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ABSTRACT

Context. Astrophysical polarized foregrounds represent the most critical challenge in cosmic microwave background (CMB) B-mode
experiments, requiring multifrequency observations to constrain astrophysical foregrounds and isolate the CMB signal. However,
recent observations indicate that foreground emission may be more complex than anticipated. Not properly accounting for these com-
plexities during component separation can lead to a bias in the recovered tensor-to-scalar ratio.

Aims. In this paper we investigate how the increased spectral resolution provided by band-splitting in bolometric interferometry (BI)
through a technique called spectral imaging can help control the foreground contamination in the case of an unaccounted-for Galactic
dust frequency de-correlation along the line of sight (LOS).

Methods. We focused on the next-generation ground-based CMB experiment CMB-S4 and compared its anticipated sensitivity, fre-
quency, and sky coverage with a hypothetical version of the same experiment based on BI (CMB-S4/BI). We performed a Monte
Carlo analysis based on parametric component separation methods (FGBuster and Commander) and computed the likelihood of the
recovered tensor-to-scalar ratio, r.

Results. The main result is that spectral imaging allows us to detect systematic uncertainties on r from frequency de-correlation when
this effect is not accounted for in the component separation. Conversely, an imager such as CMB-S4 would detect a biased value of
r and would be unable to spot the presence of a systematic effect. We find a similar result in the reconstruction of the dust spectral
index, and we show that with BI we can more precisely measure the dust spectral index when frequency de-correlation is present and
not accounted for in the component separation.

Conclusions. The in-band frequency resolution provided by BI allows us to identify dust LOS frequency de-correlation residu-
als where an imager with a similar level of performance would fail. This creates the possibility of exploiting this potential in
the context of future CMB polarization experiments that will be challenged by complex foregrounds in their quest for B-mode
detection.

Key words. methods: data analysis — cosmic background radiation — inflation — submillimeter: ISM

1. Introduction Are there reliable strategies to validate or invalidate a detection

of primordial B modes in the presence of complex, polarized
This paper addresses one of the burning questions currently con-  Galactic foregrounds? The scope of our paper is to investigate a
cerning the cosmic microwave background (CMB) community: possible solution that exploits the spectral imaging capability of
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an unconventional technique for CMB polarimetry, called bolo-
metric interferometry (BI), applied to control interstellar dust
foreground emission residuals.

The next generation of satellites, including Litebird
(Hazumi et al. 2019) and the Probe of Inflation and Cosmic Ori-
gins (PICO; Hanany et al. 2019), and ground-based experiments,
such as that conducted by the Simons Observatory (Ade et al.
2019) and CMB-S4 (Abazajian et al. 2022), aim at improving
the constraint on the tensor-to-scalar ratio, r, at the level of 0.001
and below. The accurate removal of foreground and instrumental
systematic effects is already the main limiting factor.

To improve foreground removal, modern experiments rely on
multifrequency observations and improved models of astrophys-
ical emissions. For example, many PySM! (Thorne et al. 2017)
models have been developed with the goal of simulating the
effects of deviations from the single modified blackbody (MBB)
emission conventionally assumed for the Galactic dust thermal
emission. The models d5 and d7 take different dust grain compo-
sitions into account (Hensley & Draine 2017), while models d4
and d12 describe the dust emission as a sum of between two and
six single MBBs along each line of sight (LOS; Finkbeiner et al.
1999; Martinez-Solaeche et al. 2018).

This article focuses on the d6 model (Vansyngel et al.
2018), which introduces LOS frequency de-correlation due to
a frequency-varying polarization angle, which in turn is caused
by a change in both the spectral energy distribution (SED) and
the magnetic field orientation along the LOS (Tassis & Pavlidou
2015). This effect is usually quantified at the power spectra level
by means of the correlation ratio, R,, between two frequency
maps (Planck Collaboration Int. L. 2017). The most recent obser-
vational evidence of this effect comes from Planck Collaboration
Int. L (2017), Planck Collaboration XI (2020), Pelgrims et al.
(2021), and Ritacco et al. (2023) and could affect polarimet-
ric and spectral calibration in the case of wide beam instru-
ments (Masi et al. 2021) as well as bias the tensor-to-scalar ratio
(McBride et al. 2023; Hensley & Bull 2018).

However, the d6 model mimics the effect of a frequency-
varying polarization angle, without making any physical assump-
tions on the misalignment of the underlying magnetic field, by ran-
domly sampling a frequency-varying multiplication factor from
a Gaussian distribution that is later applied to the single MBB
emission, using the parametric expression of the correlation ratio
derivedin Vansyngel et al. (2018). If dust does not behave as a sim-
ple MBB, as is usually assumed, but exhibits more complex spec-
tral features, such as frequency de-correlation, we need a method
for detecting the presence of foreground residuals in our results.
This could be achieved by comparing results from different sky
patches, as proposed by Aurlien et al. (2023), or by cross-checking
with different component separation methods, such as paramet-
ric codes (Eriksen etal. 2006; Stompor et al. 2008), blind algo-
rithms (Aumont & Macias-Pérez2007), orcodesbased onmoment
expansion (Chluba et al. 2017; Vacher et al. 2022), some of which
might be less sensitive to incorrect foreground modeling.

Another possibility, which we illustrate in this paper, is to
use BI and its ability to discriminate frequencies in-band dur-
ing data analysis. This allows us to achieve a spectral resolu-
tion of a few gigahertz?> and reanalyze the same data with dif-
ferent spectral configurations. A variation in the constraint on r

! https://pysm3.readthedocs.io/en/latest/

2 Some level of in-band frequency sensitivity can actually be achieved
with traditional imagers by using the small variations in the spectral
properties of different detectors. This was successfully applied to map
the CO emission line (Planck Collaboration XVI 2014).
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between configurations suggests contamination in the tensor-to-
scalar ratio due to component separation residuals.

In this paper we investigate the advantage of BI for fore-
ground removal and characterization by comparing the perfor-
mance in detecting dust frequency de-correlation of one of the
most advanced experiments to date, CMB-S4, with a similar,
hypothetical experiment based on BI, which we name CMB-
S4/BI. We performed a Monte Carlo simulation starting from
frequency maps, with or without band-splitting, and then applied
parametric component separation using two different compo-
nent separation codes: FGBuster (Stomporetal. 2008) and
Commander (Eriksen et al. 2006, 2008). In the main body of
this paper, we focus on FGBuster simulations, and we discuss
the results obtained with Commander in Appendix B.

Because the aim of this article is to propose a new method-
ology, we did not perform an actual map-making process from
the time-ordered data. We simulated the noise properties directly
onto the reconstructed frequency maps and neglected the impact
of instrumental systematic effects, such as an imperfect knowl-
edge of the spectral response of the instrument, uncertainty
regarding the half-wave plate angle, or the feed-horn posi-
tions. Such effects could reduce the ability to perform band-
splitting during data analysis. However, BI offers a specific
approach to controlling instrumental systematic effects, the self-
calibration technique, which is inherited from radio interferom-
eters (Bigot-Sazy et al. 2013).

The paper is organized as follows. In Sect. 2 we provide a
brief introduction to BI (and references therein Hamilton et al.
2022). Section 3.1 describes the simulated sky models, instru-
mental configurations, and the Monte Carlo pipeline based on
the FGBuster (Stompor et al. 2008) component separation code.
In Sect. 3.2 we compare the results in terms of tensor-to-scalar
ratio reconstructions from simulations with conventional fore-
ground models and with unaccounted-for Galactic dust LOS
frequency de-correlation. We also describe a machine learning
classification used to assess the ability to detect residuals from
foreground emissions in a single realization. In Appendix A we
present the results obtained with FGBuster regarding the estima-
tion of foreground parameters, and in Appendix B we discuss all
the results obtained with Commander.

2. Bolometric interferometry in a nutshell

In this section we briefly describe the principles of BI, focus-
ing on a specific feature of this technique, called spectral imag-
ing, which is at the heart of our study. The interested reader can
find more details on BI and spectral imaging in Hamilton et al.
(2022), Mousset et al. (2022), whereas more information about
the Q & U Bolometric Interferometer for Cosmology (QUBIC)
experiment, currently the only one based on BI, and on its labo-
ratory characterization can be found in Torchinsky et al. (2022),
Piat et al. (2022), Masi et al. (2022), D’ Alessandro et al. (2022),
Cavaliere et al. (2022), and O’Sullivan et al. (2022).

Bolometric interferometry is a technique that combines the
use of bolometers, which are state-of-the-art wide-band cryo-
genic detectors providing high sensitivity, with the advantage
of precision control of systematic effects provided by the self-
calibration technique, commonly used in radio-interferometry
(Cornwell & Wilkinson 1981). The application to BI is detailed
in Bigot-Sazy et al. (2013).

Figure 1 shows a schematic of the QUBIC instrument, high-
lighting the fundamentals of BI. The sky signal enters the cryo-
stat through an aperture window and propagates through a series
of filters, a step-rotating half-wave plate, a polarizing grid, and


https://pysm3.readthedocs.io/en/latest/

Regnier, M., et al.: A&A, 686, A271 (2024)

Sky

56 cm
—
Filters
Half-wave plate- -
Polarizing grid -

Primary horns

Switches <1K

Secondary horns

A

i
Dichroic Ff_.t'
<1K |

~1K

Bolometric array (992 TES)
220 GHz

Cryostat 320 mK

Bolometric array (992 TES)
150 GHz

Fig. 1. Schematic of the QUBIC instrument, showing the principle of
BI. The sky signal is received by an array of back-to-back horns and
reimaged onto the bolometric focal planes, where the field interferes
additively. A polarizer and a rotating half-wave plate make the instru-
ment sensitive to linear polarization.

an array of paired back-to-back feed-horn antennas. The back
horns directly illuminate an optical combiner, which focuses the
radiation onto two focal planes through a dichroic plate.

When the instrument observes a distant point source along
the optical axis an interference pattern forms on the two focal
planes (see the top panel of Fig. 2). As a result, each focal plane
element measures the sky signal convolved by a specific beam
pattern, called the synthesized beam, shown in the bottom panel
of Fig. 2. The constructive or destructive interference of the
incoming signal defines a series of peaks and nulls, with prop-
erties that depend on the signal wavelength, A, on the number
of horns along the maximum axis of the antennas array, P, and
on the separation between two consecutive horns, Ak, as follows
(Mousset et al. 2022):

A A

Orwam = P DAk 0=— (D

AR’

where Orwgy is the half power width of the peaks and © is the
angular distance between the main peak and the first secondary
peak.

Equation (1) demonstrates that the positions of the secondary
peaks depend on A. As an example, in the bottom panel of Fig. 2
we show a cut of the synthesized beam at a fixed azimuthal angle
for two frequencies: 140 GHz and 160 GHz. Knowing how the
multiple-peaked shape of the synthesized beam evolves with fre-
quency allows us to recover the sky signal during data analysis
at various frequencies within the physical band. This is possible
as long as the two frequencies, v; and v,, are far enough apart
that the secondary peaks are well resolved. That is, we required
O(v2) —BO(v1) > Opwrm(+/v1v2), which occurs for % > ﬁ. We
call this technique spectral imaging.

Our goal is to reconstruct maps of an extended source in
polarization thereby computing the three Stokes parameters 1,
0, and U at the same time. Because an extended source is a lin-
ear combination of point-sources, this reconstruction is possible
but requires deconvolving from the multiple peaks of the syn-
thesized beam, as well as relying on a half-wave plate modula-
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Fig. 2. Synthetized beam of QUBIC. Top panel: simulation of the inter-
ference pattern on the focal plane generated by a monochromatic point
source. Bottom panel: azimuth cut of the theoretical synthesized beam
(solid lines) at 140 GHz (blue line) and at 160 GHz (green line) for a
detector at the center of the focal plane. Dashed lines represent the beam
pattern of a single feed horn. The frequency-dependent position of the
secondary peaks is clearly visible.

tion for polarization reconstruction. This problem can be solved
thanks to a scanning strategy that allows information to be cap-
tured several times with various geometrical configurations?, and
through an inverse problem approach that reconstructs unbiased
maps of the three Stokes parameters in sub-bands within the
physical band of the instrument (Mousset et al. 2022).

Consequently, the frequency dependence of the secondary
peaks enables us to achieve a spectral resolution of a few giga-
hertz within the physical band. Furthermore, since spectral imag-
ing occurs at the data analysis level, it allows us to reanalyze the
same data with different spectral configurations, which can help
us detect biases in the obtained results. This is a unique asset
compared to traditional imagers, which would need several focal
planes coupled to multichroic filters to achieve the same spec-
tral performance, or to Fourier-transform spectrometers, which
would suffer from a noise penalty related to not observing all
frequencies simultaneously. In this context, our aim is to investi-
gate how the increased spectral resolution provided by BI helps
in controlling the contamination from Galactic foregrounds in
the quest for primordial B-mode detection, with a special focus
on the Galactic dust emission.

3 Similar to grism spectroscopy, which benefits from different orienta-

tions of the field of view.
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3. Dust de-correlation with bolometric
interferometry and direct imaging

This paper aims to quantify the effect of various dust models
with increasing complexity on the component separation results
and demonstrate the benefits of spectral imaging in this regard.
We focused, in particular, on the LOS frequency de-correlation
of thermal dust, a phenomenon already observed in Planck data
(Pelgrims et al. 2021).

To quantify dust de-correlation, we followed Planck
Collaboration XI (2020) and used the quantity Ry, defined in
Eq. (2):

VXV,
R = o @)

V1 XV Vo XVo
C,/ "' xC,

Here R; is the ratio between the crossed spectrum between two
frequencies, v; and v,, and the square root of the product of the
auto-spectra at these same frequencies. This ratio is close to 1
for completely correlated thermal dust. In our sky simulations,
we can increase or decrease the level of complexity in the ther-
mal dust SED by tuning R, to a value farther or closer to one,
thanks to the parametric expression of R, derived in Eq. (14) of
Vansyngel et al. (2018).

To assess the potential of BI, we compared the component
separation performance of CMB-S4 to a BI version of the same
experiment that has the same sensitivity per unit bandwidth, but
allowing for a higher spectral resolution through band-splitting
using spectral imaging. In the following subsections, we present
the methods used for this comparison.

3.1. Methods
3.1.1. Simulated sky

Our sky model contains the CMB plus synchrotron and dust
emission foregrounds. We simulated the CMB using angular
power spectra provided by the fgbuster package that are
based on the latest Planck 2018 results*. We used the following
two FITS files: (i) Cls_Planck2018_lensed_scalar.fits
in which B modes are considered with » = 0 and lensing.
(ii) Cls_Planck2018_unlensed_scalar_and_tensor_rl.
fits in which B modes are considered with » = 1 and no lens-
ing.

In our simulations, we used temperature and E-mode polar-
ization spectra, which we denote as 7T, EE, and TE. They
are taken directly from file (i). The B-mode spectra, BB, were
obtained by summing the BB spectra from file (i) and multiply-
ing the sum by a lensing residual of 0.1; the BB spectrum from
file (i1) was multiplied by the value of r (either 0 or 0.006). We
note that such a simplified approach neglects the additional ten-
sor contribution to the TT, TE, and EE spectra, but is sufficient
in our case, as we only performed the likelihood analysis on the
BB spectrum.

For the foregrounds we considered the following models®:

1. Model d0sO assumes a single MBB emission for the thermal
dust and a power-law emission for the synchrotron with no
curvature, with constant dust spectral index across the sky,
Ba = 1.54, dust temperature, Tg = 20K, and synchrotron
spectral index, By = —3.

* Spectra can be accessed at https://github.com/fgbuster/
fgbuster/tree/master/fgbuster/templates

5 See https://pysm3.readthedocs.io/en/latest/#models for
more details about the models.
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Fig. 3. Dispersion of the dust SED for different correlation lengths of the
PySM d6 model normalized by the single MBB emission (d1 model).
The colored areas represent the statistical deviation from a MBB for a
given correlation length, evaluated over 500 realizations.

2. Model dlsl is derived from the Planck data post-processed
with the Commander code (Planck Collaboration X 2016)
for the dust emission, while the synchrotron emission is
taken from the Haslam data at 408 MHz in Remazeilles et al.
(2015) and Haslam et al. (1982). The thermal dust emission
is modeled as a MBB with spatially varying temperature and
spectral index projected on the sky, while the synchrotron
emission is modeled as a power law with spatially varying
spectral index with no curvature.

3. Model d6sl is derived from dlsl with the introduction
of LOS frequency de-correlation in the dust emission fol-
lowing the statistical approach described in Eq. (14) of
Vansyngel et al. (2018).

Whereas models dOsO and d1s1 are fixed realizations, the model

dé6sl results in a random realization of the SED. For each sim-

ulated frequency, the MBB emission is multiplied by a ran-

domly sampled de-correlation factor that mimics the effect of a

frequency-varying polarization angle without making any phys-

ical assumptions on the underlying Galactic magnetic field. The
magnitude of the de-correlation factor is governed by the corre-

lation length, .o, @ parameter that can be set in PySM. Figure 3

displays the dispersion of various SED realizations as a func-

tion of £, showing that the dispersion increases with a shorter
correlation length.

In our simulations, we explored the effect of dust LOS
frequency de-correlation with a level of de-correlation con-
sistent with current observations. Specifically, the range of
correlation lengths used in our study was o = 10,
which corresponds to a de-correlation level below 5% for
all the simulated frequencies. This configuration represents
a conservative scenario with respect to the de-correlation
level measured by Planck (Planck Collaboration Int. L 2017;
Planck Collaboration XI 2020) in the same multipole range con-
sidered in our work (¢ < 300; see Fig. 4 for a comparison with
Planck estimates).
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Fig. 4. Correlation ratio measured by Planck from the Half Mission
(HM) maps at 217 GHz and 353 GHz, compared to the simulated ratio
using PySM dust and CMB templates at the same frequencies. The blue
and orange dots represent the expected R, for the CMB and a single
MBB dust emission, with constant (d0) or varying pixel-by-pixel (d1)
spectral indices, respectively. Note that the dots are so close that they
overlap in the figure. The green envelope shows the range of R, obtained
from 500 realizations of dust LOS frequency de-correlation with €. =
10. The black dots are from Fig. 2 of Planck Collaboration Int. L
(2017), the gray dots are from Fig. B.2 of Planck Collaboration XI
(2020), and the red point is obtained from the values in the middle plot
of the second row in Fig. 18 of Planck Collaboration XI (2020).

3.1.2. Instrument models

The first instrument considered in our analysis is CMB-S4
(Abazajian et al. 2022), which will observe at 9 different fre-
quencies in the 20-280 GHz range to constrain both synchrotron
and thermal dust emissions. The goal of CMB-S4 will be
the detection of r at the level r > 0.003 with more than
50.

The second instrument is a version of CMB-S4 based on
BI (CMB-S4/BI), where each of the bolometer-based frequency
bands, Av; (i.e., above 85 GHz), can be subdivided into ng,, sub-
bands of width

Avi

AVB! = .
Rsub

3

If we now consider m frequency bands of CMB-S4, each one
subdivided into ng,, sub-bands in CMB-S4/BI, we can calculate
the sensitivity in each sub-band as
0'];} =0 X \ngwp X &, @)
where o; is the CMB-S4 sensitivity in the jth sub-band within
ith physical band, ngy, is the number of sub-bands and ¢ is a
parameter introduced to account for the sub-optimality of BI (for
further details about BI sub-optimality, see Mousset et al. 2022).
We made two approximations regarding the instrument
models:
1. The noise is always assumed to be white, although, in CMB-
S4/BI, we added the multiplicative term & to account for the
sub-optimality of BI. We know that the noise of a bolometric

40
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Fig. 5. Polarization sensitivity of CMB-S4 and three examples of CMB-
S4/BI, with ny, = 3,5, and 7, respectively. Note that the bands of the
three lowest-frequency channels are identical for all the instruments.
Because our study focuses on dust de-correlation, we chose not to split
the bandwidths of the synchrotron channels.

interferometer is not entirely white, and this calls for spe-

cific component separation techniques able to deal with cor-

related noise. These techniques are currently under develop-
ment within the QUBIC Collaboration.

2. We neglected the angular resolution of the optical beam to
be consistent with the CMB-S4 reference paper. The angular
resolution of a traditional imager, such as CMB-S4, is set
by the aperture of the telescope, whereas in the BI case this
is set by the largest distance between horns. Although the
contribution of the physical beam affects the final sensitivity
of both instruments, it should not impact the generality of
our results.

Figure 5 shows the bandwidths and sensitivities of some of the

tested experimental configurations. For each CMB-S4 frequency

interval above 85GHz, we studied seven configurations of

CMB-S4/BI, with ng, ranging from 2 to 8. Increasing the num-

ber of sub-bands results in a sensitivity degradation, as indicated

in Eq. (4), with & ranging between 20% and 60%, according to

Mousset et al. (2022). Since we focused on dust de-correlation,

we did not subdivide the synchrotron frequency bands; the first

three intervals of the various configurations thus overlap. We
note that because the simulated CMB-S4 sky patch is centered
far from the Galactic plane, we expect the correlations between
dust and synchrotron to be negligible for the scope of our study,

in accordance with the results from Krachmalnicoff et al. (2018)

and Planck Collaboration Int. L (2017).

We emphasize that because this band-splitting is performed
at the data analysis level, one can explore various values of the
number of sub-bands ngy,, with the same dataset. Studying the
evolution of the resulting constraints as a function of ngyy is the
core of this study.

3.1.3. Simulation pipeline

We describe here the simulation pipeline for the Monte Carlo
analysis that we performed using the FGBuster parametric
component separation code. In Appendix B.1 we report the
same information regarding the simulations performed with
Commander. In the FGBuster analysis, we simulated the
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Table 1. Parameters used for analyzing simulations with FGBuster for
all dust models.

Map N, side 256
Multipole range 21-335
AL 35
Input r 0, 0.006
Residual lensing fraction 10%
Sky fraction [%] 3%
Sky patch center
[Equatorial coord.] RA =0°
Dec = —45°

Notes. “This is the fraction of the lensing signal left in the CMB map.
®)Center of the CMB-S4 sky patch.

Table 2. Cases analyzed in this work.

Model assumed in
component separation

Input foreground model

d0sO d0sO
dlsl dlsl
Ceor = 10
Ceorr = 13
dbésl Ceorr = 16 dlsl
Ceor = 19
Ceorr = 100

anticipated CMB-S4 patch, which is a 3%, circular sky patch

centered in RA, Dec = (0°, —45°).

We considered eight instrument configurations (see also
Fig. 5): The CMB-S4 configuration (parametrized follow-
ing Abazajian et al. 2022) and seven versions of CMB-S4/BI,
obtained by subdividing each frequency band. We then applied
component separation and analyzed the cross-spectra of the
resulting maps using a uniform binning (see Table 1 for a sum-
mary of the simulation setup).

For each instrument configuration, the overall analysis chain
followed these steps:

1. Generate a CMB realization as described at the beginning of
Sect. 3.1.1.

2. Generate a noise realization for each frequency channel in
the considered instrument configuration.

3. Add the CMB and the noise to the foreground maps gener-
ated as described in Sect. 3.1.1.

4. Apply component separation to the input maps. In some
cases we assumed the same model used to generate the input
case. In others, we assumed a different model in order to
mimic a realistic situation in which the actual foregrounds
are not 100% known and one might assume a model that
does not completely describe reality.

5. Perform a cross-spectra analysis between two noise realiza-
tions (each with half the exposure time) to recover the tensor-
to-scalar ratio, r. We calculated angular power spectra using
the NaMaster® code (Alonso et al. 2019) with an apodization
radius of 4°.

In Table 2 we list the various cases studied in this work.

Each case was simulated with all the instrument configurations

described in Sect. 3.1.2 and Fig. 5.

% https://namaster.readthedocs.io/en/latest/
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Component Separation. We performed parametric compo-
nent separation modeling on our data as follows:
d,=A-s,+n,, @)
where p is the pixel index, d, and n, are vectors representing
the data and noise measured by the instrument frequency chan-
nels, s, is a vector containing the “true” sky values at the same
frequencies, and A is a mixing matrix that contains information
about the sky components (CMB, synchrotron, and interstellar
dust). In our simulations, we considered the dust temperature
as a known parameter, Ty = 20K. Thus, the only unknown
parameters for synchrotron and dust emissions were their spec-
tral indices, B and Bq.

FGBuster solves for the best spectral indices, S and Sy,
given the data, d,, and the noise covariance matrix, N, follow-
ing the spectral likelihood approach of Stompor et al. (2008).
In order to cope with computational constraints (processing
time and computer memory) and keep the same parameters as
in Abazajian et al. (2022), we used a double pixelization scheme
in our component separation: A fine resolution of N4 = 256
for the pixels of the reconstructed maps, and a coarse reso-
lution of Ngge = 8 (corresponding to a super-pixel resolu-
tion of about 7°) for the spectral indices. In other words, the
spectral indices are kept constant on larger pixels compared to
those of the reconstructed maps. This approach introduces a
slight bias on r, as demonstrated and addressed in Sect. 3.2.1.
However, this bias does not alter the general validity of our
results.

Tensor-to-scalar ratio estimation. The main goal of our
study is to assess how residuals caused by biased estimates of
foreground parameters impact the reconstruction of the tensor-
to-scalar ratio, r, which is the main parameter characterizing the
primordial CMB B modes.

We write the likelihood on r using a Gaussian approxima-
tion (Hamimeche & Lewis 2008):

T
_ (BB BB ~1 (BB BB

—2In L(r) = (D[,exp - Df,model) Nt’,f (D[,exp - Df,model) > (6)

where D]ZEXP and D?Ew 4 are the measured and theoretical

angular power spectra, N;}, is the inverse of the sum of the
noise and sample variance-covariance matrices, and L(r) is
the likelihood on r. The theoretical angular power spectrum,
Dy}3 4> includes the contribution of the 10% lensing resid-
ual that we assumed throughout the study. Therefore, the only
free parameter is the tensor-to-scalar ratio, r, which we var-
ied with a flat prior in the range [-1, 1]. Although allow-
ing for negative values of r is unphysical, we opted for this
more general approach because it has the benefit of high-
lighting potential biases due only to differing observational
methodologies.

This work explores what happens when dust is more com-
plex than anticipated. In order to do so, we performed compo-
nent separation assuming a simple model for dust, namely dl1sl,
but applied to data simulated with the d6s1 model. In such cases,
incorrect dust modeling leads to residuals in the clean CMB
maps.

We then constructed the log-likelihood for r assuming
dust to be well modeled by dlsl using the noise covariance
matrix in Eq. (6), N, obtained from simulations without fre-
quency de-correlation in the dust emission. Such a covari-
ance matrix does not incorporate the variance arising from the
dust SED de-correlation so that the bias on r appears with
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a high significance, which is precisely the effect we want to
study.

After a large number of realizations of d6s1, we see a dis-
tribution that shows the large spread in the possible values of r,
which would be incorrectly considered a measure of high signif-
icance because we assumed a simple model for dust. We used
the same scheme for all of our instrument configurations (from a
classical imager to a bolometric interferometer with a number of
sub-bands) so that we could explore whether the extra spectral
information provided by BI allows us to identify if the “clean”
CMB maps after component separation are indeed clean or are
contaminated by dust residuals.

3.2. Results
3.2.1. Reconstruction of the tensor-to-scalar ratio, r

Here we discuss the results of our FGBuster simulations in terms
of the reconstruction of the tensor-to-scalar ratio, r. The per-
formance in terms of foreground reconstruction is discussed in
Appendix A (FGBuster simulations), whereas the Commander
simulations are presented in Appendix B.2.

The four panels in Fig. 6 show the histograms of the max-
imum likelihood values of r computed from Eq. (6) for each
iteration of the Monte Carlo chain. Each panel shows the result
for one of the simulated sky models as a function of ng. The
top-left panel shows the CMB with rigp,e = 0 and dOsO fore-
grounds. The top-right panel shows the CMB with riypy = 0
and dl1sl foregrounds. The bottom-left panel shows the CMB
with 7jppue = 0.006 and dlsl foregrounds. The bottom-right
panel shows the CMB with 7ipp,; = 0 and d6s1 foregrounds with
Ceorr = 10.

The histograms are normalized to the maximum count value
and smoothed with a kernel density estimator of width equal to
one-fourth of the standard deviation of the histogram. The his-
tograms extend to negative r values because we computed the
posterior likelihood over a range of r that includes negative val-
ues in order to avoid a sharp truncation of the likelihood at r = 0.
A more detailed discussion of each of the four cases follows
below.

Reconstructed r

10 and rippy = 0.

Top-left panel. Here we have the CMB with ripp, = 0 and
dOsO foregrounds. In this case, the reconstructed r does not
depend on ng,;, and there is a small bias due to an E — B
mode leakage caused by the power spectra computation on a sky
patch, where the spherical harmonics are no longer orthogonal.
This bias could be mitigated by increasing the apodization radius
of the mask at the expense of a smaller effective sky fraction
(<3%). This optimization, however, is outside the scope of the

paper.

Top-right panel. Here we have the CMB with ripp = 0
and dlsl foregrounds. Also in this case we see that the recon-
structed r does not depend on ng,,, even if the complexity of
the dust emission is higher (the dust spectral index varies in the
sky). However, here we observe a slightly larger bias in r with
respect to the dOsO case, caused by the aforementioned leak-
age and also by the difference in pixel size of the reconstructed
spectral indices maps (Ngge = 8) compared to the input sky
(Nside = 256).

Bottom-left panel. Here we have the CMB with rigpy =
0.006 and d1s1 foregrounds. This case is similar to the previous
one, the only difference being the value of rjppu.

Bottom-right panel. Here we have the CMB with rigp, = 0
and d6s1 foregrounds fitted with the d1s1 model. The histograms
show that fitting with a model that does not account for fre-
quency de-correlation produces distributions that are larger for
smaller values of ng,,. Also, the mean value of the reconstructed
r obtained from such distributions varies and becomes smaller
as ng,p INCreases.

Figure 7 shows the average r and standard deviation com-
puted from the histograms of Fig. 6 as a function of ng,. This
result represents the range of r from which we expect to sample
our measurement when performing CMB observations.

We note that since the error bar is the standard deviation,
we assume it to be symmetrical. Moreover, in the d6s1 case the
histogram is unsymmetrical, and therefore the average r is not
centered with the distribution.

The blue, orange, and green curves refer to the case in which
we fit the same dust model used to simulate the input sky. In
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Fig. 7. Average maximum likelihood value of r and the standard
deviation as a function of the number of sub-bands in the case of
unaccounted-for dust frequency de-correlation (model d6s1 with £qo =
10 and r = 0) compared to two cases of no de-correlation (model d1s1):
r = 0 and r = 0.006. On top of the average r values and their standard
deviation, we have overplotted the shape of the distribution as a “violin
plot.” Note that for the d6 case the distribution is asymmetric for small
N, SO that the average is not centered on the distribution.

these three cases, the recovered r does not depend on ngp,, as one
would expect for a detection not contaminated by foregrounds.
The difference between the recovered r with respect to rjypy that
we see in all three cases is caused by the E — B leakage and
pixel size effects discussed above.

The red curve refers to the case in which the input sky con-
tains dust emission with frequency de-correlation while compo-
nent separation was performed ignoring this feature, assuming
the d1s1 model. In this case, the increase in the number of fre-
quency maps provided by BI allows us to better constrain the
spectral indices, thus reducing the bias as the number of sub-
bands increases. On average, a classical imager (represented by
ngap = 1) would measure r ~ 0.008 while a bolometric interfer-
ometer would see this estimate reducing by increasing 7. This
indicates that the first value of r is an artifact due to the presence
of residual dust emission.

Finally, Fig. 8 shows a summary of the average r and stan-
dard deviation for all the simulated dust models with 7ippy = 0,
including various correlation lengths for the d6sl case: {eor. =
10,13, 16, 19, 100. For the sake of simplicity, we only show four
instrument configurations: CMB-S4 and CMB-S4/BI with three,
five, and seven sub-bands. As one can see, the advantage of BI
in diagnosing foreground residuals, and therefore decreasing the
bias on r, is maintained even in the case of smaller levels of dust
frequency de-correlation. As expected, in the limit of £, = 100
the result is compatible with the case of a single MBB (model
dlsl).

3.2.2. Identifying foreground residuals on a single realization

We used machine learning to test the ability of BI to detect fore-
ground residuals that may be present when the assumed fore-
ground model is different from that describing the actual sky
emission. That might occur, for example, if one assumes a d1sl
model when the sky is described by a d6s1 model. Therefore, we
explored the possibility that two results — one contaminated by
foreground residuals and the other not, but both producing the
same average reconstructed r for an imager — can be correctly
classified as “contaminated” or “not contaminated” (described
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Fig. 8. Summary of the average maximum likelihood value of r and
the standard deviation for an input » = 0 and all the simulated fore-
ground models (d0s0, d1s1, and several .. cases of d6s1). Note that
we assume symmetric error bars.

by the case in which we do not split the physical band into sub-
bands).

This ability is a key issue when an experiment detects a
tensor-to-scalar ratio that is significantly different from zero.
In this case, there is only one realization (i.e., the actual mea-
surement) to understand whether there are unknown systematic
effects biasing the value beyond the uncertainty set by the noise
plus the known systematic effects.

We carried out this test by performing a machine learning
classification based on a simple gradient-boosted decision tree
(a GradientBoostingClassifier from the scikit-learn
Python library’) according to these steps:

1. Produce 500 sky realizations with r = 0.006® in which the
sky is generated with d1sl and fitted with the same model
(we call this dataset d1-d1). This dataset is labeled as clean.

2. Produce 500 simulations with r = 0, in which the sky is
generated with d6s1 ({or = 10) and fitted with d1s1 (we call
this dataset d6-d1). This dataset is labeled as contaminated.

3. For each simulation, and for each value of ng,,, calculate
a normalized reconstructed » and its uncertainty normal-
ized by what is found with ng, = 1, expressed by the fol-
lowing two quantities: p(ng) = r(Bgw)/r(nsey = 1) and
0p(ngup) = o(r(nsup))/r(nsy = 1) (“training” dataset), both
with a clean or contaminated label, depending on the model
used as an input. These quantities are those that discrimi-
nate whether we have foreground residuals or not. If p # 1,
it means that the detection depends on the number of sub-
bands and, therefore, is likely to be affected by foreground
residuals.

4. Train the network with 250 (d1sl, » = 0.006) and 250
(d6s1, r = 0) randomly selected realizations from the train-
ing dataset (using 100 cross-validation subsets).

5. Calculate p(ngy) and o (nsp) for the remaining 250 (d1sl,
r = 0.006) and 250 (d6s1, » = 0) simulations (“test” dataset).

7 https://scikit-learn.org/

8 The value of r = 0.006 was chosen so that the average reconstructed
r matched the bias that would be obtained from a map with CMB with
r = 0 and d6s1 foregrounds removed assuming a d1sl model with a
single reconstructed sub-band (see Fig. 7).
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Fig. 9. Confusion matrix representing our ability to classify between our
simulated datasets with dust frequency de-correlation (contaminated)
or without (clean) using the measurements of r as a function of ng.
We observe that the fraction of false negatives (contaminated dataset
incorrectly classified as clean) is close to zero.

6. Feed the trained network with the values calculated in step 5
to test its ability to classify the simulations as clean (constant
p(nsp)) or contaminated (variable p(ngyp)).

The result of this procedure is the so-called confusion matrix,
that is, a matrix that compares the results from the classification
predicted by the algorithm with the true one as shown in Fig. 9.
The performance of our classifier is as follows (we adopted the
convention “clean=negative” and “contaminated=positive”):

— True negative rate very close to 1, indicating that the realiza-
tions with no dust residuals (dataset d1-d1 with » = 0 and
r = 0.006) displayed a constant ratio p(ns,;,) and were cor-
rectly classified as clean.

— True positive rate very close to 1, indicating that the real-
izations with dust residuals (dataset d6-d1 with » = 0), dis-
played a variable ratio p(ng) and were correctly classified
as contaminated.

— Low false negative rate of 2.9% + 1.6%, indicating a very
low percentage of realizations with dust residuals that were
wrongly classified as clean. This is a very important figure
of merit that we want to minimize.

— Low false positive of 1.2% + 0.3%, indicating a very low
percentage of realizations without dust residuals that were
wrongly classified as contaminated.

Such a high classification performance demonstrates that BI,
with its capability to measure r in several sub-bands, is a promis-
ing solution to identify residuals in the clean CMB maps arising
from LOS frequency de-correlation in the dust emission. In such
a case, a classical imager lacks the frequency resolution to iden-
tify this contamination, leading to a systematic uncertainty in the
reconstructed r that is well above the target sensitivity of CMB-
S4.

4. Conclusions

In this paper we have shown how BI has the potential to detect
systematic effects caused by interstellar dust in CMB polar-

ization measurements when LOS frequency de-correlation is
present in dust emission and is not accounted for in parametric
component separation algorithms. We know that there are ways
for imagers to mitigate the problem of not precisely knowing
the foreground emission, for example through cross-checking
with different component separation methods, such as blind ones
(Aumont & Macias-Pérez 2007), or codes based on the moment
expansion (Chluba et al. 2017; Vacher et al. 2022), which might
be less sensitive to incorrect foreground modeling. However, in
this paper we propose a new approach based on a different instru-
ment architecture called BI. An instrument based on BI can be
used as an independent verification of future claims of a B-mode
detection by exploiting the superior purity of the r measurement
made possible by the increased spectral resolution.

We carried out simulations with two component separation
codes (FGBuster, discussed in the main text, and Commander,
discussed in Appendix B), reconstructing the tensor-to-scalar
ratio, r, from simulated skies containing CMB, synchrotron and
dust emission, and instrumental noise. For the dust emission, we
used three models of increasing complexity, one of which con-
tains frequency de-correlation.

We compared two instrument models, CMB-S4 and CMB-
S4/BI, the latter a modified version of CMB-S4 that accounts
for the possibility of splitting each physical frequency band into
a variable number of sub-bands that can be chosen during data
analysis. This feature, which is unique to BI, allows us to assess
whether a measurement of r is biased by dust emission residu-
als or not. While a Fourier-transform spectrometer can be used
to increase spectral resolution, it would suffer a greater noise
penalty compared to BI because it cannot observe all frequen-
cies simultaneously.

Our results are consistent for the two codes and show that
with no frequency de-correlation, the two instruments perform
equally well (the final precision and systematic uncertainty on r
are similar). If de-correlation is present, and it is not accounted
for in the component separation, then an imager such as CMB-
S4 would measure a biased value of . This bias can be reduced
with CMB-S4/BI by reanalyzing the same data after splitting the
band into an increasing number of sub-bands.

The decrease in the measured » with the number of sub-
bands, ngy, clearly indicates the presence of a dust-induced sys-
tematic effect, given that without dust residuals the detected r
does not change with ng,. In such a situation, a classical imager
would have no means of classifying the measurement as clean or
“biased”. We also tested the ability to detect biased r measure-
ments using a machine learning approach, and we verified that
assessing the variation in the r measurement versus 7g,, allowed
us to classify clean and biased measurements with a rate >97%.

In the future we will test this technique using more real-
istic situations (including representative noise, optical effects,
and uncertainty on the knowledge of the instrumental spec-
tral response). We will also assess the performance using var-
ious dust models and explore new techniques of component
separation, which will allow us to separate signals by taking
instrumental effects into account in a more comprehensive and
representative way.
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Appendix A: Reconstruction of foregrounds
parameters

d0s0, rippye = 0
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Fig. A.1. Reconstruction of foregrounds spectral indices. Top: Model
d0s0, rippy = 0. Middle: Model d1s1, riyp,e = 0. Bottom: Model désl,

Finput = 0.

In the main part of our paper we focus on the reconstructed
tensor-to-scalar ratio, r, as it is the main quantity of interest. The
level of systematic uncertainties in the reconstructed r, however,
depends on the reconstructed foreground spectral parameters and
distributions. Thus, in this appendix we focus on the distribution
of the foregrounds spectral indices after component separation.

In Fig. A.1 we show the normalized histograms of the differ-
ence between the reconstructed and input dust and synchrotron
spectral indices, AB4, ABs for the following three models: d0sO
(top row), d1s1 (middle row), d6s1 (bottom row), all with riypy =
0. Each histogram does not correspond to a particular pixel but
contains values from the sky patch.

In the case of dOs0, the model assumes a constant spectral
index all over the sky. Therefore, we expect unbiased estimates
with a standard deviation related to the noise in the input fre-
quency maps. The results shown in the top row of Fig. A.1 con-
firm this expectation as we observe no bias on the reconstructed
spectral indices. We note that the standard deviation slightly
increases with the number of sub-bands, ng,,, because of the

slight sub-optimality inherent to spectral-imaging (parametrized
by € in Eq. 4; see Mousset et al. 2022).

When spectral indices vary across the sky, as in dlsl, we
expect biases in the reconstructed spectral indices because we
only reconstructed the spectral indices on relatively large sky
pixels (Nsige = 8), while the input sky was simulated with spec-
tral indices that vary among smaller pixels (Ngjge = 256). Conse-
quently, averaging multiple spectral indices in large pixels intro-
duces a bias to the reconstructed spectral index. This bias is
responsible for foreground residuals in the CMB maps obtained
after component separation and produces the bias on r observed
in Figs. 6 and 7.

This is shown in the middle row of Fig. A.1. The bias due to
spatial de-correlation appears as an enlarged spread of the distri-
bution with respect to the dOs0O case (note the increased scale of
the x-axis in the middle row compared to the top row). Also in
this case we observe an increase in standard deviation with ng,
caused by the sub-optimality related to spectral imaging.

Finally, in the case of frequency de-correlation in the dust
emission (d6s1 model), spectral indices are no longer an accu-
rate description of the dust spectral behavior. As a result, if we
reconstruct B4 using a d1sl model, we expect a much larger
bias. We note that the comparison between input and recon-
structed spectral indices is done using the template map of Sy
(Planck Collaboration X 2016) that was used as an input for the
d6s1 model. It is clear, however, that in the case of d6sl, the
comparison between the input and recovered spectral indices is
less meaningful than in the simpler models. In this case, one is
more interested in the residuals found in the clean CMB maps,
discussed in the main text of this article. In this case, the increase
in spectral resolution provided by spectral imaging supplies extra
information, allowing us to reduce this bias. This is confirmed by
the results shown in the bottom row of Fig. A.1. First, we see a
much larger spread in the histograms compared to the other two
cases. Second, we see that the spread reduces significantly by
increasing ngyp. In this case, the benefit from spectral imaging
more than balances out the sub-optimality effect and allows us
to reduce the bias on the reconstructed spectral index, which then
reduces the bias on r, as shown in Fig. 7.

Appendix B: Simulations with Commander
B.1. Simulation pipeline

We describe here the simulation pipeline for the analysis
performed using the Commander code (Eriksen etal. 2006,
2008). We generated 100 CMB power spectra using CAMB?
(Lewis et al. 2000) from the set of cosmological parameters
shown in Table B.1.

We smoothed both the CMB and foreground signals with a
Gaussian beam with full width at half maximum (FWHM) of
1° and applied the HEALPix pixel window function at Ngq. =
64. The only model used to generate the foreground is the d6s1
described in Sect. 3.1.1, in particular setting the dust correlation
length to £eor = 10.

For this test we considered a circular patch covering 3% of
the sky, centered on the QUBIC observation field — correspond-
ing to RA = 0° and Dec = —57°. We made this choice in order
to be consistent with an already existing BI experimental setup,
after observing that such a sky region is reasonably close to the
CMB-S4 one — considered throughout the analysis in the main
text. We note that the foreground contamination is going to differ

9 Available in the CAMB documentation
readthedocs.io/en/latest/CAMBdemo.html).

(https://camb.
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Table B.1. Set of cosmological parameters from the CAMB Python
example notebook.

Ho 67.5
Quh? 0.022
Q.h? 0.122
Qg 0
m, 0.06
T 0.06
Ay x 1077 2
ng 0.965

Table B.2. Parameters used for analyzing simulations with Commander.

Number of CMB realizations 100
Map Ngige ¥ 64
Multipole range 21-128
AC 35
Input r 0
Residual lensing fraction ) 100%
Sky fraction [%] 3%
Sky patch center RA=0°
[Equatorial coord.] Dec=-57°
FWHM 1°

Notes. “Limited by computational time. ®Limited by Ny, = 64.
©The value of 100% means that all the lensing signal was left.

in the two pipelines, as well as the CMB realization, leading to a
slightly different estimate of r. Nevertheless, we still expect the
final posterior distribution to be compatible within the overall
uncertainty coming from: the instrumental uncertainty, the com-
ponent separation residual, and the statistical uncertainty due to
the different CMB realizations. However, this statistical uncer-
tainty is reduced by VN, where N = 100 is the number of CMB
realizations considered in the analysis.

For computational reasons only four configurations have been
studied. They are CMB-S4/BI with one, three, five, and seven
sub-bands. For each simulated sky map, we generated a second
version by taking the same CMB, synchrotron, and dust real-
ization, and a different Gaussian noise realization. The analysis
chain is the same as outlined in Sect. 3.1.3 except that we used an
apodization radius of 4.6° instead of 4°. We performed the com-
ponent separation sampling the amplitudes acys, a5, a4 and the
spectral indices s, B4 by means of the following Gibbs chain:

{acms, a5, a0}« P(acus, as, aq | 8L, B, d) (B.1a)
H— P(Bs|alyg.alt! al !, By, d) (B.1b)
fj” — P(ﬁdIag\l,[B,aé”,ag”,ﬁé”,d). (B.1c)

The spectral indices are sampled at Ngq. = 8 as for the
FGBuster pipeline. We generated 1000 Markov chain Monte
Carlo samples for each input sky realization and discarded the
first 100 samples as burn-in. The two noise uncorrelated ver-
sions of the same sky realization are associated with two parallel
sampling chains. We computed the cross-spectra between these
two parallel chains, iteration by iteration, to collect a set of 900
spectra for each CMB realization considered in the analysis. We
also averaged all of the sampled maps produced in a single chain
into a mean map, and for every couple of parallel chains we com-
puted the cross-spectrum between the two mean maps. After the
component separation, we computed the likelihood function for
the cross spectrum of each mean map, exploiting the sample-
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Fig. B.1. Mean and standard deviation of the best-fit distributions
obtained with Commander, using the d6s1 model with £, = 10and r = 0.

d6s1, rippue = 0

1.0 1.0
0.8 0.8
0.6 0.6
0.4 0.4
0.2 0.2
0.0 0.0 R
-0.6-0.4-0.2 0.0 0.2 0.4 0.6 -0.6-0.4-0.2 0.0 0.2 0.4 0.6
DBy | DB
1 3 5

Number of sub-bands

Fig. B.2. Reconstruction of foreground spectral indices for the d6sl
model with the Commander pipeline.

based noise covariance matrix obtained by all the power spectra
from the corresponding sampling chain.

B.2. Results

From the probability density functions of the model parameters
obtained with Commander, we find that the upper limit to the
estimation of a single realization of r is reduced with the num-
ber of sub-bands, as shown in Fig. B.1. The r bias and o(r) are
greater than the FGBuster results due to the marginalization over
the foreground components.

Increasing the number of sub-bands also reduces the stan-
dard deviation of the marginalized posterior distributions of
the standard deviation of the spectral indices for all pixels.
Figure B.2 shows the comparison between the reconstructed
dust and synchrotron spectral indices. As in Appendix A, we
compared reconstructed spectral indices with the input ones,
from Planck Collaboration X (2016) for one, three, and five sub-
bands on all pixels. Because of frequency de-correlation, the spec-
tral indices residuals for dust are not as meaningful as the dis-
tribution of reconstructed r shown in Fig. B.1. This analysis has
not been performed for the seven sub-band configuration results
because of data storage issues. Here a single AS from the plotted
distributions represents the difference between the mean value of
the marginal distribution on a single pixel for a given sky real-
ization and the template value in the same pixel from the model.
These results are in agreement with the FGBuster simulations.
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