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Modeling the abnormally slow infiltration rate
in mesoporous films

Claudio L. A. Berli,*a Magalı́ Mercurib and Martı́n G. Bellinob

Mesoporous films have been shown to exhibit striking behaviors

in capillary-driven infiltration experiments. The process has been

shown to follow classical Lucas–Washburn dynamics, but the effective

pore radius has been calculated from hydrodynamic resistance consi-

derations to be orders of magnitude lower than measured pore

dimensions. In addition, the infiltration rate has been observed to

decrease with increasing pore diameter, in contrast to the expected

trend for capillary-like pores. Here, we present a simple model

accounting for the mechanism behind these anomalous effects.

We found the infiltration rate to be inversely proportional to the

cubed ratio of pore to neck size. This physical scaling correctly

modeled both the magnitude of the infiltration rate and its variation

with pore diameters, for a wide range of experimental data. The

model established a connection between capillary filling dynamics

and nanoscale pore structure, which is of practical interest for the

design and characterization of mesoporous films.

The versatile use of mesoporous films in microfluidic devices
is opening up many new applications for these films, from
biocatalyst films1 to optical resonators.2 Nevertheless, under-
standing flow and mass transport at the nanoscale requires
further efforts, despite the intense research activity that has
already taken place in the field.3 Recently, the comprehensive
experimental work of Ceratti et al.4 revealed the critical effects
of pore characteristics on capillary filling in mesoporous films
and, at the same time, posed challenging questions about the
relationship between nanoscale structure and macroscopic
fluid dynamics. In the present work, we obtained theoretical
evidence to explain the apparent contradiction between experi-
mental values of infiltration rates and pore size data. For this
purpose we took advantage of the detailed characterization of
the wide variety of mesoporous films reported by Ceratti et al.4

Capillary-driven infiltration in porous media follows classical
Lucas–Washburn dynamics, i.e., l2 = 2ct, where l is the position of
the imbibition front at time t, and c is a dynamic coefficient that
depends on the characteristics of both the fluid and porous
matrix.5,6 This expression derives from the meniscus velocity
equation u(l) = c/l, which is a consequence of the balance between
the Laplace driving force and the viscous resistance in capillary
tubes, provided evaporation is absent and gravity effects are
negligible.7 The simplest physical representation of the porous
space is the well-known capillary bundle (CB) model, which was
first proposed by Washburn,6 and consists of straight capillaries,
of radius reff, that are not interconnected, and that are aligned in
the flow direction (Fig. 1a). For this ideal configuration,

cCB ¼
g cos yreff

4m
(1)

where m is the fluid viscosity, g is the surface tension, and y is the
meniscus contact angle. This equation establishes a connection
between the pore-scale geometry and the measured variables in
the imbibition experiments. The effective radius reff obtained
from eqn (1) does not necessarily match the actual pore radius
of the substrate, as it represents the equivalent capillary that
produces the same infiltration rate. As expected, reff and pore size
measured by microcopy, specifically scanning electron micro-
scopy (SEM), coincide in the case of pores with large aspect ratios,
such as those obtained by electrochemical etching in nanoporous
silica8 and alumina membranes.9 In any case, eqn (1) gives a good
measure of the characteristic size of the capillary at the pore level,
and it is customarily employed to interpret capillary filling
experiments in different porous substrates.

Even for mesoporous films prepared by combining sol–gel
chemistry and supramolecular templates, capillary infiltration
follows the relation l2 B t, but the process is extremely slow.
Consequently, an analysis of the experimental values of the
dynamic coefficient cexp that uses eqn (1) would yield anom-
alous values of reff, values that may be orders of magnitude
lower than pore sizes measured by environmental ellipsometry
porosimetry (EEP), or observed by SEM. For example, a cexp
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value of 10�10 m2 s�1, which is typically found for the infiltration
of water,4 would yield an reff of about 0.02 nm according to eqn (1).
This physically unrealistic value clearly indicates that there must
be some topological feature controlling the fluid dynamics at the
nanoscale.

A second controversial issue has arisen regarding these
critical dimensions: cexp has been found to systematically
decrease with increasing pore diameter, for a rather constant
neck size (Fig. 9b in ref. 4), in contradiction with the linear
relation cCB B reff given by eqn (1). These striking results
suggest the need for more insightful descriptions of the porous
structure from the viewpoint of fluid dynamics.

Adsorption–desorption experiments using mesoporous
films indicated the presence of relatively wide pores intercon-
nected by small throats, or bottlenecks (Fig. 6 and 7 in ref. 4),
the size of which can be measured by EEP (see Table 1 below).
In this regard, we here derived a simple model capturing
the essential feature of the problem, namely the presence of
periodic changes in the cross-sectional area of the flow path,
as shown schematically in Fig. 1b. By analogy to the CB model,

the mesoporous membrane was considered in our work to be
an assembly of straight nanochannels, now with periodic
variations of the pore radius (Fig. 1c). As a first approximation,
a cylindrical tube with periodic step changes in its radius was
considered here, as shown schematically in Fig. 1d. In the first
segment (0 r x r l1), the meniscus velocity was calculated
using the equation

uðlÞi¼1 ¼
r1
2Dp1
8ml

; (2)

which is the Lucas–Washburn prediction for uniform capillaries,5,6

where Dp1 = 2g cosy/r1 is the Laplace driving pressure.7 When the
meniscus passes to the next segment, a step-wise variation of fluid
velocity would take place, but mass continuity would impose
an instantaneously equal flow rate. Thus for l1 r x r l2, the
meniscus velocity was calculated using the equation

uðlÞi¼2 ¼
r2
2Dp2

8m l1 r2=r1ð Þ4 þ l � l1
h i; (3)

where Dp2 = 2g cos y/r2. As it is normally considered in modeling
the capillary flow in tubes of nonuniform cross sections,10–13

eqn (3) assumes the flow to quickly relax to unidirectional
streamlines after the step change, and the contact angle to
immediately recover the value corresponding to the straight
section. These assumptions, as well as the implicit quasi-steady-
state approximation, are even more suitable in mesoporous films,
where both Reynolds and capillary numbers were calculated to be
extremely low (Re = ruc2r/m B 10�5 and Ca = muc/g B 10�5,
considering water at room temperature and a relatively large
characteristic velocity uc = 10�3 m s�1).

Using the above procedure to calculate the fluid velocity over
consecutive segments, up to an arbitrary position x = l in the j-th
step, led to the following expression for the meniscus velocity,

uðlÞi¼j ¼
brj

l þ
Pj�1
i¼1

li rj
�
ri

� �4 � 1
h i; j � 2 (4)

where b = g cos y/(4m). As the experimental observations were
made every few micrometers, while li was on the nanometer scale,

Fig. 1 Schematic representations of (a) the capillary bundle model,
(b) mesoporous structures, where blue arrows indicate arbitrary flow paths
during capillary-driven infiltration, (c) the concept of periodically con-
stricted nanochannels, and (d) the geometry of the simplified stepped tube
used in calculations.

Table 1 Experimental pore size and infiltration rate values for different
mesoporous film samples reported in ref. 4. The maximum (2rmax)
and minimum (2rmin) pore diameter values were obtained from the
adsorption–desorption EEP isotherms. 2cexp values were obtained from
the slopes of the infiltration curves l2 vs. t

Sample

Pore diameter (nm) 2cexp � 10�2 (mm2 s�1)

2rmax 2rmin Water IL

PPN 17.1 15.2 7 1.2
Bj1 5.2 3.8 2.8 0.18
Bj2 4.6 3.4 2.1 0.02
Bj3 6.3 4.4 1.9 0.028
F1 6.2 3.4 1.4 —
F2 7.8 3.5 0.64 0.013
PBd1 12 2.3 0.21 —
PBd2 10.2 2 0.06 0.00017
PS7 17.5 3 0.044 —
PBd3 24.3 4.1 0.015 —
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l c li was satisfied from the beginning of the measurement.
Further assuming the same length l for all segments, the meniscus
position can be written as l E jl, and the sum in eqn (4) would be
equal to l[(rj/ri)

4 � 1]. Thus, for relatively large penetration lengths,
the fluid velocity in the j-th step was calculated using the equation

uðlÞj �
brj

l rj
�
ri

� �4: (5)

This simple expression still involves stepped variations as the
meniscus advances, i.e., passing through segments with different
radii. Mathematically speaking, rj and ri may correspond to rmax

and rmin, respectively or, conversely, to rmin and rmax, respectively.
Although different approaches can be used to determine the
average velocity of the fluid front, for the sake of simplicity, here
we examined the time it took for the fluid to fill a basic periodic
unit composed of two consecutive segments, that is t = Dtj + Dtj+1 =
l/u(l)j + l/u(l)j+1. Introducing eqn (5) and reordering yielded

t ¼ ll
brmin

rmin

rmax

� �4

þ rmax

rmin

� �3
" #

� ll
brmin

rmax

rmin

� �3

; (6)

provided that l c l. The second equality in eqn (6) is fairly
reasonable taking into account that rmin o rmax. It is worth noting
that the same factor was recovered when averaging the function
u(l)j in a periodic unit, as previously reported for sinusoidal
constricted tubes.14 Furthermore, as we were dealing with a
bimodal system, eqn (6) was valid for the entire time it took for
the fluid to infiltrate the entire stepped tube.15 Actually, the
prediction of eqn (6) has significant implications in filling
dynamics, as discussed later. At this point, we needed to consider
the physical evidence that, for a bimodal system, the radii ri and
rj in eqn (5) correspond to, respectively, rmin and rmax. Thus, to
calculate the average velocity of the fluid front, we used the
expression

uavðlÞ ¼
g cos y
4ml

rmin
4

rmax
3

(7)

Eqn (7) represents an average velocity, since local variations that
take place in individual steps become smoothed out when l c l.
It is worth noting that eqn (7) still has the form u(l) B 1/l, hence the
kinematic relationship l2 B t holds for periodically constricted
tubes (PCTs). Furthermore, the dynamic coefficient for the PCT
model was calculated using the equation

cPCT ¼
g cos yrmin

4m
rmin

rmax

� �3

(8)

A straightforward comparison of this equation with eqn (1) showed
the effective radius of a uniform tube producing the same infiltra-
tion rate to be

reff ¼
rmin

rmax=rminð Þ3
; (9)

and to be always less than the smallest radius of the constricted
tube (bottlenecks). This rather counterintuitive behavior is however
physically consistent, and may be rationalized as follows: while the
global hydrodynamic resistance is controlled by the constricted

segments (rmin), the overall time for fluid to infiltrate the matrix is
controlled by the widest pores, because fluid velocity decreases
dramatically in the expanded segments. The time to fill the largest
pores increases with pore volume (Brmax

3), according to eqn (6),
and the infiltration rate decreases proportionally.

It is important to note that the trend predicted by eqn (9) has
been experimentally observed in porous media with bimodal
pore size distributions on the microscale.15,16 In fact, the
scaling ratio rmin

4/rmax
3 had been previously suggested from

different approaches: by adding the time spent by the fluid
in consecutive unit cells,15 and from mass conservation
arguments in a single step change.16 That rmin

4/rmax
3 emerged

in alternative calculations indicated this scaling ratio to be a
key factor controlling fluid dynamics.

For the following part of the study, we used eqn (8) to
interpret the results of the experiments involving capillary-
driven infiltration in mesoporous films. Table 1 displays data
from the study of Ceratti et al.,4 but using the nomenclature
of the present work. Namely, the pore sizes associated with
the adsorption–desorption isotherms were considered here to
be the extreme radii of the PCT model. The capillary filling
experiments were carried out on a variety of mesoporous
samples, using two fluids with different characteristics: water
and the ionic liquid (IL) 1-ethyl-3-methylimidazolium dicyanamide.
The physical properties used in our calculations included
m = 0.89 mPa s and g = 71.5 mN m�1 for water, and m = 14.9 mPa s
and g = 44.3 mN m�1 for the IL,17 which corresponded to the
temperature at which the experiments were carried out (25 1C).
For the sake of clarity, cos y = 1 was considered in both cases.

Fig. 2 shows the measured values cexp (symbols) plotted as a
function of the ratio rmin

4/rmax
3 obtained from the values of rmin

and rmax listed in Table 1. Also the lines in Fig. 2 represent
the prediction of eqn (8) for the physical properties of each
fluid. A remarkable agreement was found between the model

Fig. 2 Dynamic coefficient as a function of the scaling ratio for periodi-
cally constricted pores. Symbols are experimental values reported in ref. 4,
and the lines are the prediction of eqn (8); the slopes g cos y/(4m) were
calculated using the physical properties of the respective fluids17 (no free
parameters).
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and experiments, especially considering that no adjustable
parameters were used in the calculations. In fact, despite a
certain level of dispersion of the data, the trend predicted by
the PCT model was observed over several log decades of both
cexp and rmin

4/rmax
3.

In Fig. 2, the values on the abscissa axis represent the
effective capillary radius predicted by eqn (1). It is now clear
that the anomalously small, physically unrealistic values of reff

(less than that of an atom), and the extremely high hydro-
dynamic resistance levels of the mesoporous films, were due to
the long time it took for the fluid to fill the pores (rmax) through
the bottlenecks (rmin). In this regard, using eqn (6) provided
meaningful information, by identifying the right factor controlling
the infiltration rate, and showing how the infiltration time
increases with pore volume (Brmax

3) for a given throat size.
In the context of the PCT model, combining the meaningful
nanoscale dimensions rmax and rmin, at the nanoscale, arranged
as periodically varying expansions and contractions, led to a
reasonable explanation of the observed infiltration dynamics.

It is worth pointing out that our PCT model compared well
to previous analyses of capillary-driven flow in nonuniform
tubes,10–13 as long as relatively large penetration lengths were
considered. In fact, while these reports discussed the step-like
features occurring in the transitions between convergent and
divergent geometries, our model focused on the dynamics over
long time scales, as it addressed systems in which the length of
the basic unit was negligibly small compared to the measurement
length scale.

Finally, it should be mentioned that several aspects were
overlooked in the modeling, such as the presence of inter-
connections between and bifurcations in flow paths, variations
of the meniscus curvature in contractions–expansions, and the
size distribution of the pores, to mention a few. Concerning
this last feature, the sol–gel process has been indicated to yield
pore sizes distributed around two disparate mean values,
according to the bell-shaped curves obtained from adsorption–
desorption isotherms.4 This size distribution would promote a
broadening of the fluid front, whose movement, however, has
been shown to follow Lucas–Washburn dynamics.18 Regarding
changes in the meniscus, sharp edges and steeply changing
dimensions have been suggested to lead to meniscus arrest, as
well as other effects such as bubble entrapment. In the case of
sinusoidal capillaries, for example, an effective contact angle
for the meniscus has been described.14,16 Relevant phenomena
that may also occur are evaporation and capillary condensation,
as discussed in ref. 4.

One may be tempted to conclude that these effects would
play a secondary role in controlling fluid velocity, considering
the effectiveness of the PCT model at representing (i) the l2 B t
infiltration dynamics, (ii) the right magnitude of the dynamic
coefficient, and (iii) its dependence on pore diameter. Of
course, accounting for the physical effects discussed in the
paragraph above would surely help to improve the description
of the fluid flow (see examples in ref. 3). However, including

additional features into the model would lead to complex
formulations that would invariably require numerical simulations,
where critical parameters cannot be readily identified. In contrast,
the simple PCT model was based on algebraic expressions that
explicitly included the key system parameters, in particular the
scaling ratio rmin

4/rmax
3, which in our calculations appeared to

capture the underlying fluid dynamics of the abnormally slow
infiltration rate in mesoporous materials.
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