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Abstract

We present a model for nonlocal diffusion with Neumann boundary conditions
in a bounded smooth domain prescribing the flux through the boundary. We study
the limit of this family of nonlocal diffusion operators when a rescaling parameter
related to the kernel of the nonlocal operator goes to zero. We prove that the solu-
tions of this family of problems converge to a solution of the heat equation with
Neumann boundary conditions.

1. Introduction

The purpose of this article is to show that the solutions of the usual Neumann
boundary value problem for the heat equation can be approximated by solutions of
a sequence of nonlocal “Neumann” boundary value problems.

LetJ : RN — Rbea non-negative, radial, continuous function with f gy J(2)
dz = 1. Assume also that J is strictly positive in B(0, d) and vanishes in RV \
B(0, d). Nonlocal evolution equations of the form

u;(x,t) = xu—u)(x,t) = /N Jx —yuly,t)dy —u(x,t) (1)
R

and variations of it, have recently been widely used to model diffusion processes.
More precisely, as stated in [10], if u(x, ¢) is thought of as a density at the point
x at time ¢, and J(x — y) is thought of as the probability distribution of jump-
ing from location y to location x, then fRN J(y —xu(y,t)dy = (J *xu)(x,t)is
the rate at which individuals are arriving at position x from all other places and
—u(x,t) =— fRN J(y —x)u(x, t)dy is the rate at which they are leaving location
x to travel to all other sites. This consideration, in the absence of external or inter-
nal sources, leads immediately to the fact that the density u satisfies equation (1).
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For recent references on nonlocal diffusion see, [1-6, 9, 10, 12—14] and references
therein.

Given a bounded, connected and smooth domain €2, one of the most common
boundary conditions that has been imposed in the literature of the heat equation,
u; = Au, is the Neumann boundary condition, du/on(x,t) = g(x,t), x € 0%,
which leads to the following classical problem,

u; — Au = in x (0,7),

0

U _ g on 02 x (0,7), 2
an

u(x,0) =ug(x) in .

In this article we propose a nonlocal “Neumann” boundary value problem,
namely

g (x, 1) =/ J(x—y)(u(y,t)—u(x,t))dy+/ G(x,x —y)g(y,1)dy,
Q RM\Q
3

where G (x, &) is smooth and compactly supported in & uniformly in x.

In this model, the first integral takes into account the diffusion inside €2. In
fact, as we have explained, the integral f J(x —y)w(y, t) —u(x,t))dy takes into
account the individuals arriving or leaving position x from or to other places. Since
we are integrating in €2, we are imposing that the diffusion takes place only in 2.
The last term takes into account the prescribed flux of individuals that enter or leave
the domain.

The nonlocal Neumann model (3) and the Neumann problem for the heat equa-
tion (2) share many properties. For example, a comparison principle holds for both
equations when G is non-negative and the asymptotic behavior of their solutions
as t — oo is similar, see [8].

Existence and uniqueness of solutions of (3) with general G is proved by a fixed
point argument in Section 2. Also, a comparison principle when G = 0 is proved
in that section.

Our main goal is to show that the Neumann problem for the heat equation (2)
can be approximated by suitable nonlocal Neumann problems (3).

More precisely, for given J and G we consider the rescaled kernels

1 (& 1 §
Jg(€)=C1£—NJ (E) Gs(x,$)=C18—NG(x,g), “

with
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which is a normalizing constant, in order to obtain the Laplacian in the limit instead
of a multiple of it. Then, we consider the solution u® (x, t) to

1
i) = 5 [l =0 ) dy
&

1
+- Ge(x,x —y)g(y, 1) dy, )
& RN\Q
u(x,0) = upg(x).

We prove in this paper that
u® —>u

in different topologies according to two different choices of the kernel G.
Let us give an heuristic idea in one space dimension, with Q2 = (0, 1), of why
the scaling involved in (4) is the correct one. We assume that

o) 0 1
/ G(l,l—y)dy=—/ G(O,—y)dy=/ J(y)ydy
1 —00 0

and, as stated above, G (x, -) has compact support independent of x. In this case (5)
reads

1 1
ur(x, 1) = 8—2/0 Je (x = y) (u(y, 1) —u(x,1))dy

1 0
+g/ Ge(x,x—y)g(y, t)dy

—00

1 +o0
+g/ Ge(x,x —y)g(y,0)dy := Asu(x, ).
1
If x € (0, 1), a Taylor expansion gives that for any fixed smooth u and ¢ small
enough, the right-hand side A.u in (5) becomes

1 1
Aeu(x) = ?/0 Je (x = y) (u(y) —u(x)) dy = uxx(x)

and if x = 0 and & small,
1 1
Asu(0) = 5—2/0 Je (=) (u(y) —u(0))dy

1 0
+—/ G: (0, —y)g(y)dy

€ J-00

C
%f%@—w»

Analogously, A.u(1) ~ (Cy/e)(—u,(1) + g(1)). However, the proofs of our
results are much more involved than simple Taylor expansions due to the fact that
for each ¢ > 0, there are points x € €2 for which the ball in which the integration
takes place, B(x, d¢), is not contained in 2. Moreover, when working in several
space dimensions, we have to take into account the geometry of the domain.

Our first result deals with homogeneous boundary conditions, that is, g = 0.
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Theorem 1. Assume g = 0. Let Q2 be a bounded C 2+ domain for some 0 < o < 1.
Letu € C2+1+2/2(Q % [0, T1) be the solution to (2) and let u® be the solution to
(5) with J, as above. Then,

sup |u®(, 1) —u(-, )|lLo) — 0
1€[0,T]

as & — 0.

Note that this result holds for every G since g = 0, and that the assumed regu-
larity in u is guaranteed if ug € C**(Q) and dup/dn = 0. See for instance, [11].

We will prove Theorem 1 by constructing adequate super and subsolutions and
then using comparison arguments to get bounds for the difference u® — u.

Now we will make explicit the functions G that we will deal with in the case
g #0.

To define the first one let us introduce some notation. As before, let 2 be a
bounded C2® domain. For x € €, := {x € Q| dist(x, 9Q) < de} and & small
enough, we write x = X —s d 1(x), where x is the orthogonal projection of x on 9€2,
0 < s < € and n(x) is the unit exterior normal to 2 at x. Under these assumptions
we define

Gi(x,§) =—J@E)n(x)-§ for x € Q. (6)

Notice that the last integral in (5) only involves points x € € since when
vy &€ Q,x —y € supp J. implies that x € Q. Hence the above definition makes
sense for & small.

For this choice of the kernel, G = G, we have the following result.
Theorem 2. Let Q be a bounded C*+¢ domain, g € C'+% 3 (RN \ Q) x[0, T]),
u € C*Hel+e/2(Qy % [0, T) the solution to (2), for some 0 < o < 1. Let J as
before and G (x, &) = G (x, &), where G is defined by (6). Let u® be the solution
to (5). Then,

sup [[u® (-, 1) —u(, )l 1) — 0
te[0,T]

as e — 0.

Observe that G| may fail to be non-negative and hence a comparison principle
may not hold. However, in this case our proof of convergence to the solution of the
heat equation does not rely on comparison arguments for (3). If we want a non-
negative kernel G, in order to have a comparison principle, we can modify (G1),
by taking

~ 1
(G1)e(x. ) = (G, §) + ke Jo(8) = ~Jo(8) (—n(®) - § + e

instead. B .
Note that for x € Q and y € RN \ @, (Gelx,x —y) = %Js(x b))
(—77()2) (x—=y)+ K82) is non-negative for ¢ small if we choose the constant
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« as a bound for the curvature of 92, since |[x — y| < de. As will be seen in
Remark 1, Theorem 2 remains valid with (G1), replaced by (G1),.
Finally, the other “Neumann” kernel we propose is

G(x,8) = Gax, §) = C2J(§),

where C> is such that

d
/ / J(2)(C2 — zn) dzds = 0. (7
0 {zn>s}

This choice of G is natural since we are considering a flux with a jumping proba-
bility that is a scalar multiple of the same jumping probability which moves things
in the interior of the domain, J.

Several properties of solutions to (3) have been recently investigated in [8] in
the case G = G for different choices of g.

For the case of G, we can still prove convergence but in a weaker sense.

Theorem 3. Let 2 be a bounded C*T* domain, g € C”O"(HTQ) (RN \ )x[0, T]),
u € C*el+e/2(Q % [0, T) the solution to (2), for some 0 < o < 1. Let J as
before and G (x,&) = Ga(x, &) = CrJ (&), where C, is defined by (7). Let u® be
the solution to (5). Then, for each t € [0, T]

u®(x,t) = u(x,t) * —weakly in L>(Q2)
ase — 0.

The rest of the paper is organized as follows: in Section 2 we prove existence,
uniqueness and a comparison principle for our nonlocal equation. In Section 3 we
prove the uniform convergence when g = 0. In Section 4 we deal with the case
G = G and finally in Section 5 we prove our result when G = G».

2. Existence and uniqueness

In this section we deal with existence and uniqueness of solutions of (3). Our
result is valid in a general L! setting.

Theorem 4. Let Q2 be a bounded domain. Let J € L' (RN) and G € L®(Q2 x RV).
For every ugy € LY(Q) and g € L}’(fc([O, 00); LI(RN \ )) there exists a unique
solution u of (3) such that u € C ([0, 00); L'()) and u(x, 0) = ug(x).

As in [7] and [8], existence and uniqueness will be a consequence of Banach’s
fixed point theorem. We follow closely the ideas of these works in our proof, so we
will only outline the main arguments. Fix #y > 0 and consider the Banach space

X;, = C([0, 10]; L' ()
with the norm

Hwlll = max [lw(, Dz 1q)-
0= <y @
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We will obtain the solution as a fixed point of the operator T, , : X;, — Xy
defined by

t
Ty, g(w)(x, 1) = up(x) +/ / J(x —y)(w(y,s) —w(x,s))dyds
0,78 (3
+ Gx,x —y)g(y,t)dyds.
0 JRM\Q

The following lemma is the main ingredient in the proof of existence.

Lemma 1. Let J and G as in Theorem 4. Let g, h € L*((0, tg); L! (RN \ Q)) and
uo, vo € LY(Q). There exists a constant C depending only on Q, J and G such
that for w, z € Xy,

11 Tug.e (W) — Togn (@I < lluo — voll 1

+Cto (I[lw — 2l + 18 = Al oo (0.10): L1 RN\ ) - ©
Proof. We have
o [Ty, g (w)(x, 1) = Ty n(2)(x, )| dx = /Q lo(x) — vo(x)|dx
t
+/ / / J(x—=y) [(w(y, s) —z(y, ) — (w(x,s) — z(x, s))] dyds| dx
alo Ja

t
+/// IG(x,x =gy, s) —h(y,s)|dydsdx.
QJo JRN\Q

Therefore, we obtain (9). O

Proof (Proof of Theorem 4). Let T = T, .. We check first that 7 maps X, into
X4, From (8) we see that for 0 < 11 < 1 < 19,

14
IT(w)(t2) — T(w)tD) L1 (@) = A/ /Qlw(y,S)Idyds
1

n
+B// lg(y,s)|dyds.
n JRV\Q

On the other hand, again from (8)
IT w)(®) — uoll 1@y < CH{IllwII + 18]l Loo(0.10): L RM\@2)) }-

These two estimates give that T (w) € C([O0, t]; LY(Q)). Hence T maps X,, into
Xip-

Choose g such that Cty < 1. From Lemma 1 we get that T is a strict contraction
in Xy, and the existence and uniqueness part of the theorem follows from Banach’s
fixed point theorem in the interval [0, 7g]. To extend the solution to [0, c0) we may
take as initial datum u(x, #p) € L'(2) and obtain a solution in [0, 2 7]. Iterating
this procedure we get a solution defined in [0, c0). O

Our next aim is to prove a comparison principle for (3) when J, G = 0. To this
end we define what we understand by sub and supersolutions.
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Definition 1. A functionu € C([0, T); L! ((R2)) isasupersolution of (3) if u(x, 0) =
up(x) and

ur(x, 1) i/ J(x = y)(uy, 1) —ulx, 1)) dy+/ G(x,x —y)g(y,1)dy.
Q RN\

Subsolutions are defined analogously by reversing the inequalities.

Lemma2. Let J, G 2> 0,ug > 0and g 2 0. Ifu € C(Q x [0, T)) is a supersolu-
tion to (3), thenu = 0.

Proof. Assume that u(x, ) is negative somewhere. Let v(x, t) = u(x, t) 4+ et with
& so small such that v is still negative somewhere. Then, if we take (xo, #p) a point
where v attains its negative minimum, there holds that 7o > 0 and

v (X0, 10) = us(x0, fo) + & > /Q J(x = y)u(y, to) — u(xo, o)) dy

/QJ(X =MWy, 10) — v(xo, f0))dy 2 0

which is a contradiction. Thus, ¥ = 0. O

Corollary 1. Let J, G = 0 and bounded. Let uy and vo in L' () with ug = vo
and g, h € L®((0, T); L'(RN \ Q)) with g = h. Let u be a solution of (3) with
initial condition ug and flux g and v be a solution of (3) with initial condition vy
and flux h. Then,

uzv almost everywhere.

Proof. Let w = u — v. Then, w is a supersolution with initial datum ug — vg = 0
and boundary datum g — h = 0. Using the continuity of solutions with respect
to the initial and Neumann data (Lemma 1) and the fact that J € L*(R"), G €
L>( x RV), we may assume that u, v € C(Q x [0, T]). By Lemma 2 we obtain
that w = u — v = 0. So the corollary is proved. O

Corollary 2. Let J, G = 0 and bounded. Let u € C(Q x [0, T1)(resp. v) be a
supersolution (resp. subsolution) of (3). Then, u = v.

Proof. It follows the lines of the proof of the previous corollary. O

3. Uniform convergence in the case g = 0

In order to prove Theorem 1 we set w® = u® — u and let it be a 2+ 1+e/2
extension of u to RN x [0, T']. We define

1
L= /Q Je(x = Y (v 1) — vx. 1))dy
and

~ 1
Le() == /RN Je(x = ) (v(y, 1) — v(x, 1))dy.
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Then

1
wf = Le(u®) — Au+ —/ Ge(x,x —y)g(y, 1) dy
& RN\Q

~ 1
:Ls(w8)+L£(”)_AM+_/ Ge(x,x —y)g(y,n)dy
| & RN\Q

- Jex =y (aty, 1) — ix, 1) dy.
& RV\Q
w; — Lg(w®) = Fo(x,1),

where, noting that Au = Au in €,

-~ o1
FS(X’I)ZLS(M)_Au—i__/ Gé‘(xvx_y)g(yvt)dy
{ & JRN\Q
—= Je(x = y)(@(y, 1) —ii(x, 1)) dy.
€% JRN\Q
Our main task in order to prove the uniform convergence result is to get bounds
on Fg.
First, we observe that it is well known that by the choice of Cy, the fact that J
is radially symmetric and it € C>+t®1+¢/2(RN x [0, T]), we have that

sup || Le(it) — Aiil| (@) = O(e%). (10)
t€[0,T]

In fact,

Ci X =Yy B B _
N+2 RNJ . @(y,t) —it(x,1)) dy — Aii(x, t)
becomes, under the change variables z = (x — y)/e,

%/ J(2) (i(x — ez, t) —a(x, 1) dy — Aii(x, t)
RN

and hence (10) follows by a simple Taylor expansion.
Next, we will estimate the last integral in F,. We remark that the next lemma
is valid for any smooth function, not only for a solution to the heat equation.

a0
Lemma 3. If0 is a C***1%%/2 function on RN x [0, T and o= h on 3K, then

forx € Q. = {z € Q| dist(z, Q) < de} and & small,
1

= Je(x =) (0(y, 1) — 0(x, 1)) dy
& lRN\Q )
== T = ym@ - L0  dy
& RN\SZ 5 £
— Do (O x—X)p o
+/RN\Q L —y) ,,32::2 @[ (=) - (=) Jay + 06,

where X is the orthogonal projection of x on the boundary of 2 so that
X =yl = 2de.
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Proof. Since § € C2t1+2/2(RN 5 [0, T]) we have

Oy, 1) —0(x,1) =0(y, 1) —0(x,1) — (0(x,1) — (X, 1))

DPo
=VOE - (y—x)+ > @[ -0F — -0
1B1=2
+O(|I% — x[|77) + O(||% — y[|*F9).

Therefore,
1
= Je(x =) (0(y, 1) — 0(x, 1)) dy
& RN\Q
= l/ L — »VoGE ) - 2= 4y

& JRN \Q

(y X)\p (x—X)p o
+/ Je(x — y) - dy + O(&").
RN\ “‘;2 I: & ) ( & ) ]

Fix x € Q.. Let us take a new coordinate system such that n(x) = ey. Since

20
— = hon d%2, we get
an

(y—x) dy
&

/ Je(x —y)VO(x, 1) -
RM\Q
(y—x)

:/ Je(x — y)n(x) - h(x,1)dy
RN\Q

N-1

+/ Je(x_)’)zexi(i’t)wdy
RN\Q ol &

We will estimate this last integral. Since Q is a C>T® domain we can chose
vectors eq, e2, ..., ey—1 so that there exists k > 0 and constants f;(x) such that

N—-1
Brge(x) N [)’N - (JEN + Z fi(x) (i —x,')z) > K8 ] C RN \ @,

i=1

N-1
Bage(X) N {yN — (v + Z i) i —xi) ) —ke? } c Q.

i=1

Therefore, for
N-1
r= [|yN — (v + D i —x)?)| £ Ke”"‘}
i=1
and

N—1
S = [)’N — ()?N + Z Ji GO (i —x,-)z) > K82+°‘]

i=1
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we have

= (yi — xi)
/RN\Q Jolx — y)(z 0, (E. ”T) dy

i=1

p= (i — xi)
N (RN\Q)HT Jé‘(x B y) (Z QXi ()E, t)lTl) dy

N-1 1 — 1)
/h(x—y)(zex,(x n=x) )dy

i=1
=L+ 1.

If we take z = (y — x) /e as a new variable, recalling that Xy — xy = &s, we obtain

L<e S 0,6 r>|/ J ()2 dz
Z Xi a+8 11fi(i)(2i)2)|§'(€]+a} i
< CK81+°‘
On the other hand,
L =Ci D 0y(x, t)/ J(2) zi dz.
Z " (s+e 205" fi@1@0)?) >wetse ] '

Fix 1 £i £ N — 1. Then, since J is radially symmetric, J (z) z; is an odd function
of the variable z; and, since the set

N-1
[zN —(s+e D fiHE)?) > :ce““]
i=1
is symmetric in that variable we get
L, =0.
Collecting the previous estimates the lemma is proved. 0O
We will also need the following inequality.

Lemma 4. There exist K > 0 and € > 0 such that, for ¢ < &,

(y—x)
&

/ JoGr = yn(®) - dyzk/ L —ydy. (D)
RN\ Q RN\Q

Proof. Let us put the origin at the point x and take a coordinate system such that
n(x) = ey. Then, x = (0, —u) with 0 < u < de. Then, arguing as before,

/ Jg(x—y)n(;E),(y—x) dy=/ Js(x_y))’N-i-Mdy
RN\Q e RV\Q

YN+ 1
/ Je(x —y)———dy +/ Je(x —y)
{yn>Ke?) € RN\QN(|yn|<ke?}

YN+ 1
2 / Je(x —y)
{yn>Ke?}

yN+Mdy
I

dy — Ce.
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Fix ¢ small such that

1
—/ J(@)zydz 2 201/ J(2)dz.
2 Jizn=0} {(0<zy<2c1}

We divide our arguments into two cases according to whether u < c1e or u > c1e.

Case 1. Assume 1 < cy¢. In this case we have,

/ Je(x —y)
{yn>re?}

= C] / J(Z) IN dz
{zv>ke+L)

Cy / J(Z)ZNdz—/ J(2) znv dz (12)
{zn >0} {0<zy<we+L)

C (/ J(z)szz—ch/ J(z)dz)
{zn >0} {0<zy <2c1})

Cy
2

yN+Mdy
&

1A%

v

J(z) zn dz.

{zn>0}

Then,

(y—x)

/ Je(x = y)In(x) - dy—K/ Je(x —y)dy
RM\Q RM\Q

1
>C1(—/ J(z)szz—K)—C£>0,
2 Jizy>0)

if & is small enough and

1
K<—/ J(2) zn dz.
4 Jizy=0)

Case 2. Assume that 2 > c1e. For y in RN \ Q N B(X, de) we have

N
N > —ke.
e

Then,

+u
IR I CELE

&

i(cl—KS)/ Js(x—y)dy—K/ Je(x —y)dy
RN\Q RN\Q

=(C1—K8—K)/ Je(x —y)dy 20,
RN\Q



148 CARMEN CORTAZAR, MANUEL ELGUETA, JULIO D. RossI & NOEMI WOLANSKI

if ¢ is small and

This ends the proof of (11). O
We now prove Theorem 1.

Proof (Proof of Theorem 1). We will use a comparison argument. First, let us
look for a supersolution. Let us pick an auxiliary function v as a solution to

vy —Av="h(x,t) in Qx(0,7),

0

=g o 92x (0.7),
n

v(x,0) = v1(x) in Q,

for some smooth functions h(x, ) = 1, g;(x,t) = 1 and v1(x) = 0 such that the
resulting v has an extension _f) that belongs to C2tolta/ 2(RN x [0, T]), and let M
be an upper bound for v in  x [0, T']. Then,

v = Lev + (Av — L) + lz/ Je(x =)W (y, 1) —0(x, 1)) dy + h(x, 1).
& RM\Q

Since Av = Av in €2, we have that v is a solution to

vy, —Lsv=H(x,t,e) in Qx(0,T),
v(x,0) =vi(x) in Q,

where by (10), Lemma 3 and the fact that z > 1,

H(x,t,&) = (AD — L¢D) + iz/ Je(x — )@y, 1) — B(x, 0))dy + h(x, 1)
& RM\Q

1 —
2 (3 [ e mm - E ey
& RN\Q &

DPFYy (y— %)
+/ JeGx— ) (. 1)
RN\Q I%Z 2 [( & )
—( )ﬂ]dy)—l—l—Ce“

(gl(x’”/ St =y - O gy
& RN\Q

&

(x —X)

1\

1
D1 [ L= ydy)+
RN\Q 2
for some constant D if ¢ is small so that Ce* < 1/2.
Now, observe that Lemma 4 implies that for every constant Cy > 0, there exists
&0 such that,

1
—/ Je(x = y)n(x) -
RN\Q

&

(y—x)

dy - Co/ JeGx — y)dy 2 0,
RN\Q

if e < gp.
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Now, since g = 0, by (10) and Lemma 3 we obtain

| Fe | g/RN\ Jex—y) > _(— ,)[((Y ) ((x—x))ﬁ]dy

B1=2 €

+Ce*
§C2/ Je(x — y)dy + Ce”.
RM\Q

Given § > 0, let vs = Sv. Then vg verifies

(vs); — Levs =8H(x,t,e) in Q x (0,7T),
vs(x,0) = dvy(x) in €.

By our previous estimates, there exists €9 = €¢(8) such that for ¢ < g,
|Fe| S 8H (x,1,¢€).
So, by the comparison principle for any & < g it holds that
—MS§ < —vs S we S vsg S MS.
Therefore, for every § > 0,

—M$ < liminf we < limsupwe, < M$

e—0 e—0

and the theorem is proved. O

4. Convergence in L' in the case G = G,

First we prove that F, goes to zero as € goes to zero.
Lemma S. If G = G then
Fe(x,t) > 0 in L™([0, T]; L'())
ase — 0.
Proof. AsG =G| =—-J(&)n(x) - &, for x € 2, by (10) and Lemma 3,
(y—x)
s

. (g(y.0) —g(x,1))dy

_ (y—X) (x —X)\p
- Je(x — ) —( dy
o > o[ - (]
+0(&%).

As g is smooth, we have that F; is bounded in €2;. Recalling the fact that |Q2.| =
O(e) and Fy(x,t) = O(e*) on Q \ 2, we get the convergence result. O

1
Ren=_ [ g

We are now ready to prove Theorem 2.

Proof (Proof of Theorem 2). In the case G = G| we have proven in Lemma 5
that F, — 01in L' (2 x [0, T]). On the other hand, we have that w® = u® —u isa
solution to
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w; — Le(w) = F;
w(x,0) =0.

Let z¢ be a solution to

72t — Le(2) = | Fel

z(x,0) = 0.
Then —z¢ is a solution to
2t — Le(2) = —|Fel
z(x,0) =0.

By comparison we have that

A

wf <z% and % = 0.

Integrating the equation for z° we get

t
||z€(-,t)||L1(Q)=/zg(x,t)dxz// |Fe(x,s)| dsdx.
Q QJ0

Applying Lemma 5 we get

sup 1125, Dl 1y — O
te[0,T]

as ¢ — 0. So the theorem is proved. 0O

Remark 1. Notice that if we consider a kernel G which is a modification of G of
the form

Ge(x,8) = (Ge(x,8) + A(x, &, ¢)

with
/ |A(-x7x_y78)|dy—>0
RN\Q

in Ll(Q) as ¢ — 0, then the conclusion of Theorem 2 is still valid. In particular,
we can take A(x, &, ¢) = keJ(§).

5. Weak convergence in L' in the case G = G»

First, we prove that in this case F; goes to zero as measures.

Lemma 6. If G = G, then there exists a constant C independent of € such that

T
/ / |Fe(x,s)|dxds < C.
0 Q
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Moreover,
Fe(x,t) = 0 as measures

as ¢ — 0. That is, for any continuous function 0, it holds that

T
/ / Fo(x,)0(x,t)dxdt — 0
0 Q

as & — 0.

Proof. As G = G, = C2J(§) and g and & are smooth, taking again the coordinate
system of Lemma 3, we obtain

1 —
Fox.t) = E/RN\Q Jex = ) (Cagly ) = T g(x1))

1 = (i — xi)
__ Je(x — iy (X, 2t g
g 0 N Y0 dy
DGO (y—F)\p (x—3)
D e (el

€ €
1Bl1=2

+0(%)

1 —

== [ st (Catin - B )
& RN\Q &

N—-1
1 N
__/ JE(X_Y)Zux,(xst)y—)dy+0(1)XS25
RN\Q &

& .
i=1

+0 (g%).
Let

XN

Beronyi= [ g (o - N g(an)
RN\Q &

= (i — xi)
_ Je(x — i (X, 2t T Ay,
/RN\Q =) D iy E1) y

&
i=1

Proceeding in a similar way as in the proof of Lemma 3 we get for ¢ small,

[ oo it = ) (Catin = i)
RM\Q &

X (yv —xn)
=80 Jo(x =) (Cz—— dy
RN\ lyy—in|Sxe?) e

_ (v — xn)
+e(E. 1) Jo(x — y) (Cz - y—) dy
(RM\Q)N{yy —¥y >0} € )
_ (YN — xn
—g(E. 1) Jo(x =) (Cz = y—) dy
(RN\Q)N{0<yy —¥n <xe2)} &
=Cig(x,1) J()(Ca — zn)dz + O(e) xq, -

{zn>s}
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And

p (i — x)
Je(x — z iy, (%, 1 Mt g
/RN\Q =) Uz (X 1) £ Y

i=1

= (i = x1)
=D iy (&, 1) Je(x — y)——"dy
i=1 {|,VN—)EN|§K82} &
g (yi — xi)
+ iy (%, 1) Je(x — y)=——=dy
i=1 {yn—Xn>xe?) £
N-1
=C1 ) iy (%.1) J(2)zidz + O(e)xa,
i=1 {zn—s>kKe}
=L+ 0()xe.-
As in Lemma 3 we have I, = 0. Therefore,
B.(x,1) = C1g(%, 1) J(@)(C2 —zy) dz + O(e) xg, -

{zn>s}

Now, we observe that B, is bounded and supported in €2.. Hence

t 1 t
/ / |Fe(x, T)|dxdt < —/ / |B:(x, T)|dx dt + Ct|Q| + Ct|Qe* £ C.
0 Jo €Jo JQ.

This proves the first assertion of the lemma.
Now, let us write for a point x € €2,

x=x—punkx) with0 < pu <ds.
For ¢ small and 0 < u < de, let d S, be the area element of
{x € Q|dist(x, 02) = u}.

Then, dS,, = dS + O(e), where dS is the area element of 2.
Taking now p = se we get for any continuous test function 6,

1 T
—/ / Be(x,1)0(x,1)dx dt
& Jo Jq,

T d
= 0(¢) +C1/ / g(i,t)@()_c,t)/ / J(2)(C2 — zy) dzdsdS dt
0 Joao 0 Jzy>s)

=0()—>0 ase—0,

since we have chosen C so that

d
/ / J(z)(Cz—zN)dzds =0.
0 {zn>s}

Now, with all these estimates, we go back to F,. We have

Fe(x, 1) = éBs(x, 1+ O0M)xa, + O(Y).
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Thus, we obtain

T
//Fs(x,t)é(i,t)dxdtao ase — 0.
0o Jo.

Now, if o () is the modulus of continuity of 6,

/ / Fe(x,t)0(x,t)dxdt = / / Fo(x,)0(x,t)dx dt

/ / Fe(x,0)(0(x, 1) — 0(x, 1)) dx dt

:/ / Fg(x,t)O()E,t)dxdt+Ca(€)/ / |Fe(x,t)|dxdt — 0,
0 Qe 0 Qe

ase — 0.
Finally, the observation that F, = O (%) in Q \ 2, gives

T
/ / Fo(x,H)0(x,t)dxdt -0 ase— 0
Q\Q

and this ends the proof. O
Now we prove that ©? is uniformly bounded when G = G>.
Lemma 7. Let G = G2. There exists a constant C independent of € such that

||”E||L°0(§x[o,T]) =C.

Proof. Again we will use a comparison argument. Let us look for a supersolution.
Pick an auxiliary function v as a solution to

—Av="h(x,t) in Qx(0,T),
g—: =g1(x,1) on 02 x (0,7), (13)
v(x,0) = v (x) in €,

for some smooth functions 4 (x, ) = 1, vi(x) = uo(x) and
gi(x,1) 2 —(Cz + 1) max |g(x Hl+1 (Kasin(11))

such that the resulting v has an extension v that belongs to the space C 2o, lta/2
(RN x [0, T']) and let M be an upper bound for v in 2 x [0, T']. As before, v is a
solution to
—L.v=H(x,t,e) in Qx(0,T),
v(x,0) =vi(x) in €,

where H verifies

ez (B0 [ na- w2y
RN\Q

—01} Je(x = y)dy) +
RV\Q

NI*—‘
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So that, by Lemma 4,

x,1) K 1
Hixte) 2 (u—m)/ JoGr — y)dy +
& RN\Q 2

fore < &.
Let us recall that

. . C
Fe(x,t) = Le(it) — Al +—2/ Je(x —y)g(y, 1) dy
& RN\Q

2 /RN\Q JeCx = y)(i(y, 1) — @(x, 1)) dy.

Then, proceeding once again as in Lemma 3 we have,
1g(x, )| C2
|Fe(x, )] & =—7— Je(x —y)dy
€ RN\Q
lg(x, )] - O =x)
+— Je(x = y)|n@) - =—|dy
& RN\Q &

+Ce% + C/RN\Q Je(x —y)dy

(C2+ 1D /
< | = 1 C] J, —y)d Ce®
_[ - mrrxl?gfﬂlg(x )+ o e(x —y)dy + Ce
x,t) K
< (M+C)/ Je(x —y)dy + Ce®
28 RN\Q

if ¢ < &, by our choice of g;.
Therefore, for every e small enough, we obtain

|Fe(x, )| = H(x,1,¢),
and, by a comparison argument, we conclude that
—M = —v(x,t) Sut(x, 1) Svlx, 1) =M,
for every (x, 1) € Q x [0, T]. This ends the proof. 0O
Finally, we prove our last result, Theorem 3.
Proof (Proof of Theorem 3). By Lemma 6 we have that
F.(x,t) = 0 asmeasuresin £ x [0, T]

ase — 0.
Assume first that i € CS*“(Q) and let ¢, be the solution to

w; — Lew =0

w(x,0) = ¥(x).
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Let ¢ be a solution to

(,gt —Ap=0
% _0

an

@(x,0) = ¥ (x).

Then, by Theorem 1 we know that 9. — ¢ uniformly in  x [0, T'].
For a fixed r > 0 set ¢ (x,s) = @ (x,t — 5). Then ¢, satisfies

os + Lo =0, fors < t,
p(x, 1) = ¥(x).

Analogously, set ¢ (x, s) = @(x, t — 5). Then ¢ satisfies

or+Ap =0
ap .

an o

p(x, 1) = ¥ (x).

Then, for w® = u® — u we have
/wg(x,t)llf(x)dx
g t aws
=/0 /Q 0s
! ¢ &
+ (x,s) w®(x, s)dxds
0 e ds '
=/ /Lg(wg)(x,s)gos(x,s)dxds—i—/ / Fe(x,s)pe(x,s)dxds
0 JQ 0 JQ

1
0
+ / $e (x,8) we(x,s)dxds
p Q

(x,5) pe(x,8)dx ds

as
t
=/ /Ls(%)(X,S)wS(X,S)dXdS+//Fs(X,S)%(X,S)dXdS
/2 5 0 Ja
+//ﬁ(x,s)w£(x,s)dxds
lo Ja s

= / / Fe(x, $)pe(x,s)dxds.
0 JQ
Now we observe that, by the Lemma 6,

' '
/ / Fe(x, $)@e(x,s)dxds| < ‘/ / Fe(x,s)p(x,s)dxds
0 JQ 0 tQ

+ sup [|@e(x,5) —@(x,5)llLo@) |Fe(x,s)[dxds — 0
0 JQ

O<s<t

as ¢ — 0. This proves the result when ¢ € C§+°‘ ().
Now we deal with the general case. Let ¢ € L'(). Choose v/, € Cé*“(Q)
such that ¥, — v in L' (). We have
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‘/ w(x, 1) ¥(x)dx
Q

§ ‘/Q wg(X, 1) lﬂn(x)dx =+ ”wn — w”Ll(Q)”wSHLOC(Q)

By Lemma 7, {w*} is uniformly bounded, and hence the result follows. O
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