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Tomography reconstruction by entropy maximization with

smoothing filtering
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The maximum entropy method (MEM) is a consistent way to treat the problem of
tomography reconstruction where an image should be selected from a set of
images that fit the measurement data. In this article, MEM is applied to image
reconstruction from projections using an entropy formula modified by adding
filter terms in order to eliminate the local noise. Numerical experiments were
performed showing good results with local mean-square filter terms. The
projection error can be used to estimate the weight of the filter term, providing
a practical procedure to get improved solutions with limited sets of projections.
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1. Introduction

Computerized tomography (CT) is a method of constructing an image of the inner
structure of an object taking a finite set of measurements of the radiation attenuated by the
object at different projection angles as input data. CT has many well-known applications
in a variety of problems including medical imaging diagnostics and non-destructive testing.
Formally, the mathematical problem is to find the solution of the Radon anti-
transformation of a spatial scalar field [1], which falls into the domain of inverse problems.

In the applications of industrial tomography for the quality control of manufacturing
process, usually only a small number of projections is available to avoid delays, and thus
the problem is underdetermined. In turn, a priori data is often available in these cases,
which can be used to balance the information process [2]. The maximum entropy method
(MEM) was proposed to solve CT problems by several authors [3–6], being an alternative
to other methodologies as the algebraic reconstruction, filtered back projection and
convolution back projection, along with many variants of these techniques [1,7]. The
Radon anti-transformation by MEM is generally solved by means of an iterative
optimization algorithm, showing flexibility to handle noisy data and incomplete
projections more easily than other methods. An important advantage of MEM is the
flexibility to incorporate prior information available in addition to that contained in the
projection data. Particularly in industrial tomography, this kind of conformation is usually
available from the design or manufacturing processes (e.g. internal shapes, porosity and
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smoothness). In this article, we propose to apply MEM for CT incorporating additional

terms to the entropy to filter the noise in the final image.
Previously, there were several proposals to use a priori information in CT reconstruc-

tion methods [8–11]. The MEM principle is used in maximum a posteriori (MAP)

algorithms [7,6], in the form of the penalized maximum log-likelihood (PML) with entropy
(MEM) and Gibbs priors [8,10], or in other case with penalized least squares (PLS) with

priors function like Shannon entropy among others [5,6]. In PML, the Poisson nature of

noise in the data explicitly enters in the algorithm whereas it is indirect in PLS [5,6,8,10].
In this study, tomographic reconstructions follows the PLS with entropy priors. The

novelty introduced here is the addition of a smoothing filter as Gibbs priors in cases where
the homogeneity of the image components is known. The proposal approach is tested with

very few projections distributed uniformly over the full 180 degrees. Examples of

reconstructions from the ideal projections or projections with random uniform noise are
analysed.

2. Tomographic reconstruction by modified MEM

MEM [11] is a general mathematical procedure for solving inverse problems where the
available data is insufficient to determine the solution. MEM provides an adequate way of

selecting a single image from the many images that are consistent with the incomplete
input data, by determining the solution that introduces the minimum information extrinsic

to the available data.
Let f denote the image to be reconstructed, represented by an n-dimensional column

vector. Let R be an m� n projection matrix, whose rij element denotes the coefficient of the
contribution of the j-pixel to the i-ray (Figure 1). Then, the discrete Radon transform of f

is defined as

g ¼ Rf ð1Þ

Figure 1. Image space f and the ith ray crossing the object.
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where g is an m-dimensional projection vector (i.e. m rays are projected through f ).

In general, m5n. The CT problem consists of finding f given R and g.
The MEM reconstruction consists of determining a suitable solution of f whose

Shannon entropy

Hð f Þ ¼ �
XN
j¼1

fj log fj ð2Þ

is maximum among all solutions consistent with (1). Here it is proposed to extend the

MEM requirements to also minimize a smoothness energy U( f ), i.e.

min
f
�Hð f Þ þUð f Þ

f � 0
Rf ¼ g

�
ð3Þ

In this way, MEM can be applied to situations where it is previously known that f

represents internally smooth objects whose characteristic length is much larger than a pixel

side. This prior information can be modelled by means of interactions among neighbour

pixels. Two possible quadratic models based on a 3� 3 neighbourhood interaction are:

E1ðNj Þ ¼
X
v2Nj

ð fv � fj Þ
2

ð4Þ

E2ðNj Þ ¼
X
v2Nj

fv � Nj

� �� �2
ð5Þ

where hNji is the average intensity of the 3� 3 cluster Nj and E1(Nj) and E2(Nj) are suitable

indicators of the local ‘noise’, both vanishing in the extreme case of homogeneous clusters.
The smoothness energy U( f ) is defined as:

Uð f Þ ¼ �
X
j

EðNj Þ ð6Þ

where � is a calibration constant, E is given by (4) or (5), and the summation in (6) is

performed over all the clusters of the image f. U( f ) can also be written in matrix form as:

Uð f Þ ¼ �f TM f ð7Þ

where M is an n� n matrix whose elements mjv are defined by the form of the function

E(Nj), as defined by (4) or (5), respectively. The matrix M can also be thought as a

regularization operator [12–15].
Thus, the cell mjv of the matrix M when (4) is used is defined as

mjv ¼

2 Nj

�� �� if v ¼ j

�2 if v 2 Nj

0 elsewhere

8<
: ð8Þ

where Nj are the nearest 3� 3 neighbours of the pixel j, and |Nj| is the cardinality of this

subset.
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When Equation (5) is used, the cell mjv of the matrix M is defined as

mjv ¼

1þ
P
v2Nj

Nvj j
�2 if v ¼ j

�2= Nj

�� ��þ P
k2Nj\Nv

Nvj j
�2 if v 2 Nj

P
k2Nj\Nv

Nvj j
�2 if v =2Nj and Nj \Nv 6¼ �

0 elsewhere

8>>>>>>><
>>>>>>>:

ð9Þ

where Nj and Nv are the nearest 3� 3 neighbours of the pixel j or v, respectively.
Combining (3) and (7), the optimization problem reads

min
f

f T log f þ � f TM f

f � 0
Rf ¼ g

�
ð10Þ

where in log f, the logarithm is taken for each component of the vector f.
The corresponding Lagrangian L( f, �) is as follows:

Lð f, �Þ ¼ f T log f þ �f TMfþ �TðRf� gÞ ð11Þ

Making zero the derivatives of L( f, �) leads to the following system S( f ):

Sð f Þ ¼
rfLð f, �Þ ¼ 1þ log f þ RT�þ 2�Mf ¼ 0
Rf ¼ g

�
ð12Þ

The non-linear system S( f )¼ 0 needs to be solved numerically applying some root

finding scheme. In this study, the classic Newton method was applied [16]. The method is

iterative starting from an initial guess f0, and producing successive approximations fn
by adding a correction factor �f, i.e.

fnþ1 ¼ fn þ �f ð13Þ

The unknown variables of the problem are �f (n-dimensional vector) and ��
(m-dimensional vector of Lagrange multipliers), the combination of which will be called

as vector � and should satisfy

Jfn� ¼ �Sð fnÞ ð14Þ

where Jfn is the (nþm)2 dimensional Jacobian matrix of the system S( f ) evaluated at fn:

Jfn ¼
rfSð fnÞ r�Sð fnÞ
rfSð fnÞ r�Sð fnÞ

� 	
¼

diagð1=fnÞ þ 2�M RT

R 0

� 	
: ð15Þ

Combining Equations (12), (14) and (15), the following Newton system is obtained:

diagð1=fnÞ þ 2�M RT

R 0

� 	
�f
��

� 	
¼
�1� logð fnÞ � RT�� 2�Mfn

�R fn þ g

� 	
: ð16Þ

To fulfil the non-negative condition of f, negative values of f components are reset to

small positive values after each iteration.
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3. Results

The proposed algorithm was implemented on a 2D reconstruction problem from eight
projections corresponding to 0, 30, 60, 75, 90, 105, 120 and 150 degrees, 20 parallel rays
each. Figures 2 and 3 show the reconstructed 20� 20 pixel images obtained for various
values of �. In Figure 2, the M matrix was defined using the interaction function E1,
whereas in Figure 3 the function U was constructed using E2.

When � is zero, the algorithm reduces to the classical MEM method [11]. As �
increases, a smoothing progression can be observed. The term U increasingly penalizes the
difference between neighbouring pixels, thus forcing them to become similar. When �
increases beyond a certain large value the borders of the object begin to blur.

In order to estimate the quality of the reconstruction, the pixel-to-pixel error � is
defined as

� ¼
X
j

fj � f dataj


 �2
ð17Þ

Figure 3. Reconstruction with different parameters of � and the M matrix calculated with
Equation (5).
Notes: (a) �¼ 0, (b) �¼ 50, (c) �¼ 102, (d) �¼ 103, (e) �¼ 104 and (f ) �¼ 106.

Figure 2. Reconstructions with different parameters of � and the matrix M calculated with
Equation (4).
Notes: (a) �¼ 0, (b) �¼ 50, (c) �¼ 102, (d) �¼ 103, (e) �¼ 104 and (f ) �¼ 106.
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where f data and f are n-dimensional vectors of the original and the reconstructed image,

respectively (note that � is an indicator that is only known in simulated cases where the

original image is known).
Figure 4 shows the dependence of � with �. A minimum can be observed, which

indicates an optimum � value. Lower values of � lead to image degradation, whereas

higher values of � produce blurring. This effect can be clearly seen in Figures 2 and 3.
Figure 5 shows the projection error ":

" ¼
X
i

gi � gdatai

� �2
ð18Þ

Figure 4. Pixel-to-pixel error between the reconstructed and the original image, using Equations (4)
(solid) and (5) (dashed).

Figure 5. Error between projections of the reconstruction image and the projection data, using
Equations (4) (solid) and (5) (dashed).

716 R. Barbuzza et al.

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
C
l
a
u
s
s
e
,
 
A
l
e
j
a
n
d
r
o
]
 
A
t
:
 
1
4
:
1
3
 
1
5
 
J
u
n
e
 
2
0
1
0



where gdata and g are m-dimensional vectors of the data projections and the reconstructed
image projections, respectively. It can be seen that with respect to the projection error "
there is also an optimum value �, which although is slightly different than the one
produced with � (Figure 4), it is more useful since " can always be calculated, whereas � is
only available in controlled cases where the solution is known.

Figures 6 and 7 show the reconstruction of a 64� 64 pixels image with three internal
circles, using 16 projections (64 rays per projection). Figures 8 and 9 show the error
parameters " and � as functions of �. A behaviour similar to Figures 2–5 can be observed,
that is, starting with �¼ 0 successive increases of � improve the reconstruction quality by
noise filtering, up to certain � value from which further increments lead to excessive
blurring of the internal borders.

It is interesting to test the performance of the proposed method on noisy data. The case
shown in Figure 6 was used as reference, adding artificially random noise to the projection
data. Figures 10 and 11 show the dependence of the pixel-to-pixel error � and projection

Figure 6. Reconstructions with different � using Equation (4).
Notes: (a) �¼ 0, (b) �¼ 103, (c) �¼ 104 and (d) �¼ 106.

Figure 7. Reconstructions with different � using Equation (4).
Notes: (a) �¼ 0, (b) �¼ 103, (c) �¼ 104, and (d) �¼ 106.
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error " on � using Equations (4) and (5). It can be seen that the behaviour of � is similar to
Figure 8 (noiseless projections), although the optimum values of � differ. Nevertheless, as
in the noiseless case, the minimum of " can be used to estimate an appropriate value of �.
Figures 12 and 13 show the reconstructions obtained by varying � combined with
Equations (4) and (5), respectively. The quality of the reconstructions logically decreases
as the noise increases. This feature can be appreciated in Figure 14, which shows how the
pixel-to-pixel error increases with respect to the noiseless value as the noise level of the
projections increases.

Table 1 compares the results obtained with different variations of this method, namely,
plane MEM without regulation terms (�¼ 0), and MEM with the optimum � that

Figure 8. Pixel-to-pixel standard deviation between the reconstructed and the original image,
using Equations (4) (solid) and (5) (dashed).

Figure 9. Error between projections of the reconstruction image and the noiseless projection data,
using Equations (4) (solid) and (5) (dashed).
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Figure 10. Pixel-to pixel error between the reconstructed image and the original image data, using
Equations (4) (solid) and (5) (dashed), and projections data with 2% random uniform noise.

Figure 11. Error between projections of the reconstruction image and the noisy projection data,
using Equations (4) (solid) and (5) (dashed).

Figure 12. Reconstructions with 2% random-noise projections with Equation (4).
Notes: (a) �¼ 0, (b) �¼ 103, (c) �¼ 104 and (d) �¼ 105.
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Figure 14. Increment of the pixel-to-pixel error relative to the noiseless value as the noise level of the
projections increase.

Figure 13. Reconstructions with 2% random-noise projections with Equation (5).
Notes: (a) �¼ 0, (b) �¼ 103, (c) �¼ 104 and (d) �¼ 105.

Table 1. Pixel-to-pixel and projection errors obtained with different reconstructions of Figure 6.

Method

Noiseless projections Projections with 2% noise

� " � "

�¼ 0 1186 4934 1677 12,864
�¼ 0 and one median filtering 926 15,199 1154 28,905
�¼ 0 and two median filtering 903 16,356 1095 32,056
Optimum � (minimum ") with Equation (4) 917 4213 1267 9027
Optimum � (minimum ") with Equation (4)
and one median filtering

825 10,082 1015 16,858

Optimum � (minimum ") with Equation (5) 947 4944 1305 10,922
Optimum � (minimum ") with Equation (5)
and two median filtering

869 10,476 1078 18,341
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minimizes the projection error ". Comparisons were also made by applying a median filter
to the solutions. The best results were obtained with MEM regularized with Equation (4).
One pass of median filtering reduces the pixel-to-pixel error �, but increases the projection
error " considerably. Figures 15 and 16 shows the reconstructions corresponding to the
cases detailed in Table 1.

4. Conclusions

The introduction of prior information to the MEM algorithm for computer tomography
was presented. A filter term was added to the classical entropy function to improve the
a priori known homogeneity of the image. A series of numerical tests were performed
comparing variations of this method, showing improvements in the final quality of the
image compared to the classical MEM procedure. A heuristic method was proposed to
estimate the weight of the filter term based on the minimization of the projection error.
The proposed algorithm can be a useful numerical tool, particularly in industrial
tomography, where local homogeneity is an often available information from the design
and manufacturing processes. Further theoretical studies are required in order to quantify
the robustness of the proposed heuristics for the filter coefficient, which will be helpful for
applications in the real data set.
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