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Abstract

In this paper, we establish the following conjecture: There exists a constant K such that every lemniscate
E(α, c), α ∈ C

n, c > 0, contains a disk B(α, c) with μ(E(α, c)) � Kμ(B(α, c)), where μ is the planar
measure. We prove this conjecture for any family of lemniscates with at the most three foci and for any
family of lemniscates where its foci satisfy a suitable condition.
© 2007 Elsevier Inc. All rights reserved.
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1. Introduction

Let C be the set of complex numbers and let μ(A) be the planar measure of the set A ⊂ C.
Fix n ∈ N, n � 2. For α = (α1, . . . , αn) ∈ Cn and c > 0, as it is well known the set of points
satisfying{

z ∈ C:
n∏

j=1

|z − αj | � c

}
(1.1)

is called a lemniscate in C and will be designated by E(α, c). The points αj , 1 � j � n, are
called the foci of the lemniscate and c its radius.
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Several geometric properties over the lemniscates have been extensively studied. A famous
lemma of Cartan estimates the size of the lemniscate E(α, c). See [1,7] and [8] for further details
and extensions of this lemma. In [4] the authors search on the measure of lemniscatic set; i.e., the
intersection of a lemniscate with a disc centered at zero. The problem to estimate the length of
the boundary of E(α,1) is studied in [2,5] and [9]. Other results about the logarithmic capacity
and the diameter of a lemniscate can be seem in [4,6] and [9]. We also remark that there are
several conjectures in this matter (see [5]).

In this paper we establish the following conjecture about the planar measure of any lemniscate
E(α, c) with α ∈ C

n and c > 0.

Conjecture. Let n ∈ N. There exists an absolute constant K > 0 such that for all multi-index
α ∈ C

n and for all radius c, there exists a circle B = B(α, c) contained in the lemniscate E(α, c)

satisfying

μ(E(α, c))

μ(B(α, c))
� K. (1.2)

This result for the case of a family of lemniscates with at the most two foci was proved in [3,
Lemma 3.3]. Now, we shall prove Conjecture for the case of three foci. Further, if a is a positive
number, we shall show the existence of an absolute constant K := K(a) > 0 verifying (1.2) for
all radius c and for all α ∈ Ma , where

Ma :=
{
α ∈ C

n: min
αj �=αi

|αj − αi | � a max
j,i

|αj − αi |
}
.

Here, we use the convention minαj �=αi
|αj −αi | = 0 if α belongs to Δ, the set of multi-index with

all its coordinates equals. The last result embraces the case that the foci form a regular polygon.
As we have mentioned in [3, Remark 3.7], if Conjecture is true, we can obtain an extension

of the classical Pólya inequality (see [10]) for complex polynomials in Lp spaces, 1 � p � ∞,

and an application to multipoint best local approximation.
For α = (α1, . . . , αn) ∈ Cn, we write R(α) = {αj : 1 � j � n}, |α| = (|α1|, . . . , |αn|) and

Pα(z) =
n∏

j=1

(z − αj ).

2. Lemniscates with restricted foci

Definition 2.1. For α ∈ C
n, we define the function Sα : (−∞,0] → [0,∞) by

Sα(r) = inf
{
t � 0:

∣∣Pα(t)
∣∣ >

∣∣Pα(r)
∣∣}.

We denote

N := {
α ∈ C

n: {0,1} ⊂ R(α) ⊂ [0,1]}.
The following lemma is clear.

Lemma 2.2. If α ∈ N , then the function Sα is nonnegative, decreasing, left-continuous
on (−∞,0] and |Pα(Sα(r))| = |Pα(r)|. In addition, the set Aα of discontinuity points of the
function Sα is nonempty and has at the most n − 1 elements.
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Let α ∈ N . We suppose that Aα = {rj : 1 � j � k} where rj−1 > rj , 2 � j � k. We denote
r0 = 0, rk+1 = −∞ and we call

sj = Sα(rj ), tj = lim
r→r+

j

Sα(r), 1 � j � k,

s0 = 0 and tk+1 = ∞.
We also write Uj = (rj , rj−1) and Ij = (sj−1, tj ), 1 � j � k + 1. We will use this notation in

the proof of the two following results.

Lemma 2.3. If α ∈N and Sα is continuous at r < 0, then it is differentiable at r and

S′
α(r) = − |P ′

α(r)|
|P ′

α(Sα(r))| . (2.1)

Proof. Let fj : Ij → |Pα|(Ij ) be the function defined by fj (x) = |Pα(x)|, 1 � j � k + 1.
Clearly, we have

(
f −1

j

)′(
fj (x)

) = 1

|P ′
α(x)| , x ∈ Ij , 1 � j � k + 1. (2.2)

We observe that the function g(x) = |Pα(x)| is differentiable in (rk+1, r0) and g′(x) = −|P ′
α(x)|.

Since

Sα(Uj ) = Ij and fj

(
Sα(r)

) = g(r), r ∈ Uj , 1 � j � k + 1,

(2.2) implies

(
f −1

j

)′(
g(r)

) = 1

|P ′
α(Sα(r))| , r ∈ Ij , 1 � j � k + 1. (2.3)

As Sα(r) = f −1
j (g(r)), r ∈ Uj , 1 � j � k + 1, from the chain rule and (2.3) we get the

lemma. �
Proposition 2.4. If α ∈ N , then

sup
r<0

Sα(r)

|r| = max
r∈Aα

Sα(r)

|r| .

Proof. Set the function f (r) = Sα(r)
|r| , r < 0. By Lemma 2.3, we get

f ′(r) = 1

r2

(
Sα(r) −

∣∣∣∣ rP ′
α(r)

P ′
α(Sα(r))

∣∣∣∣
)

, r /∈ Aα.

Since |Pα(Sα(r))| = |Pα(r)|, the equality

P ′
α(x) = −Pα(x)

n∑
i=1

1

αi − x
(2.4)

for x = r and x = Sα(r), implies

f ′(r) =
∣∣∣∣ Pα(Sα(r))

2 ′

∣∣∣∣(∣∣L(r)
∣∣ − H(r)

)
, r /∈ Aα, (2.5)
r Pα(Sα(r))
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where L(r) = ∑n
i=1

Sα(r)
αi−Sα(r)

and H(r) = ∑n
i=1

−r
αi−r

. Clearly, for any r ∈ Uj , 1 � j � k + 1,

L(r) =
∑
αi>tj

Sα(r)

αi − Sα(r)
−

∑
αi�sj−1

Sα(r)

Sα(r) − αi

. (2.6)

We observe that L(r) < 0 for r /∈ Aα . In fact, if r ∈ Uk+1 it is obvious. Let j , 1 � j � k.
A straightforward computation shows that the first term on right member of (2.6) is a decreasing
function on Uj , while the second term is an increasing function on Uj . Since tj = limr→r+

j
Sα(r),

from (2.4) we get

lim
r→r+

j

L(r) = 0. (2.7)

So, L(r) < 0 for r ∈ Uj .
It is easy to see that H is a decreasing nonnegative function on (−∞,0) and |L| is an increas-

ing function on Uj , 1 � j � k + 1. Since, H(r) and |L(r)| tend to n, as r tends to rk+1, then
f ′ > 0 on Uk+1. So,

sup
r∈Uk+1

Sα(r)

|r| = Sα(rk)

|rk| . (2.8)

We assume that zero is a root of Pα of multiplicity n0. Clearly, H(r) and |L(r)| tend to n0, as r

tends to r0. Thus, f ′ < 0 on U1. Consequently,

sup
r∈U1

Sα(r)

|r| = t1

|r1| . (2.9)

For 2 � j � k, from (2.7) we have

sup
r∈Uj

Sα(r)

|r| = max

{
tj

|rj | ,
Sα(rj−1)

|rj−1|
}
. (2.10)

Finally, as tj < Sα(rj ), 1 � j � k, the theorem follows immediately. �
Let α ∈ Ma − Δ and let Cj (α, c), 1 � j � n, be the connected component of E(α, c)

which contains to αj . We denote mj(α, c) = max{|z − αj |: z ∈ Cj(α, c)} and m(α, c) =
max{mj(α, c): 1 � j � n}. Without lost of generality, we assume m(α, c) = m1(α, c). We con-
sider ρ1(α, c) = min{|z − α1|: z ∈ ∂(C1(α, c))} and λ1(α) = max{|αj − α1|: 1 � j � n}. Let l1,
2 � l1 � n, be such that λ1(α) = |αl1 − α1|. We call β(α, c) to multi-index in C

n whose j th
component is

αj −α1
αl1 −α1

. It is easy to show that

z ∈ E(α, c) if and only if
z − α1

αl1 − α1
∈ E

(
β(α, c),

c

(λ1(α))n

)
. (2.11)

In addition, |β(α, c)| ∈N , and∣∣β(α, c)
∣∣
j

> 0 implies
∣∣β(α, c)

∣∣
j

� a. (2.12)

From now on, for simplicity, except when it is necessary, we shall omit the dependence on α

and c, in each occurrence. We also denote by D(αj , δ) the circle in C of center αj and radius δ.
With this notation we get the following lemma.
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Lemma 2.5. If r < 0 and |P|β|(r)| = c
λn

1
, then

μ(E(α, c))

μ(D(α1, ρ1))
� n

(
S|β|(r)

|r|
)2

. (2.13)

Proof. Let K be the connected component of E(β, c
λn

1
) which contains to zero. If τ = maxz∈K |z|

and γ = minz∈∂K |z|, (2.11) implies

τ = m

λ1
and γ = ρ1

λ1
. (2.14)

Let z0 ∈ K be such that |z0| = τ . If |z0| > S|β|(r), from definition of S|β|(r) follows that there
is t , S|β|(r) < t < |z0|, satisfying∣∣P|β|(t)

∣∣ >
c

λn
1
.

Since the set H := {|z|: z ∈ K} is connect and contains to zero, we have t ∈ H . Let w ∈ K be
such that t = |w|. Then∣∣P|β|(t)

∣∣ �
∣∣Pβ(w)

∣∣ � c

λn
1
,

that is a contradiction. So,

τ = |z0| � S|β|(r). (2.15)

Let z1 ∈ ∂K be such that |z1| = γ . Then∣∣P|β|
(−|z1|

)∣∣ �
∣∣Pβ(z1)

∣∣ = c

λn
1
.

Since the function |P|β|(x)| is strictly decreasing on (−∞,0], we get

|r| � |z1| = γ. (2.16)

Finally, as

E(α, c) ⊂
n⋃

j=1

D(αj ,m), (2.17)

from (2.14)–(2.16) follows (2.13). �
Lemma 2.6. Let n ∈ N. If b is a positive number, then

Ib := inf
α∈N

‖Pα‖[0,b] �
(

b

2(n + 1)

)n

,

where ‖P ‖A := supx∈A |P(x)| is the infinite norm of Pα on A.

Proof. Let α ∈ N . Since the set R(α) − {0,1} has at the most n − 2 elements, there exists i,
1 � i � n − 1 such that if αj /∈ {0,1}, then αj /∈ [ ib

n+1 ,
(i+1)b
n+1 ]. Consequently,

‖Pα‖[0,b] �
∣∣∣∣Pα

(
(2i + 1)b

2(n + 1)

)∣∣∣∣ �
(

b

2(n + 1)

)n

,

and the proof is complete. �



958 H.H. Cuenya, F.E. Levis / J. Math. Anal. Appl. 336 (2007) 953–961
Theorem 2.7. Let n ∈ N. There exists a constant K = K(a) > 0 such that for all multi-index
α ∈ Ma and for all radius c, there exists a circle B = B(α, c) contained in the lemniscate E(α, c)

satisfying

μ(E(α, c))

μ(B(α, c))
� K. (2.18)

Proof. For all α ∈ Δ and for all c > 0, E(α, c) = B(α, c), so (2.18) holds with K = 1. Now, we
consider α ∈ Ma −Δ and c > 0. Then |β| ∈N . By Proposition 2.4 and Lemma 2.5, there exists
ε ∈ A|β| such that

μ(E(α, c))

μ(B(α, c))
� n

(
S|β|(ε)

ε

)2

=: κ,

where B(α, c) = D(α1, ρ1). Our propose is to find a bound of κ, only depending on a. From
definition of S|β|(ε), we have a < S|β|(ε).

Case 1. S|β|(ε) > 1. We consider

I 1 = max
δ∈[0,1]n

‖Pδ‖[0,1] (2.19)

and t = limr→ε+ S|β|(r). Clearly ‖P|β|‖[0,1] = |P|β|(t)|. So, from Lemma 2.6 and (2.19), we get

0 < I1 �
∣∣P|β|

(
S|β|(ε)

)∣∣ = ∣∣P|β|(t)
∣∣ � I 1.

Let s > 1 be such that s(s − 1)n−1 = I 1. Since |P|β|| is an increasing function on [1,∞) and
|P|β|(x)| � x(x − 1)n−1 for x � 1, we get

1 < S|β|(ε) � s. (2.20)

On the other hand, let r < 0 be such that −r(1− r)n−1 = I1. Since |P|β|| is a decreasing function
on (−∞,0], and |P|β|(x)| � −x(1 − x)n−1, x � 0, we have

ε � r < 0. (2.21)

Therefore, (2.20) and (2.21) imply that

κ � n

(
s

r

)2

. (2.22)

Case 2. a < S|β|(ε) < 1. We suppose that there is a sequence (α(k)) ⊂ Ma − Δ such that
a < S|β(k)|(ε(k)) < 1 and ε(k) tend to zero, as k tends to infinite. Since |β(k)| ∈ N , we can get a

subsequence, which we denote again by (α(k)) such that P|β(k)| converges uniformly to a polyno-
mial Pγ with γ ∈N . Thus,

lim
k→∞

∣∣P|β(k)|
(
S|β(k)|

(
ε(k)

))∣∣ = lim
k→∞

∣∣P|β(k)|
(
ε(k)

)∣∣ = ∣∣Pγ (0)
∣∣ = 0. (2.23)

On the other hand, from definition of S|β(k)|(ε(k)),∣∣P|β(k)|(x)
∣∣ �

∣∣P|β(k)|
(
S|β(k)|

(
ε(k)

))∣∣, x ∈ [0, a].
So, (2.23) implies Pγ = 0, which is a contradiction. Therefore, there exists a constant q = q(a) <

0 such that ε � q. Consequently,



H.H. Cuenya, F.E. Levis / J. Math. Anal. Appl. 336 (2007) 953–961 959
κ � n

q2
. (2.24)

From (2.22) and (2.24) follows the theorem with K(a) = nmax{ 1
q2 , ( s

r
)2}. �

3. Lemniscates with three foci

Let n � 3. In this section we assume that the lemniscates have exactly three foci. Let T denote
the family of all multi-index, α ∈ C

n, with exactly different three coordinates. If α ∈ T , we put
R(α) = {αj : 1 � j � 3}. From now on, for α ∈ T ∩N , we assume 0 = α1 < α2 < α3 = 1,

Pα(z) =
3∏

j=1

(z − αj )
nj ,

where n = ∑3
j=1 nj and we call t1 = t1(α) and t2 = t2(α) the singular points of Pα in the open

intervals (α1, α2) and (α2, α3), respectively. Since,

3∑
j=1

nj

∏
i �=j

(tk − αi) = 0, 1 � k � 2,

we have

(t1 − 1)
(
t1(n1 + n2) − n1α2

) = −n3t1(t1 − α2) (3.1)

and

t2
(
n2(t2 − 1) + n3(t2 − α2)

) = −n1(t2 − α2)(t2 − 1). (3.2)

An analysis of sign in (3.1) and (3.2) imply that

t1 <
n1α2

n1 + n2
<

n1

n1 + n2
and t2 >

n2 + n3α2

n2 + n3
>

n2

n2 + n3
. (3.3)

Lemma 3.1. Let α ∈ T ∩N . Then t1
α2

and 1 − t1
α2

are bounded away from zero.

Proof. Suppose that there exists a sequence (α(k)) with

lim
k→∞

t
(k)
1

α
(k)
2

= 0 or lim
k→∞

t
(k)
1

α
(k)
2

= 1,

where t
(k)
1 = t1(α

(k)). We can assume without lost of generality that n1, n2 and n3 are the same
for all k ∈ N. From (3.1), we have

(
t
(k)
1 − 1

)( t
(k)
1

α
(k)
2

(n1 + n2) − n1

)
= −n3t

(k)
1

(
t
(k)
1

α
(k)
2

− 1

)

= −n3
t
(k)
1

α
(k)
2

(
t
(k)
1 − 1

)
. (3.4)

Taking limit for k tending to infinity in (3.4) we get in any case that t
(k)
1 tends to one, as k tends

to infinite, which contradicts (3.3). �
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Theorem 3.2. There exists a constant K > 0 such that for all multi-index α ∈ T and for all
radius c, there exists a circle B = B(α, c) contained in the lemniscate E(α, c) satisfying

μ(E(α, c))

μ(B(α, c))
� K. (3.5)

Proof. Using the notation before to Lemma 2.5, for α ∈ T , |β| ∈ T ∩N . Here, 0 = |β1| < |β2| <
|β3| = 1. It will be sufficient to prove that

κ := max
r∈A|β|

S|β|(r)
|r|

is uniformly bounded on α. Let ε ∈ A|β| be such that
S|β|(ε)

|ε| = κ . By simplicity we denote
s = S|β|(ε).

If s > 1
2n

, in a similar way to the proof of Theorem 2.7, there exists a constant κ1, only
depending on n, such that

κ � κ1.

Now, we suppose, s � 1
2n

. Since, t1 < |β2| < s, by definition of the function S|β|, we know that

sn1
(
s − |β2|

)n2(1 − s)n3 = t
n1
1

(|β2| − t1
)n2(1 − t1)

n3 .

Therefore,(
s

|β2|
)n1

(
1 − s

|β2|
)n2

(1 − s)n3 =
(

t1

|β2|
)n1

(
1 − t1

|β2|
)n2

(1 − t1)
n3 . (3.6)

We see that s
|β2| is uniformly bounded on α. On the contrary, we can get a sequence (α(k)) such

that s(k) � 1
2n

and

lim
k→∞

s(k)

|β(k)
2 |

= ∞.

We can assume without lost of generality that n1, n2 and n3 are the same for all k ∈ N. Since
1 − s(k) > 2n−1

2n
, taking limit for k tending to infinity in (3.6), we obtain

lim
k→∞

(
t
(k)
1

|β(k)
2 |

)n1
(

1 − t
(k)
1

|β(k)
2 |

)n2(
1 − t

(k)
1

)n3 = ∞,

a contradiction.
On the other hand, we have that |ε|

|β2| is bounded away from zero. In fact, we know that

|ε|n1
(|ε| + |β2|

)n2
(|ε| + 1

)n3 = t
n1
1

(|β2| − t1
)n2(1 − t1)

n3 .

Then, we obtain( |ε|
|β2|

)n1
( |ε|

|β2| + 1

)n2(|ε| + 1
)n3 =

(
t1

|β2|
)n1

(
1 − t1

|β2|
)n2

(1 − t1)
n3 . (3.7)

Suppose that for some sequence (α(k)),

lim
k→∞

|ε(k)|
|β(k)|

= 0.
2
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Since 1 − t1 > 2n−1
2n

, it follows from (3.7) that there exists a subsequence of
t
(k)
1

|β(k)
2 | , tending to

zero or one. It contradicts Lemma 3.1. So, we have proved that there is a constant κ2, satisfying

κ = s

|β2|
|β2|
|ε| � κ2.

Finally, the theorem follows with K = max{κ1, κ2}. �
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