [35] constitutes a basic and
well-studied model in population biology [36], providing the simplest spatial generalization of the Verhulst
logistic equation [37–40] for population dynamics. The Fisher equation describes a biological population
whose density rðx; tÞ is locally governed by a Verhulst dynamics and, at the same time, is diffusing in space.
Besides its importance in population biology, the Fisher equation also appears naturally in various other
fields, such as chemical reaction-fronts dynamics [41] and nonlinear optics [42]. These diverse applications of
Fisher equation constitute a strong motivation to study its properties and to explore its possible extensions or
generalizations.

Due to the Verhulst component, the Fisher equation is not a continuity equation and, consequently, the
total population

PT ¼

Z
rðx; tÞdx (1)

is not constant in time. The NKA equation constitutes a conserved version of the Fisher equation. As
happens with the standard Fisher equation, the NKA equation also comprises two terms: a diffusion
term and a Verhulst term. However, in the NKA equation the parameters characterizing the Verhulst
term exhibit a time dependence leading to a constant global population size PT . The aim of the present
contribution is to study a variant of the NKA equation incorporating a nonlinear power-law diffusion
term, and exhibiting exact analytical, maximum q-entropy time-dependent solutions. The global regulation
mechanism advanced by NKA, or the one explored by us, can be interpreted as a phenomeno-
logical description of a population whose growth is controlled, for instance, by an agent (chemical or
biological) that diffuses much faster than the population itself [34]. The nonlinearity in the diffusion term
considered by us provides a way to include into the model the effects of interactions between the members of
the diffusing population. Interactions are already included, in a sense, in the nonlinear component of the
Verhulst term. But this nonlinearity affects only the growth process, not the diffusion one. If the population
density is high enough for the nonlinearity in the Verhulst term to be important, it is not unreasonable to
consider the possibility that nonlinearities in the diffusion process may have some effect as well. The
reaction–diffusion-like equations consider here, admitting exact analytical solutions, may be useful as a
starting point for the development of more realistic models, or as particular instances to test numerical
integration schemes.

The paper is organized as follows. In Section 2 we briefly review the main features of the Fisher and the
NKA equations. In Section 3 we introduce our Fisher-like family of evolution equations with nonlinear
diffusion and global regulation. A maximum q-entropy ansatz generating exact time-dependent solutions is
discussed in Section 4. Particular examples are provided in Section 5. Finally, some conclusions are drawn in
Section 6.
2. The Fisher and the NKA equations

The standard Fisher equation in one spatial dimension reads,

qrðx; tÞ
qt

¼ D
q2rðx; tÞ
qx2

þ rrðx; tÞ � mr2ðx; tÞ, (2)

where D is the diffusion coefficient, and r and m are two real parameters that characterize the (local) Verhulst
dynamics. The parameter r describes the reproduction rate while the (nonnegative) parameter m regulates the
population density through competition. The local equilibrium population density that can be supported at a
given location in space is given by

req: ¼
r

m
. (3)
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As already mentioned, it is plain that the Fisher equation (2) is not a continuity equation. The total population
is not conserved. Indeed, if we integrate Eq. (2) over the spatial variable x we obtain

dPT ðtÞ

dt
¼ D

Z
dx

q2rðx; tÞ
qx2

þ rðtÞPT ðtÞ � mðtÞ
Z

dxr2ðx; tÞ. (4)

Noticing that the integrand in the first term in the right-hand side of the above equation is a perfect derivative,
and assuming that rðx; tÞ (and qrðx; tÞ=qx) go to zero-fast enough when jxj ! 1 one gets

Z
dx

q2rðx; tÞ
qx2

¼ 0. (5)

This means that all the time dependence exhibited by the total population PT is due to the Verhulst term. This
basic fact leads in a natural way to the NKA proposal for a conserved Fisher equation: to assume an
appropriate time dependence on the Verhulst parameters r and m in order to make the total population time
independent. In fact, a pair of time-dependent parameters rðtÞ and mðtÞ verifying the auxiliary equation

rðtÞ ¼
mðtÞ
PT

Z
dxr2ðx; tÞ (6)

yields a constant total population PT [34]. In other words, within the NKA model, the birth and death rates
are continually adjusted to ensure that the population has a fixed size.
3. Fisher-like population dynamics with nonlinear diffusion and global regulation

In the present study we consider a family of nonlinear reaction–diffusion equations, akin to the Fisher and
the NKA models, describing a nonlinear diffusion process coupled to a Verhulst growth dynamics with global
regulation

qrðx; tÞ
qt

¼ D
q2raðx; tÞ

qx2
þ rrðx; tÞ � m�½1� pþ pmðtÞ�cðxÞrqðx; tÞ, (7)

where m� is a positive constant, the parameter p and the function cðxÞ satisfy p 2 ½0; 1� and cðxÞ ¼ h1 þ h2x
2,

with h1;2 constants. As we are going to see shortly, the parameter p determines how strong are the global
effects within the Verhulst regulation term. The case p ¼ 0 corresponds to a situation like the one described by
the standard Fisher equation (2) where the regulation mechanism is completely local. On the other hand, p ¼ 1
describes a case where the global regulation effects are maximum. Intermediate values of p correspond to a
partial global regulation. It is reasonable to expect that in real populations, even in the presence of global
regulation, some local contribution to the regulation mechanism may still be important. That is the main
motivation for introducing the parameter p.

The x-dependence of the function cðxÞ introduces a spatial dependence in the Verhulst term which can be
associated, for instance, with a nonhomogeneous distribution of the local resources needed by (and limiting)
the population growth. As an illustration of this spatial dependence, we have adopted a quadratic form for the
function cðxÞ. This form of cðxÞ can be regarded as describing the Verhulst dynamics in a region around a local
maximum or minimum of the function cðxÞ.

Integrating Eq. (8) over the spatial coordinate x we obtain

dPT ðtÞ

dt
¼ rðtÞPT ðtÞ � m�½1� pþ pmðtÞ�

Z
dx cðxÞrqðx; tÞ. (8)

We are going to consider two different mechanisms of global regulation for the total population: (i) one
leading to a Verhulst-like equation of motion for the total population and (ii) one leading to a constant total
population.
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3.1. Total population with Verhulst-like dynamics

If we set p ¼ 1 and consider a global regulation mechanism given by the function

mðtÞ ¼
½
R
dxrðx; tÞ�qR

dx cðxÞrqðx; tÞ
(9)

we obtain a Verhulst-like equation of motion for the total population

dPT

dt
¼ rPT � m�Pq

T . (10)

Eq. (10) describes a law of population growth qualitatively similar to the one given by the celebrated Verhulst
population dynamics model [37–40]. In point of fact, the standard Verhulst equation is recovered when q ¼ 2.
For other values of parameter q (with q41) the generalized Verhulst equation (10) determines a qualitatively
analogous type of self limiting population growth, with an asymptotic equilibrium population given by

P
ðeq:Þ
T ¼

r

m�

� �1=ðq�1Þ

. (11)

Other values of the parameter p 2 ½0; 1� in Eq. (7) (always with the same global control determined by the
function mðtÞ given by expression (9)) describe a situation where the Verhulst term in Eq. (7) is only partially
affected by the global control mechanism. In fact, the value of p measures the weight of the global control
upon the local Verhulst dynamics. The value p ¼ 1 corresponds to a Verhulst term fully affected by the global
mechanism. On the other hand, p ¼ 0 corresponds to a local Verhulst dynamics that is unaffected by any
global control. If we also have, in this last case r ¼ const:, we recover a model akin to the standard Fisher one,
but with nonlinear diffusion.

3.2. Constant total population

If, alternatively, we assume a global regulation mechanism given by time-dependent functions rðtÞ and mðtÞ
related by

rðtÞ ¼ m�
½1� pþ pmðtÞ�

PT

Z
dx cðxÞrqðx; tÞ, (12)

a constant total population is obtained (see Eq. (8)).

4. Maximum q-entropy ansatz for the population density

As already mentioned in the Introduction, the maximum entropy formalism based upon the Tsallis
q-entropic measures [27,28,33]

Sq ¼
1

q� 1
1�

Z
rq dx

� �
, (13)

proved to be a useful tool to find exact time-dependent solutions to evolution equations involving power-law
nonlinear diffusion. Following this approach, let us consider a q-maxent ansatz for the time-dependent
population density rðx; tÞ,

rðx; tÞ ¼
1

ZðtÞ
½1� ð1� qÞðl1ðtÞxþ l2ðtÞx2Þ�1=ð1�qÞ. (14)

The above ansatz can be regarded as arising from the optimization of the q-entropy (13) under the constraints
imposed by normalization and the mean values of x and x2. The quantities Z; l1, and l2 are the corresponding
normalization parameter (‘‘partition function’’) and Lagrange multipliers. Notice that, for the evolving
populations that we consider here, the distribution is not normalized to 1, but to a possibly time-dependent
total population PT . The q-distribution (14) depends on time only through Z and the Lagrange multipliers.
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Previous experience with q-maxent solutions of nonlinear evolution equations 1,22,23 indicates that it is
convenient to recast the q-maxent ansatz as

rðx; tÞ ¼ NðtÞ½1� ð1� qÞbðtÞðx� x0ðtÞÞ
2
�1=ð1�qÞ. (15)

The total population size PT , as a function of time t is then given by

PT ¼

Z
dxrðx; tÞ

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p

ðq� 1Þ

r
Gðð3� qÞ=2ðq� 1ÞÞ

Gð1=ðq� 1ÞÞ

NðtÞffiffiffiffiffiffiffiffi
bðtÞ

p . ð16Þ

The explicit form of the integral in the right side of Eq. (8) readsZ
dx cðxÞrqðx; tÞ ¼

Z
dxðh1 þ h2x

2Þrqðx; tÞ

¼ NqðtÞ
3� q

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p

ðq� 1ÞbðtÞ

r
Gðð3� qÞ=2ðq� 1ÞÞ

Gð1=ðq� 1ÞÞ

� �
cðx0ðtÞÞ þ

h2

ð3� qÞbðtÞ

� �
. ð17Þ

For our present purposes we are going to need the following two expressions involving the q-maxent ansatz.
On the one hand, we have _r ¼ ðqr=qtÞ, given by

_rðx; tÞ ¼
1

NðtÞ
_NðtÞrðx; tÞ þ 2½NðtÞ�1�qðtÞrqðx; tÞ _x0ðtÞbðtÞðx� x0ðtÞÞ � ½NðtÞ�

1�qrqðx; tÞ _bðtÞðx� x0ðtÞÞ
2.

(18)

On the other hand, we have q2r2�q=qx2, given by

q2½rðx; tÞ�2�q

qx2
¼ �2ð2� qÞ½NðtÞ�1�qbðtÞrþ 4ð2� qÞ½NðtÞ�2ð1�qÞrqb2ðtÞðx� x0ðtÞÞ

2. (19)

It is possible to show after some algebra, from Eqs. (18)–(19), that the ansatz (15) constitutes an exact time-
dependent solution of the nonlinear reaction–diffusion equation (8), provided that we set a ¼ 2� q and the
quantities x0, N, and b comply with the set of coupled, nonlinear, ordinary differential equations given by

_x0ðtÞ ¼ �m�½1� pþ pmðtÞ�
h2

bðtÞ
NðtÞq�1x0ðtÞ, (20)

_NðtÞ ¼ rðtÞNðtÞ � m�½1� pþ pmðtÞ�ðh1 þ h2x0ðtÞ
2
ÞNðtÞq � 2Dð2� qÞNðtÞ2�qbðtÞ, (21)

_bðtÞ ¼ m�½1� pþ pmðtÞ�ðh2 þ ð1� qÞbðtÞðh1 þ h2x0ðtÞ
2
ÞÞNðtÞq�1 � 4Dð2� qÞbðtÞ2NðtÞ1�q. (22)

Choosing now appropriate forms for rðtÞ and mðtÞ we can implement the regulation models leading either to a
total population exhibiting a global Verhulst dynamics or, alternatively, to a constant total population.

5. Particular examples

5.1. Partial global regulation and Verhulst-like dynamics of the total population

Replacing the ansatz (15) into expression (9) for mðtÞ, we get

mðtÞ ¼
2

3� q

� �
Gðð3� qÞ=2ðq� 1ÞÞ

Gð1=ðq� 1ÞÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p

ðq� 1ÞbðtÞ

r� �q�1

cðx0Þ þ
h2

ð3� qÞbðtÞ

� ��1
. (23)

In Fig. 1, we show the trend of the total population for the parameter values q ¼ 1:5, m� ¼ 1, r ¼ 2,
h1 ¼ h2 ¼ 1, D ¼ 1, and initial conditions for the system (20) given by Nð0Þ ¼ 0:05, bð0Þ ¼ 1, and xð0Þ ¼ 0.
Several values of the parameter p were considered: p ¼ 0; 1

2; 1. In every case the total population approaches
an equilibrium value. Notice that only the case p ¼ 0 corresponds to a fully global regulation leading to a total
population PT evolving in accordance with the Verhulst-like equation (10).
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Fig. 1. The total population PT is depicted as a function of time t. The parameter q ¼ 1:5 and the initial conditions Nð0Þ ¼ 0:05 and

bð0Þ ¼ 1 define the total initial population. The initial distribution is also characterized by x0ð0Þ ¼ 0. The rest of the parameters appearing

in the reaction–diffusion equation are m� ¼ 1, r ¼ 2, h1 ¼ h2 ¼ 1 and D ¼ 1 and several values of p are considered; namely, p ¼ 0; 1
2
; 1.
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Fig. 2. Two sets of curves are shown corresponding to different initial conditions, which are given by Nð0Þ ¼ 0:05 and Nð0Þ ¼ 3. The

evolution in time of PT ðtÞ for p ¼ 1 is depicted, namely Verhulst solution (solid line) in comparison with the PT ðtÞ for p ¼ 0 and

h1 ¼ h2 ¼ 1:127753 (dashed line).
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It is interesting to compare, for the same initial population density (that is, the same initial conditions for
the dynamical system (20)) the evolution of the total population corresponding to complete global regulation
ðp ¼ 1Þ with the evolution given by no global regulation ðp ¼ 0Þ. A couple of examples of such a comparison
are shown in Fig. 2. The two sets of initial conditions for (20) considered in Fig. 2 correspond to Nð0Þ ¼ 0:05
and Nð0Þ ¼ 3 (the initial values for b and x0 are the same as in Fig. 1). For the two mentioned initial
conditions, the solid lines in Fig. 2 correspond to p ¼ 1 and the dashed lines to p ¼ 0. In the case of no global
regulation ðp ¼ 0Þ, the values of the parameters h1 and h2 were chosen in such a way as to obtain the same
equilibrium values for the total population as those obtained with global regulation ðp ¼ 1Þ. A similar
situation is illustrated in Fig. 3. Here, the behavior of the total population PT with global regulation (p ¼ 1
and the same parameters as in Fig. 2) is compared to the solution of the Verhulst-like equation (10) with fitting
parameters, namely, p ¼ 1:4 and m� ¼ 0:7. In Fig. 4, the evolution of the square root of the mean square

displacement (which we are going to call from now on the ‘‘mean displacement’’) s ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hðx� x0Þ

2
i

q
is depicted

as a function of time t for p ¼ 0, 1
2
, 1, and the same initial conditions and parameters as in Fig. 1.

In addition, in Fig. 5 the total population PT as a function of t is depicted for a periodic function
h2ðtÞ ¼ 1� 1

2
sinðtÞ. This periodic dependence of h2 represents a periodic change in the local properties of the
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Fig. 3. PT ðtÞ for p ¼ 0 and h1 ¼ h2 ¼ 1:127753 (solid line) and a Verhulst-like solution (dashed line) are depicted. Verhulst-like equation

dPT=dt ¼ rPT ðtÞ � mP
q
T and fitting parameters r ¼ 1:4 and m ¼ 0:7 are used.
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Fig. 4. The quantity s ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hðx� x0Þ

2
i

q
is plotted as a function of time t for p ¼ 0, 1

2
, 1. Initial conditions are given by Nð0Þ ¼ 0:05,

x0ð0Þ ¼ 0 and bð0Þ ¼ 1.
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Fig. 5. PT as a function of t is depicted. A periodic function for h2ðtÞ, given by h2 ¼ 1� 1
2
sinðtÞ, is considered.
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environment due, for instance, to seasonal effects. In Fig. 6 we show the mean displacement s ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hðx� x0Þ

2
i

q
as a function of the time t.

5.2. Global regulation determining a constant total population

We are going to consider now a model with a global regulation scheme leading to a constant value of the
total population size, PT ¼

R
rdx. A possible relation between rðtÞ and mðtÞ yielding a constant population is

given by Eq. (12), that is here rewritten for the sake of convenience

rðtÞ ¼ m�
½1� pþ pmðtÞ�

PT

Z
dx cðxÞrqðx; tÞ. (24)

For a given constant value PT of the total population, the q-maxent ansatz (15) and the parameter NðtÞ can be
written in terms of the two remaining parameters determining the shape of the population density, bðtÞ and
x0ðtÞ,

rðx; tÞ ¼ PT

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðq� 1ÞbðtÞ

p

r
Gð1=ðq� 1ÞÞ

Gðð3� qÞ=2ðq� 1ÞÞ
½1� ð1� qÞbðtÞðx� x0ðtÞÞ

2
�1=ð1�qÞ, (25)

and

NðtÞ ¼ PT

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðq� 1Þ

p

r
Gð1=ðq� 1ÞÞ

Gðð3� qÞ=2ðq� 1ÞÞ
b1=2ðtÞ. (26)

Then, the relation connecting the function rðtÞ and mðtÞ can be cast, respectively, as

rðtÞ ¼ m�
1� pþ pmðtÞ

PT

Z
dx cðxÞrqðx; tÞ

¼ m�
3� q

2
½1� pþ pmðtÞ� cðx0ðtÞÞ þ

h2

ð3� qÞbðtÞ

� �
. ð27Þ

Substituting now the ansatz (25) in the evolution equation (7), and taking into account the relation (27)
between rðtÞ and mðtÞ, we obtain a set of two coupled differential equations of motion for b and x0,

_x0ðtÞ ¼ �m�½1� pþ pmðtÞ�
h2

bðtÞðqþ1Þ=2
Nq�1

q x0ðtÞ, (28)

_bðtÞ ¼ m�½1� pþ pmðtÞ�ðh2 þ ð1� qÞbðtÞðh1 þ h2x0ðtÞ
2
ÞÞNq�1

q bðtÞðq�1Þ=2 � 4Dð2� qÞbðtÞð5�qÞ=2N1�q
q , (29)
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Fig. 7. The evolution of s ¼
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as a function of t is plotted. PT ¼ 4 is taken to be constant. The following parameters are

considered q ¼ 1:5, D ¼ 1, h1 ¼ h2 ¼ 1:0, p ¼ 0, and x0ð0Þ ¼ 0, for several values of bð0Þ (these are, 0:1; 1; 10).
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where

Nq ¼ PT

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðq� 1Þ

p

r
Gð1=ðq� 1ÞÞ

Gðð3� qÞ=2ðq� 1ÞÞ
. (30)

In Fig. 7, the evolution of the mean displacement s ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hðx� x0Þ

2
i

q
is depicted as a function of the time t, for

the case of global regulation with constant total population. The total population PT is taken to be constant,
namely PT ¼ 4, and the used values of the parameters are q ¼ 1:5, m� ¼ 1, D ¼ 1, h1 ¼ h2 ¼ 1:0, p ¼ 0, and
x0ð0Þ ¼ 0. Several values of bð0Þ were considered: 0:1, 1, and 10.
6. Conclusions

In the present contribution we introduced and investigated some of the main properties of a family of
reaction–diffusion equations describing a power-law nonlinear diffusion process coupled with a local (but
globally regulated) Verhulst-like population dynamics. These equations are related to the conserved Fisher
equation recently advanced by Newman, Kolomeisky and Antonovics. The standard Fisher equation does not
have the form of a continuity equation. Consequently, the total population size is not conserved. The NKA
model incorporates a global regulation mechanism (affecting the coefficients of the Verhulst term) that makes
the total population size constant. In the family of models advanced here, a different regulation mechanism
was investigated that makes the total population obey a Verhulst-like ordinary differential equation. An
alternative globally regulated model, different from the NKA one but also endowed with a conserved total
population, was also considered.

Exact time-dependent solutions exhibiting a maximum q-entropy shape were obtained for the models
investigated. These solutions maximize the Tsallis q-entropy under the (time-dependent) constraints imposed
by normalization and the mean values of x and x2. The dynamics of these maximum entropy solutions is
governed by a set of three coupled, nonlinear ordinary differential equations (reducing to just two equations in
the case of the model with constant population). A few particular examples illustrating the behavior of these
equations of motion were provided. The numerical integration of the alluded set of ordinary differential
equations indicates that the associated q-maxent solutions approach, as t!1, stationary distributions. This
is consistent with the fact that, for p ¼ 1, the total population approaches the asymptotic equilibrium value
given by Eq. (11). The stationary values of the parameters entering the q-maxent solutions can be determined
by solving the equations obtained when the left-hand sides of equations (20) are set equal to zero.
Unfortunately, the resulting equations (with the exception of the one corresponding to x0, whose equilibrium
solution is x0 ¼ 0) do not admit a simple analytical solution. In connection with the problem of the asymptotic
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behavior of the solutions to Eq. (7), it must be mentioned that there exist H-theorems for some
reaction–diffusion equations similar to this equation (but with constant coefficients) [13]. It would be
interesting to explore the possibility of formulating an H-theorem for Eq. (7).

The present effort provides further evidence for the usefulness of Tsallis maximum entropy principle for the
construction of time-dependent solutions of evolution equations involving nonlinear, power-law diffusion
terms.
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