

Available online at www.sciencedirect.com

J. Math. Anal. Appl. 336 (2007) 953–961

Journal of MATHEMATICAL **ANALYSIS AND** APPLICATIONS

www.elsevier.com/locate/jmaa

A property of the planar measure of the lemniscates $*$

H.H. Cuenya, F.E. Levis [∗]

Departamento de Matemática, Facultad de Ciencias Exactas, Físico Química y Naturales, Universidad Nacional de Río Cuarto, 5800 Río Cuarto, Argentina

Received 27 September 2006

Available online 20 March 2007

Submitted by H.R. Parks

Abstract

In this paper, we establish the following conjecture: There exists a constant *K* such that every lemniscate $E(\alpha, c)$, $\alpha \in \mathbb{C}^n$, $c > 0$, contains a disk $B(\alpha, c)$ with $\mu(E(\alpha, c)) \leq K\mu(B(\alpha, c))$, where μ is the planar measure. We prove this conjecture for any family of lemniscates with at the most three foci and for any family of lemniscates where its foci satisfy a suitable condition. © 2007 Elsevier Inc. All rights reserved.

Keywords: Lemniscates; Planar measure; Inequalities

1. Introduction

Let $\mathbb C$ be the set of complex numbers and let $\mu(A)$ be the planar measure of the set $A \subset \mathbb C$. Fix $n \in \mathbb{N}$, $n \ge 2$. For $\alpha = (\alpha_1, \dots, \alpha_n) \in \mathbb{C}^n$ and $c > 0$, as it is well known the set of points satisfying

$$
\left\{ z \in \mathbb{C} : \prod_{j=1}^{n} |z - \alpha_j| \leqslant c \right\}
$$
\n(1.1)

is called a *lemniscate* in $\mathbb C$ and will be designated by $E(\alpha, c)$. The points α_j , $1 \leq j \leq n$, are called the *foci* of the lemniscate and *c* its *radius*.

 $*$ This work was supported by Universidad Nacional de Río Cuarto and Conicet.

Corresponding author.

0022-247X/\$ – see front matter © 2007 Elsevier Inc. All rights reserved. doi:10.1016/j.jmaa.2007.03.034

E-mail addresses: hcuenya@exa.unrc.edu.ar (H.H. Cuenya), flevis@exa.unrc.edu.ar (F.E. Levis).

Several geometric properties over the lemniscates have been extensively studied. A famous lemma of Cartan estimates the size of the lemniscate $E(\alpha, c)$. See [1,7] and [8] for further details and extensions of this lemma. In [4] the authors search on the measure of lemniscatic set; i.e., the intersection of a lemniscate with a disc centered at zero. The problem to estimate the length of the boundary of $E(\alpha, 1)$ is studied in [2,5] and [9]. Other results about the logarithmic capacity and the diameter of a lemniscate can be seem in [4,6] and [9]. We also remark that there are several conjectures in this matter (see [5]).

In this paper we establish the following conjecture about the planar measure of any lemniscate *E*(α , *c*) with $\alpha \in \mathbb{C}^n$ and $c > 0$.

Conjecture. Let $n \in \mathbb{N}$. There exists an absolute constant $K > 0$ such that for all multi-index $\alpha \in \mathbb{C}^n$ *and for all radius c, there exists a circle* $B = B(\alpha, c)$ *contained in the lemniscate* $E(\alpha, c)$ *satisfying*

$$
\frac{\mu(E(\alpha, c))}{\mu(B(\alpha, c))} \leqslant \mathcal{K}.\tag{1.2}
$$

This result for the case of a family of lemniscates with at the most two foci was proved in [3, Lemma 3.3]. Now, we shall prove Conjecture for the case of three foci. Further, if *a* is a positive number, we shall show the existence of an absolute constant $\mathcal{K} := \mathcal{K}(a) > 0$ verifying (1.2) for all radius *c* and for all $\alpha \in \mathcal{M}_a$, where

$$
\mathcal{M}_a := \left\{ \alpha \in \mathbb{C}^n \colon \min_{\alpha_j \neq \alpha_i} |\alpha_j - \alpha_i| \geq a \max_{j,i} |\alpha_j - \alpha_i| \right\}.
$$

Here, we use the convention $\min_{\alpha_j \neq \alpha_i} |\alpha_j - \alpha_i| = 0$ if α belongs to Δ , the set of multi-index with all its coordinates equals. The last result embraces the case that the foci form a regular polygon.

As we have mentioned in [3, Remark 3.7], if Conjecture is true, we can obtain an extension of the classical Pólya inequality (see [10]) for complex polynomials in L^p spaces, $1 \leq p \leq \infty$, and an application to multipoint best local approximation.

For $\alpha = (\alpha_1, \ldots, \alpha_n) \in \mathbb{C}^n$, we write $R(\alpha) = {\alpha_j : 1 \leq j \leq n}$, $|\alpha| = (|\alpha_1|, \ldots, |\alpha_n|)$ and

$$
P_{\alpha}(z) = \prod_{j=1}^{n} (z - \alpha_j).
$$

2. Lemniscates with restricted foci

Definition 2.1. For $\alpha \in \mathbb{C}^n$, we define the function $S_\alpha : (-\infty, 0] \to [0, \infty)$ by

$$
S_{\alpha}(r) = \inf \{ t \geq 0 : \left| P_{\alpha}(t) \right| > \left| P_{\alpha}(r) \right| \}.
$$

We denote

$$
\mathcal{N} := \{ \alpha \in \mathbb{C}^n \colon \{0, 1\} \subset R(\alpha) \subset [0, 1] \}.
$$

The following lemma is clear.

Lemma 2.2. *If* $\alpha \in \mathcal{N}$, then the function S_{α} is nonnegative, decreasing, left-continuous *on* $(-\infty, 0]$ *and* $|P_{\alpha}(S_{\alpha}(r))| = |P_{\alpha}(r)|$ *. In addition, the set* A_{α} *of discontinuity points of the function* S_α *is nonempty and has at the most* $n - 1$ *elements.*

Let $\alpha \in \mathcal{N}$. We suppose that $A_{\alpha} = \{r_j : 1 \leq j \leq k\}$ where $r_{j-1} > r_j$, $2 \leq j \leq k$. We denote $r_0 = 0$, $r_{k+1} = -\infty$ and we call

$$
s_j = S_{\alpha}(r_j), \quad t_j = \lim_{r \to r_j^+} S_{\alpha}(r), \quad 1 \leqslant j \leqslant k,
$$

 $s_0 = 0$ and $t_{k+1} = \infty$.

We also write $U_j = (r_j, r_{j-1})$ and $I_j = (s_{j-1}, t_j)$, $1 \leq j \leq k+1$. We will use this notation in the proof of the two following results.

Lemma 2.3. *If* $\alpha \in \mathcal{N}$ *and* S_{α} *is continuous at* $r < 0$ *, then it is differentiable at r and*

$$
S'_{\alpha}(r) = -\frac{|P'_{\alpha}(r)|}{|P'_{\alpha}(S_{\alpha}(r))|}.
$$
\n(2.1)

Proof. Let $f_j: I_j \to |P_\alpha|(I_j)$ be the function defined by $f_j(x) = |P_\alpha(x)|$, $1 \leq j \leq k + 1$. Clearly, we have

$$
\left(f_j^{-1}\right)' \left(f_j(x)\right) = \frac{1}{|P_\alpha'(x)|}, \quad x \in I_j, \ 1 \leqslant j \leqslant k+1. \tag{2.2}
$$

We observe that the function $g(x) = |P_\alpha(x)|$ is differentiable in (r_{k+1}, r_0) and $g'(x) = -|P'_\alpha(x)|$. Since

$$
S_{\alpha}(U_j) = I_j \quad \text{and} \quad f_j\big(S_{\alpha}(r)\big) = g(r), \quad r \in U_j, \ 1 \leq j \leq k+1,
$$

(2.2) implies

$$
\left(f_j^{-1}\right)'(g(r)) = \frac{1}{|P'_\alpha(S_\alpha(r))|}, \quad r \in I_j, \ 1 \le j \le k+1. \tag{2.3}
$$

As $S_\alpha(r) = f_j^{-1}(g(r))$, $r \in U_j$, $1 \leq j \leq k + 1$, from the chain rule and (2.3) we get the lemma. \square

Proposition 2.4. *If* $\alpha \in \mathcal{N}$ *, then*

$$
\sup_{r<0}\frac{S_{\alpha}(r)}{|r|}=\max_{r\in A_{\alpha}}\frac{S_{\alpha}(r)}{|r|}.
$$

Proof. Set the function $f(r) = \frac{S_{\alpha}(r)}{|r|}, r < 0$. By Lemma 2.3, we get

$$
f'(r) = \frac{1}{r^2} \bigg(S_{\alpha}(r) - \bigg| \frac{r P_{\alpha}'(r)}{P_{\alpha}'(S_{\alpha}(r))} \bigg| \bigg), \quad r \notin A_{\alpha}.
$$

Since $|P_{\alpha}(S_{\alpha}(r))|=|P_{\alpha}(r)|$, the equality

$$
P'_{\alpha}(x) = -P_{\alpha}(x) \sum_{i=1}^{n} \frac{1}{\alpha_i - x}
$$
\n(2.4)

for $x = r$ and $x = S_\alpha(r)$, implies

$$
f'(r) = \left| \frac{P_{\alpha}(S_{\alpha}(r))}{r^2 P_{\alpha}'(S_{\alpha}(r))} \right| (|L(r)| - H(r)), \quad r \notin A_{\alpha}, \tag{2.5}
$$

where $L(r) = \sum_{i=1}^{n} \frac{S_{\alpha}(r)}{\alpha_i - S_{\alpha}(r)}$ and $H(r) = \sum_{i=1}^{n} \frac{-r}{\alpha_i - r}$. Clearly, for any $r \in U_j$, $1 \leq j \leq k+1$,

$$
L(r) = \sum_{\alpha_i > t_j} \frac{S_{\alpha}(r)}{\alpha_i - S_{\alpha}(r)} - \sum_{\alpha_i \leq s_{j-1}} \frac{S_{\alpha}(r)}{S_{\alpha}(r) - \alpha_i}.
$$
\n(2.6)

We observe that $L(r) < 0$ for $r \notin A_\alpha$. In fact, if $r \in U_{k+1}$ it is obvious. Let $j, 1 \leq j \leq k$. A straightforward computation shows that the first term on right member of (2.6) is a decreasing function on U_j , while the second term is an increasing function on U_j . Since $t_j = \lim_{r \to r_j^+} S_\alpha(r)$, from (2.4) we get

$$
\lim_{r \to r_j^+} L(r) = 0. \tag{2.7}
$$

So, $L(r) < 0$ for $r \in U_i$.

It is easy to see that *H* is a decreasing nonnegative function on $(-\infty, 0)$ and |*L*| is an increasing function on U_j , $1 \leq j \leq k+1$. Since, $H(r)$ and $|L(r)|$ tend to *n*, as *r* tends to r_{k+1} , then $f' > 0$ on U_{k+1} . So,

$$
\sup_{r \in U_{k+1}} \frac{S_{\alpha}(r)}{|r|} = \frac{S_{\alpha}(r_k)}{|r_k|}.
$$
\n(2.8)

We assume that zero is a root of P_α of multiplicity n_0 . Clearly, $H(r)$ and $|L(r)|$ tend to n_0 , as r tends to r_0 . Thus, $f' < 0$ on U_1 . Consequently,

$$
\sup_{r \in U_1} \frac{S_{\alpha}(r)}{|r|} = \frac{t_1}{|r_1|}.
$$
\n(2.9)

For $2 \leq j \leq k$, from (2.7) we have

$$
\sup_{r \in U_j} \frac{S_{\alpha}(r)}{|r|} = \max \left\{ \frac{t_j}{|r_j|}, \frac{S_{\alpha}(r_{j-1})}{|r_{j-1}|} \right\}.
$$
\n(2.10)

Finally, as $t_j < S_\alpha(r_j)$, $1 \leq j \leq k$, the theorem follows immediately. \Box

Let $\alpha \in M_a - \Delta$ and let $C_j(\alpha, c)$, $1 \leq j \leq n$, be the connected component of $E(\alpha, c)$ which contains to α_j . We denote $m_j(\alpha, c) = \max\{|z - \alpha_j| : z \in C_j(\alpha, c)\}\$ and $m(\alpha, c) =$ $\max\{m_j(\alpha, c): 1 \leq j \leq n\}$. Without lost of generality, we assume $m(\alpha, c) = m_1(\alpha, c)$. We consider $\rho_1(\alpha, c) = \min\{|z - \alpha_1| : z \in \partial(C_1(\alpha, c))\}$ and $\lambda_1(\alpha) = \max\{|\alpha_j - \alpha_1| : 1 \leq j \leq n\}$. Let l_1 , $2 \le l_1 \le n$, be such that $\lambda_1(\alpha) = |\alpha_{l_1} - \alpha_1|$. We call $\beta(\alpha, c)$ to multi-index in \mathbb{C}^n whose *j*th component is $\frac{\alpha_j - \alpha_1}{\alpha_{l_1} - \alpha_1}$. It is easy to show that

$$
z \in E(\alpha, c) \quad \text{if and only if} \quad \frac{z - \alpha_1}{\alpha_{l_1} - \alpha_1} \in E\left(\beta(\alpha, c), \frac{c}{(\lambda_1(\alpha))^n}\right). \tag{2.11}
$$

In addition, $|\beta(\alpha, c)| \in \mathcal{N}$, and

$$
|\beta(\alpha, c)|_j > 0 \quad \text{implies} \quad |\beta(\alpha, c)|_j \ge a. \tag{2.12}
$$

From now on, for simplicity, except when it is necessary, we shall omit the dependence on *α* and *c*, in each occurrence. We also denote by $D(\alpha_j, \delta)$ the circle in $\mathbb C$ of center α_j and radius δ . With this notation we get the following lemma.

Lemma 2.5. *If* $r < 0$ *and* $|P_{|\beta|}(r)| = \frac{c}{\lambda_1^n}$, *then*

$$
\frac{\mu(E(\alpha, c))}{\mu(D(\alpha_1, \rho_1))} \leqslant n \left(\frac{S_{|\beta|}(r)}{|r|} \right)^2.
$$
\n(2.13)

Proof. Let *K* be the connected component of $E(\beta, \frac{c}{\lambda_1^n})$ which contains to zero. If $\tau = \max_{z \in K} |z|$ and $\gamma = \min_{z \in \partial K} |z|$, (2.11) implies

$$
\tau = \frac{m}{\lambda_1} \quad \text{and} \quad \gamma = \frac{\rho_1}{\lambda_1}.\tag{2.14}
$$

Let $z_0 \in K$ be such that $|z_0| = \tau$. If $|z_0| > S_{|\beta|}(r)$, from definition of $S_{|\beta|}(r)$ follows that there is *t*, $S_{|\beta|}(r) < t < |z_0|$, satisfying

$$
\left|P_{|\beta|}(t)\right| > \frac{c}{\lambda_1^n}.
$$

Since the set $H := \{ |z| : z \in K \}$ is connect and contains to zero, we have $t \in H$. Let $w \in K$ be such that $t = |w|$. Then

$$
|P_{|\beta|}(t)| \leq |P_{\beta}(w)| \leq \frac{c}{\lambda_1^n},
$$

that is a contradiction. So,

$$
\tau = |z_0| \leqslant S_{|\beta|}(r). \tag{2.15}
$$

Let $z_1 \in \partial K$ be such that $|z_1| = \gamma$. Then

$$
|P_{|\beta|}(-|z_1|)| \geq |P_{\beta}(z_1)| = \frac{c}{\lambda_1^n}.
$$

Since the function $|P_{\beta}(x)|$ is strictly decreasing on $(-\infty, 0]$, we get

$$
|r| \leq |z_1| = \gamma. \tag{2.16}
$$

Finally, as

$$
E(\alpha, c) \subset \bigcup_{j=1}^{n} D(\alpha_j, m),
$$
\n(2.17)

from (2.14) – (2.16) follows (2.13) . \Box

Lemma 2.6. *Let* $n \in \mathbb{N}$ *. If b is a positive number, then*

$$
I_b := \inf_{\alpha \in \mathcal{N}} \|P_\alpha\|_{[0,b]} \geqslant \left(\frac{b}{2(n+1)}\right)^n,
$$

where $||P||_A := \sup_{x \in A} |P(x)|$ *is the infinite norm of* P_α *on* A.

Proof. Let $\alpha \in \mathcal{N}$. Since the set $R(\alpha) - \{0, 1\}$ has at the most $n - 2$ elements, there exists *i*, $1 \le i \le n-1$ such that if $\alpha_j \notin \{0, 1\}$, then $\alpha_j \notin \left[\frac{ib}{n+1}, \frac{(i+1)b}{n+1}\right]$. Consequently,

$$
||P_{\alpha}||_{[0,b]}\geqslant \left|P_{\alpha}\left(\frac{(2i+1)b}{2(n+1)}\right)\right|\geqslant \left(\frac{b}{2(n+1)}\right)^n,
$$

and the proof is complete. \square

Theorem 2.7. Let $n \in \mathbb{N}$. There exists a constant $\mathcal{K} = \mathcal{K}(a) > 0$ such that for all multi-index $\alpha \in \mathcal{M}_a$ *and for all radius c, there exists a circle* $B = B(\alpha, c)$ *contained in the lemniscate* $E(\alpha, c)$ *satisfying*

$$
\frac{\mu(E(\alpha, c))}{\mu(B(\alpha, c))} \leqslant \mathcal{K}.\tag{2.18}
$$

Proof. For all $\alpha \in \Delta$ and for all $c > 0$, $E(\alpha, c) = B(\alpha, c)$, so (2.18) holds with $\mathcal{K} = 1$. Now, we consider $\alpha \in M_a - \Delta$ and $c > 0$. Then $|\beta| \in \mathcal{N}$. By Proposition 2.4 and Lemma 2.5, there exists $\epsilon \in A_{|\beta|}$ such that

$$
\frac{\mu(E(\alpha, c))}{\mu(B(\alpha, c))} \leq n \left(\frac{S_{|\beta|}(\epsilon)}{\epsilon} \right)^2 =: \kappa,
$$

where $B(\alpha, c) = D(\alpha_1, \rho_1)$. Our propose is to find a bound of *κ*, only depending on *a*. From definition of $S_{|\beta|}(\epsilon)$, we have $a < S_{|\beta|}(\epsilon)$.

Case 1. $S_{|\beta|}(\epsilon) > 1$. We consider

$$
I^{1} = \max_{\delta \in [0,1]^{n}} \|P_{\delta}\|_{[0,1]}
$$
\n(2.19)

and $t = \lim_{r \to \epsilon^+} S_{|\beta|}(r)$. Clearly $||P_{|\beta|}||_{[0,1]} = |P_{|\beta|}(t)|$. So, from Lemma 2.6 and (2.19), we get

$$
0
$$

Let *s* > 1 be such that $s(s - 1)^{n-1} = I^1$. Since $|P_{|\beta|}|$ is an increasing function on [1, ∞*)* and $|P_{|\beta|}(x)| \ge x(x-1)^{n-1}$ for $x \ge 1$, we get

$$
1 < S_{|\beta|}(\epsilon) \leqslant s. \tag{2.20}
$$

On the other hand, let $r < 0$ be such that $-r(1-r)^{n-1} = I_1$. Since $|P_{|\beta|}|$ is a decreasing function on $(-\infty, 0]$, and $|P_{\beta}(x)| \le -x(1-x)^{n-1}$, *x* ≤ 0, we have

$$
\epsilon \leq r < 0. \tag{2.21}
$$

Therefore, (2.20) and (2.21) imply that

$$
\kappa \leqslant n \left(\frac{s}{r} \right)^2. \tag{2.22}
$$

Case 2. $a < S_{|\beta|}(\epsilon) < 1$. We suppose that there is a sequence $(\alpha^{(k)}) \subset M_a - \Delta$ such that $a < S_{|\beta^{(k)}|}(\epsilon^{(k)})$ < 1 and $\epsilon^{(k)}$ tend to zero, as *k* tends to infinite. Since $|\beta^{(k)}| \in \mathcal{N}$, we can get a subsequence, which we denote again by $(\alpha^{(k)})$ such that $P_{\beta^{(k)}}$ converges uniformly to a polynomial P_γ with $\gamma \in \mathcal{N}$. Thus,

$$
\lim_{k \to \infty} |P_{|\beta^{(k)}|}(S_{|\beta^{(k)}|}(\epsilon^{(k)}))| = \lim_{k \to \infty} |P_{|\beta^{(k)}|}(\epsilon^{(k)})| = |P_{\gamma}(0)| = 0.
$$
\n(2.23)

On the other hand, from definition of $S_{\beta^{(k)}|}(\epsilon^{(k)}),$

$$
|P_{|\beta^{(k)}|}(x)| \leq |P_{|\beta^{(k)}|}(S_{|\beta^{(k)}|}(\epsilon^{(k)}))|, \quad x \in [0, a].
$$

So, (2.23) implies $P_\gamma = 0$, which is a contradiction. Therefore, there exists a constant $q = q(a)$ 0 such that $\epsilon \leq q$. Consequently,

$$
\kappa \leqslant \frac{n}{q^2}.\tag{2.24}
$$

From (2.22) and (2.24) follows the theorem with $K(a) = n \max\{\frac{1}{q^2}, (\frac{s}{r})^2\}$. \Box

3. Lemniscates with three foci

Let $n \geq 3$. In this section we assume that the lemniscates have exactly three foci. Let T denote the family of all multi-index, $\alpha \in \mathbb{C}^n$, with exactly different three coordinates. If $\alpha \in \mathcal{T}$, we put $R(\alpha) = \{\alpha_j : 1 \leq j \leq 3\}$. From now on, for $\alpha \in T \cap N$, we assume $0 = \alpha_1 < \alpha_2 < \alpha_3 = 1$,

$$
P_{\alpha}(z) = \prod_{j=1}^{3} (z - \alpha_j)^{n_j},
$$

where $n = \sum_{j=1}^{3} n_j$ and we call $t_1 = t_1(\alpha)$ and $t_2 = t_2(\alpha)$ the singular points of P_α in the open intervals (α_1, α_2) and (α_2, α_3) , respectively. Since,

$$
\sum_{j=1}^3 n_j \prod_{i \neq j} (t_k - \alpha_i) = 0, \quad 1 \leq k \leq 2,
$$

we have

$$
(t1 - 1)(t1(n1 + n2) - n1\alpha2) = -n3t1(t1 - \alpha2)
$$
\n(3.1)

and

$$
t_2(n_2(t_2-1)+n_3(t_2-\alpha_2))=-n_1(t_2-\alpha_2)(t_2-1).
$$
\n(3.2)

An analysis of sign in (3.1) and (3.2) imply that

$$
t_1 < \frac{n_1 \alpha_2}{n_1 + n_2} < \frac{n_1}{n_1 + n_2} \quad \text{and} \quad t_2 > \frac{n_2 + n_3 \alpha_2}{n_2 + n_3} > \frac{n_2}{n_2 + n_3}.\tag{3.3}
$$

Lemma 3.1. *Let* $\alpha \in T \cap N$ *. Then* $\frac{t_1}{\alpha_2}$ *and* $1 - \frac{t_1}{\alpha_2}$ *are bounded away from zero.*

Proof. Suppose that there exists a sequence $(\alpha^{(k)})$ with

$$
\lim_{k \to \infty} \frac{t_1^{(k)}}{\alpha_2^{(k)}} = 0 \quad \text{or} \quad \lim_{k \to \infty} \frac{t_1^{(k)}}{\alpha_2^{(k)}} = 1,
$$

where $t_1^{(k)} = t_1(\alpha^{(k)})$. We can assume without lost of generality that n_1, n_2 and n_3 are the same for all $k \in \mathbb{N}$. From (3.1), we have

$$
(t_1^{(k)} - 1) \left(\frac{t_1^{(k)}}{\alpha_2^{(k)}} (n_1 + n_2) - n_1 \right) = -n_3 t_1^{(k)} \left(\frac{t_1^{(k)}}{\alpha_2^{(k)}} - 1 \right)
$$

=
$$
-n_3 \frac{t_1^{(k)}}{\alpha_2^{(k)}} (t_1^{(k)} - 1).
$$
 (3.4)

Taking limit for *k* tending to infinity in (3.4) we get in any case that $t_1^{(k)}$ tends to one, as *k* tends to infinite, which contradicts (3.3) . \Box

Theorem 3.2. *There exists a constant* $K > 0$ *such that for all multi-index* $\alpha \in \mathcal{T}$ *and for all radius c*, there exists a circle $B = B(\alpha, c)$ contained in the lemniscate $E(\alpha, c)$ *satisfying*

$$
\frac{\mu(E(\alpha, c))}{\mu(B(\alpha, c))} \leqslant \mathcal{K}.\tag{3.5}
$$

Proof. Using the notation before to Lemma 2.5, for $\alpha \in \mathcal{T}$, $|\beta| \in \mathcal{T} \cap \mathcal{N}$. Here, $0 = |\beta_1| < |\beta_2|$ $|\beta_3| = 1$. It will be sufficient to prove that

$$
\kappa := \max_{r \in \mathcal{A}_{|\beta|}} \frac{S_{|\beta|}(r)}{|r|}
$$

is uniformly bounded on α . Let $\epsilon \in A_{|\beta|}$ be such that $\frac{S_{|\beta|}(\epsilon)}{|\epsilon|} = \kappa$. By simplicity we denote $s = S_{|\beta|}(\epsilon)$.

If $s > \frac{1}{2n}$, in a similar way to the proof of Theorem 2.7, there exists a constant κ_1 , only depending on *n,* such that

$$
\kappa \leqslant \kappa_1.
$$

Now, we suppose, $s \le \frac{1}{2n}$. Since, $t_1 < |\beta_2| < s$, by definition of the function $S_{|\beta|}$, we know that

$$
s^{n_1}(s-|\beta_2|)^{n_2}(1-s)^{n_3}=t_1^{n_1}(|\beta_2|-t_1)^{n_2}(1-t_1)^{n_3}.
$$

Therefore,

$$
\left(\frac{s}{|\beta_2|}\right)^{n_1} \left(1 - \frac{s}{|\beta_2|}\right)^{n_2} (1 - s)^{n_3} = \left(\frac{t_1}{|\beta_2|}\right)^{n_1} \left(1 - \frac{t_1}{|\beta_2|}\right)^{n_2} (1 - t_1)^{n_3}.
$$
 (3.6)

We see that $\frac{s}{|\beta_2|}$ is uniformly bounded on α . On the contrary, we can get a sequence $(\alpha^{(k)})$ such that $s^{(k)} \leq \frac{1}{2n}$ and

$$
\lim_{k \to \infty} \frac{s^{(k)}}{|\beta_2^{(k)}|} = \infty.
$$

We can assume without lost of generality that n_1 , n_2 and n_3 are the same for all $k \in \mathbb{N}$. Since $1 - s^{(k)} > \frac{2n-1}{2n}$, taking limit for *k* tending to infinity in (3.6), we obtain

$$
\lim_{k \to \infty} \left(\frac{t_1^{(k)}}{|\beta_2^{(k)}|} \right)^{n_1} \left(1 - \frac{t_1^{(k)}}{|\beta_2^{(k)}|} \right)^{n_2} \left(1 - t_1^{(k)} \right)^{n_3} = \infty,
$$

a contradiction.

On the other hand, we have that $\frac{|\epsilon|}{|\beta_2|}$ is bounded away from zero. In fact, we know that

$$
|\epsilon|^{n_1} (|\epsilon| + |\beta_2|)^{n_2} (|\epsilon| + 1)^{n_3} = t_1^{n_1} (|\beta_2| - t_1)^{n_2} (1 - t_1)^{n_3}.
$$

Then, we obtain

$$
\left(\frac{|\epsilon|}{|\beta_2|}\right)^{n_1} \left(\frac{|\epsilon|}{|\beta_2|} + 1\right)^{n_2} \left(|\epsilon| + 1\right)^{n_3} = \left(\frac{t_1}{|\beta_2|}\right)^{n_1} \left(1 - \frac{t_1}{|\beta_2|}\right)^{n_2} (1 - t_1)^{n_3}.\tag{3.7}
$$

Suppose that for some sequence $(\alpha^{(k)})$,

$$
\lim_{k \to \infty} \frac{|\epsilon^{(k)}|}{|\beta_2^{(k)}|} = 0.
$$

Since $1 - t_1 > \frac{2n-1}{2n}$, it follows from (3.7) that there exists a subsequence of $\frac{t_1^{(k)}}{|\beta_2^{(k)}|}$, tending to zero or one. It contradicts Lemma 3.1. So, we have proved that there is a constant κ_2 , satisfying

$$
\kappa = \frac{s}{|\beta_2|} \frac{|\beta_2|}{|\epsilon|} \leq \kappa_2.
$$

Finally, the theorem follows with $K = \max\{\kappa_1, \kappa_2\}$. \Box

References

- [1] P. Borwein, T. Erdélyi, Polynomials and Polynomial Inequalities, Springer-Verlag, New York, 1995.
- [2] P. Borwein, The arc length of the lemniscate {|*P(z)* = 1|}, Proc. Amer. Math. Soc. 123 (1995) 797–799.
- [3] H.H. Cuenya, F.E. Levis, Polya-type polynomial inequalities in L^p spaces and best local approximation, Numer. Funct. Anal. Optim. 26 (7–8) (2005) 813–827.
- [4] A. Cuyt, K. Driver, D.S. Lubinsky, On the size of lemniscates of polynomials in one and several variables, Proc. Amer. Math. Soc. 124 (7) (1996) 2123–2136.
- [5] A. Emerenko, W. Haymen, On the length of lemniscates, Michigan Math. J. 46 (1999) 409–415.
- [6] D.S. Lubinsky, Small values of polynomials and potentials with *Lp*-normalization, Proc. Amer. Math. Soc. 127 (2) (1999) 529–536.
- [7] D.S. Lubinsky, On the maximun and minimun modulus of rational functions, Canad. J. Math. 52 (4) (2000) 815– 832.
- [8] B. Paneah, On a lower bound for the absolute value of a polynomial of several variables, J. Approx. Theory 78 (1994) 402–409.
- [9] Ch. Pommerenke, On metric properties of complex polynomials, Michigan Math. J. 8 (1961) 97–115.
- [10] A.F. Timan, Theory of Approximation of Functions of a Real Variable, Pergamon Press, New York, 1963.