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Recently, Cariñena, et al. �Ann. Phys. 322, 434 �2007�� introduced a new family of
orthogonal polynomials that appear in the wave functions of the quantum harmonic
oscillator in two-dimensional constant curvature spaces. They are a generalization
of the Hermite polynomials and will be called curved Hermite polynomials in the
following. We show that these polynomials are naturally related to the relativistic
Hermite polynomials introduced by Aldaya et al. �Phys. Lett. A 156, 381 �1991��,
and thus are Jacobi polynomials. Moreover, we exhibit a natural bijection between
the solutions of the quantum harmonic oscillator on negative curvature spaces and
on positive curvature spaces. At last, we show a maximum entropy property for the
ground states of these oscillators. © 2009 American Institute of Physics.
�doi:10.1063/1.3227659�

I. INTRODUCTION

The relativistic Hermite polynomials �RHPs� were introduced in 1991 by Aldaya et al.2 in a
generalization of the theory of the quantum harmonic oscillator to the relativistic context: the
resulting wave functions verify the Klein–Gordon equation associated with the anti-de Sitter
metric

ds2 = c2�2dt2 − �−2dx2,

where �=�1+ ��2 /c2�x2. In a study by Nagel,3 these polynomials were later related to the Ge-
genbauer polynomials. For this reason, as underlined by Ismail in Ref. 4, they do not deserve any
special study since their properties can be deduced from those of the well-known Jacobi
polynomials—a class of polynomials that includes the Gegenbauer polynomials. In a later paper,5

Aldaya et al. gave a group-theoretical construction of the RHP and derived the creation and
annihilation operators and a Bargmann–Fock representation. Further studies include the determi-
nation of the distribution of zeros of the wave function of the relativistic harmonic oscillator6 by
Zarzo et al.

Recently, Cariñena et al.1 studied the behavior of the quantum harmonic oscillator on the
sphere S2 and on the hyperbolic plane and showed that the Schrödinger equation can be analyti-
cally solved; the solutions are an extension of the wave functions of the quantum harmonic
oscillator where the usual Hermite polynomials are replaced by some new polynomials—that we
will call here curved Hermite polynomials �CHPs�. In Sec. II, we show that these CHPs are in fact
Jacobi polynomials. Then we provide a geometric link between the wave functions on constant
negative and positive curvature spaces. Section V exhibits an entropic characterization of these
oscillators.
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II. RELATIVISTIC HERMITE AND CURVED HERMITE POLYNOMIALS: DEFINITIONS
AND NOTATIONS

A. Relativistic Hermite polynomials

The RHP Hn
� of degree n and parameter ��0 is defined2 by the Rodrigues formula

Hn
��X� = �− 1�n�1 +

X2

�
��+n dn

dXn�1 +
X2

�
�−�

. �1�

Examples of these polynomials are given in Table I. They are extensions of the classical
Hermite polynomials

Hn�X� = �− 1�nexp�X2�
dn

dXnexp�− X2� �2�

that can be obtained as the limit case

lim
�→+�

Hn
��X� = Hn�X� .

The RHPs are orthogonal on the real line in the following sense:

�
−�

+�

Hn
��X�Hm

��X��1 +
X2

�
�−�−1−�m+n�/2

dX = cn�m,n, ∀ � � −
1

2
, ∀ m,n � N . �3�

with

cn = �
n ! 21−2���2� + n�
�n−1/2�n + ���2���

.

We remark that �3� expresses an unconventional orthogonality since it holds with respect to
varying weights, that is, to a measure which depends on the degrees of the polynomials.

B. Gegenbauer polynomials

The Gegenbauer polynomial Cn
	 of degree n and parameter 	�0 is defined by the Rodrigues

formula

Cn
	�X� = �n,	�− 1�n�1 − X2�1/2−	 dn

dXn �1 − X2�n+	−1/2,

with

TABLE I. Examples of RH, Gegenbauer, and CH polynomials.

n
RHP

Hn
��X�

Gegenbauer
Cn

	�X�
CHP

Hn
N�X�

0 1 1 1

1 2X 2	X �2 −
1

N�X

2 2�− 1 + X2�2 +
1

�
�� 2	�	+1�X2−	 �2 −

3

N��− 1 + 2�1 −
1

N�X2�
3

4�1 +
1

�
��− 3X + X3�2 +

1

�
�� 2	�	 + 1��− X +

2�	 + 2�
3

X3� �2 −
3

N��2 −
5

N��− 3X + 2�1 −
2

N�X3�
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�n,	 =
�2	�n

2nn ! �	 +
1

2
�

n

�we use Pochhammer’s notation �a�n=��a+n� /��a��. These polynomials are orthogonal with
respect to the measure �1−X2�	−1/2dX on �−1,+1�: for 	�0,

�
−1

+1

Cn
	�X�Cm

	 �X��1 − X2�	−1/2dX = �
21−2	��n + 2	�
n ! �n + 	���	�

�m,n.

C. Curved Hermite polynomials

The CHP of degree n and parameter N�0 is defined by the Rodrigues formula

Hn
N�X� = �− 1�n�1 +

X2

N �N+1/2 dn

dXn�1 +
X2

N �n−N−1/2
,

where X�R for N�0 and X� �−�−N ,+�−N� when N
0. Since the cases N�0 and N
0
differ greatly, we will denote the CHPs with negative parameter N as

Hn
N�X� = Cn

	�X�, 	 = − N � 0.

The CHPs are orthogonal with respect to the measure �1+X2 /N�−N−1/2dX on the real line for N
�0,

�
R

Hn
N�X�Hm

N�X��1 +
X2

N �−N−1/2
dX = an�m,n, m + n 
 2N , �4�

and on the interval �−�	 ,+�	� with respect to the measure �1− X2 / 	 �	−1/2dX when N
0:

�
−�	

+�	

Cn
	�X�Cm

	 �X��1 −
X2

	
�	−1/2

dX = bn�m,n, ∀ m,n � N ,

for some positive constants an and bn.

III. LINKS BETWEEN RELATIVISTIC HERMITE AND CURVED HERMITE POLYNOMIALS

The following theorems show that the family of CHPs is related to the set of RHPs and
Gegenbauer polynomials in a simple way.

A. Link between CHP with positive parameter and RHP

Theorem: The CHP Hn
N�X� of degree n and parameter N�0 is related to the RHP Hn

��X� of
the same degree n and parameter � as

Hn
N�X� = � �

N�n/2
Hn

��X��

N� , �5�

with

� = N + 1/2 − n .

Proof: Denote �=N+ 1
2 −n; then

103514-3 Orthogonal polynomials and QHO J. Math. Phys. 50, 103514 �2009�

Downloaded 23 Apr 2010 to 200.16.16.13. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/jmp/copyright.jsp



Hn
N�X� = �− 1�n�1 +

X2

N ��+n dn

dXn�1 +
X2

N �−�

.

But by the Rodrigues formula �1�

�− 1�n�1 +
X2

N ��+n dn

dXn�1 +
X2

N �−�

= � �

N�n/2
Hn

��X��

N� ,

so that the result holds. �

B. Link between CHP with negative parameter and Gegenbauer polynomials

The same kind of result is now obtained for the CHPs with negative parameter, where the
Gegenbauer polynomials now play the role of the RHPs.

Theorem: The CHP Cn
	�X� of degree n and parameter N=−	
0 is related to the Gegenbauer

polynomial Cn
	 of the same degree n and parameter 	 as

Cn
	�X� =

1

�n,	
	−n/2Cn

	� X
�	

� . �6�

Proof: With 	=−N, we deduce

Cn
	�X� = �− 1�n�1 −

X2

	
�1/2−	 dn

dXn�1 −
X2

	
�n+	−1/2

.

It can be easily checked that

�1 −
X2

	
�1/2−	 dn

dXn�1 −
X2

	
�n+	−1/2

=
1

�n,	
�1

	
�n/2

Cn
	� X

�	
� ,

so that the result holds. �

C. Link between CHP with positive parameter and CHP with negative parameter

Nagel’s identity3

Hn
��X� =

n!

�n/2�1 +
X2

�
�n/2

Cn
�� X/��

�1 + X2

�

� �7�

shows that the RHPs Hn
��X� are Gegenbauer polynomials Cn

��X� in a different variable;4 the
following theorem shows that the same kind of connection can be derived between CHPs with
positive parameter Hn

N�X� and CHPs with negative parameter Cn
	�X�.

Theorem: The CHP Hn
N�X� of degree n and parameter N�0 is related to the CHP Cn

	�X� of
the same degree n and parameter 	 by the following formula:

Hn
N�X�N� = �n,	n ! � 	

N�n/2
�1 + X2�n/2Cn

	� X�	

�1 + X2� , �8�

where

	 = N + 1/2 − n .

Proof: This is a direct consequence of Nagel’s identity �7� and equalities �5� and �6�. �

These results are summarized in Table II.
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IV. A GEOMETRIC CORRESPONDENCE

To each of the families of orthogonal polynomials studied above is associated a set of or-
thogonal wave functions that we denote

cn
	�X� = �1 − X2�	/2−1/4Cn

	�X�, hn
N�X� = �1 +

X2

N �−N/2−1/4
Hn

N�X�

and

hn
��X� = �1 +

X2

�
�−��+1+n�/2

Hn
��X�

in the cases of the Gegenbauer polynomial, CHP, and RHP, respectively. We study first a geomet-
ric interpretation of Nagel’s identity in the case of the relativistic harmonic oscillator.

A. The relativistic harmonic oscillator

Let us denote

fn,��X� = 	hn
��X�	2 and gn,	�Y� = 	cn

	�Y�	2

the probability densities associated with the orthogonal functions defined above. A geometric
interpretation of Nagel’s identity is as follows.

Theorem: If a random variable X is distributed according to fn,� then the random variable

Y =
X/��

�1 +
X2

�

�9�

is distributed according to gn,	 with 	=�.
Proof: The distribution of Y defined by �9� is

fY�Y� = �1 − Y2�−3/2fn,�� ��Y
�1 − Y2�

so that by Nagel’s identity

fY�Y� = �1 − Y2�n+�−1/2�1 +
Y2

1 − Y2�n

	Cn
��Y�	2 = �1 − Y2��−1/2	Cn

��Y�	2 = gn,	�Y� .

�

The application defined by �9� maps R to the interval �−�� ;+���; the inverse application
Y �X=Y�� /�1−Y2 is nothing but the two-dimensional �2D� version of the gnomonic projection.
It is illustrated in Fig. 1.

B. The harmonic oscillator on the sphere and on the hyperbolic plane

We now extend the preceding result to the case of the harmonic oscillator on spaces of
constant curvature. All scaling constants are set to unity for simplicity.

TABLE II. Summary of the links between RHP and CHP.

RH Hn
��X� →

�5�

CH Hn
N�X� with N�0

�7� ↓ ↓�8�

Gegenbauer Cn
	�X� →

�6�

CH Cn
	�X� with N=−	
0
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Theorem: Consider the harmonic oscillator on the hyperbolic plane1 described by its coor-
dinates �x ,y� and with probability density

fm,n,��z,y� = 	hn
�−m−1/2�y�	2	hm

��z�	2

(with z=x /�1+y2�. If this system is transformed as

X =
x

�1 + x2 + y2
, Y =

y
�1 + x2 + y2

⇔ x =
X

�1 − X2 − Y2
, y =

Y
�1 − X2 − Y2

�10�

then the new system described by coordinates �X ,Y� has probability density

gm,n,	�Z,Y� = 	cm
	+n+1/2�Y�	2	cn

	�Z�	2,

where

Z =
X

�1 − Y2
and 	 = � − m − n .

Proof: As a function of variables �x ,y�, the density of the harmonic oscillator writes, in terms
of Gegenbauer polynomials, as

fm,n,��x,y� = �1 + y2�n�1 + x2 + y2�−�+m−1/2
Cn
�−m−n� y

�1 + y2�
2
Cm
�−m+1/2� x

�1 + x2 + y2�
2

.

We now perform the change of variable �10�; the distribution of the new system is obtained as

f̃m,n,��X,Y�d��X,Y� = fm,n,��x,y�d��x,y�

with the measure1

d��x,y� =
dxdy

�1 + x2 + y2
, d��X,Y� =

dXdY
�1 − X2 − Y2

.

Since the Jacobian of the transformation �x ,y�� �X ,Y� is

J = �1 + x2 + y2�−2 = �1 − X2 − Y2�2,

we deduce

FIG. 1. �Color online� The 2D gnomonic projection: the point � on the horizontal line is the gnomonic projection of the
point � on the circle of radius ��; the abscissas of these points are, respectively, X and Y as given by �9�.
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f̃m,n,��X,Y� = �1 − X2 − Y2�−1�1 − X2 − Y2��−m+1/2�1 +
Y2

1 − X2 − Y2�n

�
Cn
�−m−n� Y

�1 − X2�
2

	Cm
�−m+1/2�X�	2

= �1 − X2 − Y2��−n−m−1/2�1 − X2�n
Cn
�−m−n� Y

�1 − X2�
2

	Cm
�−m+1/2�X�	2.

But since the distribution of the harmonic oscillator on the sphere reads, in terms of Gegenbauer
polynomials, as

gm,n,	�X,Y� = �1 − Y2�m−1/2�1 − X2 − Y2�		Cn
	+m+1/2�Y�	2
Cm

	 � X
�1 − Y2�
2

, �11�

we deduce that

f̃m,n,��X,Y� = gn,m,	�Y,X� ,

with

	 = � − m − n .

�

We note that transformation �10� expresses the fact that the point �x ,y ,z� is the gnomonic
projection of the point �X ,Y ,Z�. This is illustrated in Fig. 2. We note also that the gnomonic
projection is the tool used by Higgs8 to derive the potentials that ensure the closedness of the
orbits of a particle moving on the sphere under the action of a conservative central force.

V. AN ENTROPIC APPROACH

In the nonextensive statistical theory,7 the classical Shannon entropy of a probability density
fX,

FIG. 2. �Color online� The three-dimensional gnomonic projection: the � point �x ,y ,1� on the z=1 horizontal plane is the
gnomonic projection of the � point �X ,Y ,�1−X2−Y2� on the sphere; coordinates �X ,Y� are related to coordinates �x ,y� via
Eq. �10�.
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H = −� fX log fX,

is replaced by the so-called Tsallis entropy

Hq =
1

1 − q
� �fX − fX

q� ,

where q is a positive real parameter called the nonextensivity parameter. It can be checked by the
L’Hospital rule that the Shannon entropy is the limit case

H = lim
q→1

Hq.

The “nonextensivity” term comes from the fact that if A and B are two independent systems with
respective entropies Hq�A� and Hq�B� then the entropy of the whole system �A ,B� is not the sum
of both entropies but

Hq�A,B� = Hq�A� + Hq�B� − �1 − q�Hq�A�Hq�B� .

In the standard q=1 case, the canonical distribution—that is, the distribution with maximum
entropy and given variance �2—is the Gaussian distribution

fX�X� =
1

��2�
exp�−

X2

2�2� , �12�

and the polynomials orthogonal with respect to the Gaussian measure on the real line are the
Hermite polynomials �2�; the Hermite functions are defined as

hn�X� = exp�−
X2

2
�Hn�X�, n  0,

and verify the orthogonality property

�
R

hn�X�hm�X�dX = ��2nn ! �m,n, ∀ m,n � N .

In the nonextensive case, the canonical distributions with variance �2 are called q-Gaussian
distributions and read, for q
1,

fX�X;q� =

��2 − q

1 − q
+

1

2
�

��2 − q

1 − q
����d

�1 −
X2

d�2�
+

1/�1−q�

, d = 2
2 − q

1 − q
+ 1,

with notation �x�+=max�0,x�, and for 1
q

5
3 ,

fX�X;q� =

�� 1

q − 1
�

�� 1

q − 1
−

1

2
�����m − 2�

�1 +
X2

�m − 2��2�1/�1−q�

, m =
2

q − 1
− 1.

It can be easily checked that the limit case limq→1 fX�X ;q� coincides with the Gaussian distribu-
tion �12�.

To our best knowledge, the polynomials orthogonal with respect to the q-Gaussian distribu-
tions have not been studied in the nonextensive theory. They can be deduced from the results of
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Sec. II and are indicated in Table III: note that we consider here the q-Gaussian distributions with
scaling constants normalized to unity. In the case q
1, these polynomials coincide with the
Gegenbauer polynomials. In the case q�1, both the CHPs and the RHPs are orthogonal with
respect to the q-Gaussian measure. In all cases, the corresponding orthogonal function and the
domain of definition I are given; each of the corresponding orthogonal function—let us call it
generically wn�X�—verifies the orthogonality property

�
I

wn�X�wm�X�dX = Kn�m,n

for some positive constant Kn.
It turns out that, as mentioned in Sec. I, the orthogonal functions above cited describe the

behaviors of physically significant systems:

• As shown in Ref. 1 the probability density that describes the harmonic oscillator on a 2D
surface of constant negative curvature � �typically the hyperbolic plane� is

fm,n,N�Y,Z� = 	hn
N−m−1/2�Y�	2	hm

N�Z�	2, �13�

with Z=X /�1+Y2 �note that y and z are not independent variables�. The parameter N here
is defined as

N = −
m�

��
� 0,

where m is the mass of the oscillator.
• As shown in the same reference, the probability density that describes the harmonic oscillator

on a 2D surface of constant positive curvature � �typically the sphere� is

gm,n,	�Y,Z� = 	cn
	+m+1/2�Y�	2	cm

	 �Z�	2, �14�

with Z=X /�1−Y2 and

	 =
m�

��
� 0.

• The harmonic oscillator in the relativistic context as described in Ref. 2 has probability
density

fn,��X� = 	hn
��X�	2,

where the parameter ��0 is defined as

TABLE III. polynomials orthogonal with respect to the q-Gaussian measure
and the corresponding orthogonal functions.

q Orthogonal function Domain

Gegenbauer polynomials
2	 − 3

2	 − 1

 1 cn

	�X�= �1−X2�	/2−1/4Cn
	�X� ��1;1�

CHPs
2N + 3

2N + 1
� 1 hn

N�X� = �1 +
X2

N�−N/2−1/4

Hn
N�X� R

RHPs
2 + � +

m + n

2

1 + � +
m + n

2

� 1 hn
��X� = �1 +

X2

�
�−��+1+n�/2

Hn
��X� R
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� =
mc2

��

so that the nonrelativistic limit c→+� corresponds to the classical �→+� Hermite
polynomials.

Thus the behavior of the harmonic oscillator—in either the relativistic case or the case of
constant curvature geometries—can be related to the nonextensive framework, giving in each case
an explicit physical interpretation of the nonextensivity parameter q—a crucial problem in the
nonextensivity context—in terms of the physical constants of the harmonic oscillator, as shown in
Table IV. We note that in the case of the harmonic oscillator on the sphere or of the hyperbolic
plane, the densities �13� and �14� are separable functions in the variables Z=X /�1+Y2 and Z
= X

�1−Y2
, respectively, and Y, each term inducing a different value of q.

VI. CONCLUSION

We have shown that the CHPs are Jacobi polynomials and we have exhibited their links with
RHPs; moreover, we have shown that there exists a natural bijection between the negative and the
positive curvature cases and a geometric interpretation of this bijection. These results hold in the
2D case only. An important consequence of our results is that they provide a geometrical and
physical interpretation of the nonextensivity parameter q.

ACKNOWLEDGMENTS

The authors would like to thank the reviewers for their interesting remarks on the manuscript.
They benefited from a French-Argentinian CNRS/CONICET cooperation grant.

1 Cariñena, J. F., Rañada, M. and Santander, M., “A quantum exactly solvable non-linear oscillator with quasi-harmonic
behaviour,” Ann. Phys. 322, 434 �2007�.

2 Aldaya, V., Bisquert, J., and Navarro-Salas, J., “The quantum relativistic harmonic oscillator: Generalized Hermite
polynomials,” Phys. Lett. A 156, 381 �1991�.

3 Nagel, B., “The relativistic Hermite polynomial is a Gegenbauer polynomial,” J. Math. Phys. 35, 1549 �1994�.
4 Ismail, M. E. H., “Relativistic orthogonal polynomials are Jacobi polynomials,” J. Phys. A 29, 3199 �1996�.
5 Aldaya, V., Bisquert, J., Guerrero, J., and Navarro-Salas, J., “Group-Theoretical construction of the quantum relativistic
harmonic oscillator,” Rep. Math. Phys. 37, 387 �1996�.

6 Zarzo, A. and Martinez, A., “The quantum relativistic harmonic oscillator: Spectrum of zeros of its wave functions,” J.
Math. Phys. 34, 2926 �1993�.

7 Tsallis, C., “Possible generalization of Boltzmann-Gibbs statistics,” J. Stat. Phys. 52, 479 �1988�.
8 Higgs, P. W., “Dynamical symmetries in a spherical geometry I,” J. Phys. A 12, 309 �1979�.

TABLE IV. Values of the nonextensivity parameter q associated with the
three harmonic oscillators.

Positive curvature �
2	 − 3

2	 − 1

	 + m − 1

	 + m

Negative curvature �
2N + 3

2N + 1

N − m + 1

N − m

RHP
1 +

1

1 +
mc2

��
+

m + n

2

103514-10 C. Vignat and P. W. Lamberti J. Math. Phys. 50, 103514 �2009�

Downloaded 23 Apr 2010 to 200.16.16.13. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/jmp/copyright.jsp

http://dx.doi.org/10.1016/j.aop.2006.03.005
http://dx.doi.org/10.1016/0375-9601(91)90711-G
http://dx.doi.org/10.1063/1.530606
http://dx.doi.org/10.1088/0305-4470/29/12/023
http://dx.doi.org/10.1016/0034-4877(96)84075-4
http://dx.doi.org/10.1063/1.530105
http://dx.doi.org/10.1063/1.530105
http://dx.doi.org/10.1007/BF01016429
http://dx.doi.org/10.1088/0305-4470/12/3/006

