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This paper presents a theory to describe wave propagation in a porous medium composed of two
solids saturated by a single-phase fluid for spatially variable porosity. This problem has been
previously solved for constant porosity when one of the solids is ice or clay, but that model is not
useful for most realistic situations. The equations for variable porosity are derived from the virtual
work principle, where the generalized coordinates are identified as the displacements of the two
solid phases and a new variable associated with the relative fluid flow, whose divergence is the
change in fluid content. The generalized forces are the fluid pressure and combinations of the stress
tensor of each solid phase and the fluid pressure. The Lagrangian equations of motion are derived
for the isotropic case and a theorem on the existence and uniqueness of their solution is given. The
plane wave analysis reveals the existence of three compressional and two shear waves. The theory
is applied to wave propagation in shaley sandstones showing that phase velocities of the faster P and
S waves agree very well with experimental data for varying porosity and clay content. A simulation
through a plane interface separating two frozen sandstones of different ice contents is presented.
© 2004 Acoustical Society of America.@DOI: 10.1121/1.1710500#
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I. INTRODUCTION

Wave propagation in composite porous materials has
plications in many branches of science and technology, s
as seismic methods in the presence of shaley sandsto1

permafrost,2,3 gas-hydrate concentration in ocean-botto
sediments,4 and evaluation of the freezing conditions
foods by ultrasonic techniques.5

Leclaire et al.6 have developed a theory for describin
wave propagation in frozen porous media in which solid s
strate, ice, and water coexist, under the assumption of
existence of a layer of unfrozen water around the solid p
ticles isolating them from ice. This model, valid for unifor
porosity, predicts the existence of three compressional
two shear waves; the verification that additional~slow!
waves can be observed in laboratory experiments was
lished by Leclaireet al.7

Later, this theory was generalized by Carcione a
Tinivella4 to include the interaction between the solid and
particles and grain cementation with decreasing tempera
Also, Carcioneet al.1 have applied this theory to study th
acoustic properties of shaley sandstones, assuming that
and clay arenonweldedand form a continuous and interpe
etrating porous composite skeleton.

a!Electronic mail: santos@fcaglp.fcaglp.unlp.edu.ar
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Both frozen porous media and shaley sandstones are
examples of porous materials where the two solid phases
weakly coupledor nonwelded. Similar weakly coupledfor-
mulations have previously been proposed. For instan
McCoy8 explicitly assumed the weak coupling and pha
connectivity conditions over macro-scale distances. He p
posed a mixture theory appropriate for the combination
two acoustic phases.

This work generalizes the theory developed in Refs
and 4 to the case of nonuniform porosity so that the diff
ential equations can be used to perform numerical exp
ments or fit laboratory data related to heterogeneous me
The nonweldingcondition between the two solid phases
assumed when the potential and kinetic energies are defi
with proper interaction terms among the solid and flu
phases. If the two solid phases would be welded, then a
tional slow waves would not be present.9 Our approach is
based on the energy formulation used by Biot,10 rather than
on volume averaging or homogenization methods used,
instance, by Burridge and Keller.11

In this paper the virtual work principle for the composi
material is stated and the strains in the two solid phases
the change in fluid content are identified as the state v
ables to represent the variation in strain energydW, conse-
quently identifying the generalized forces. These are the t
2749749/12/$20.00 © 2004 Acoustical Society of America
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stress tensors in both solid phases, denoted bys1,T ands3,T,
respectively, and the fluid pressurepf .

The kinetic energy density and the dissipation funct
are defined in terms of the generalized coordinates, which
the two solid displacement vectors and the new variablew,
associated with the fluid flow relative to the solid compos
matrix, whose divergence is the change in fluid content.

The Lagrangian formulation of the equations of moti
is a generalization of the approach of Biot,10 Santoset al.,12

and Carcione.13 It is shown that in the case of uniform po
rosity, the known theories6,4 are recovered. The plane wav
analysis shows the existence of three compressional and
shear modes of propagation, in agreement with the orig
theory derived by Leclaireet al.6

An existence and uniqueness result for a general in
boundary value problem is given, showing that for each ti
t each component of the solid displacements belongs to
Sobolev spaceH1(V), while the fluid displacement lies in
the spaceH(div,V).

The theory is applied to wave propagation in sha
sandstones showing that the phase velocities of the fa
waves ~the seismic P and S waves! agree very well with
experimental data for varying porosity and clay conte
Moreover, in a simulation of waves travelling through
plane interface separating two frozen sandstones of diffe
porosity is performed. The numerical solver is a modificat
of the pseudospectral modeling algorithm used by Carci
and Seriani3 to model propagation in frozen porous med
with uniform porosity.

II. THE STRAIN ENERGY OF THE COMPOSITE
SYSTEM

Let V be an elementary cube of porous material co
posed of two solid phases, referred to by the subscript
superscripts 1 and 3, saturated by a fluid phase indicate
the subscript or superscript 2. Thus,V5V1øV2øV3 . Let
Vi denote the volume of the phaseV i and Vb and Vsm the
bulk volume ofV and the solid matrixVsm5V1øV3 , so
that

Vsm5V11V3 , Vb5V11V21V3 .

Let S15V1 /Vsm andS35V3 /Vsm denote the two solid frac
tions of the composite matrix and define the effective por
ity as f5V2 /Vb . Let u(1), u(2), and u(3) be the averaged
solid and fluid displacements over the bulk material. H
u(2) is defined such that on any faceF of the cubeV,

E
F
fu~2!n ds

is the amount of fluid displaced throughF, while

E
F
S1u~1!n ds, E

F
S3u~3!n ds

represent the displacements in the two solid parts ofF, re-
spectively. Heren5(n j ) denotes the unit outward normal t
F andds the surface measure onF.

Let s i j
(1) ands i j

(3) denote the stress tensors inV1 andV3

averaged over the bulk materialV, respectively, and letpf
2750 J. Acoust. Soc. Am., Vol. 115, No. 6, June 2004
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denote the fluid pressure. These quantities describe s
changes with respect to reference values corresponding t
initial equilibrium state. Let us also introduce the tensors

s i j
~1,T!5s i j

~1!2S1fpfd i j , s i j
~3,T!5s i j

~3!2S3fpfd i j ,
~2.1!

associated with the total stresses inV1 andV3 , respectively,
so that the total stress tensor in the bulk materialV is given
by

s i j 5s i j
~1,T!1s i j

~3,T! . ~2.2!

Next the stress–strain relations for our system shall
derived using the virtual work principle, following the der
vation of Biot10 for the case of a single solid phase. In wh
follows the Einstein convention is used, i.e., sum on repea
indices. LetW be the strain energy density andV the total
potential energy. Also letVd denote the total potential energ
density. Then, iff i

(1) , f i
(3) , f i

(2) represent the surface force
acting on the solid and fluid parts of the boundary ofV,
denoted by]V, we have that

V5E
V
Vd dx5E

V
W dx2E

]V
~ f i

~1!ui
~1!1 f i

~2!ui
~2!

1 f i
~3!ui

~3!!ds, ~2.3!

and the virtual work principle for the composite fluid–sol
system can be stated in the form:

dV505E
V

dW dx2E
]V

~ f i
~1!d~ui

~1!!1 f i
~2!d~ui

~2!!

1 f i
~3!~dui

~3!!!ds, ~2.4!

where

f i
~1!5s i j

~1!n j , f i
~3!5s i j

~3!n j , f i
~2!52fpfd i j n j ,

~2.5!

andd denotes virtual changes in the different quantities. U
ing Eqs.~2.1! and ~2.5! in Eq. ~2.4! yields

dV505E
V

dW dx2E
]V

~s i j
~1,T!n jd~ui

~1!!

1s i j
~3,T!n jd~ui

~3!!2pfd i j n jdwi !ds. ~2.6!

where

wi5f~ui
~2!2S1ui

~1!2S3ui
~3!!. ~2.7!

Then, transforming the surface integral in Eq.~2.6! into a
volume integral gives

dV505E
V

dW dx2E
V

]

]xj
@s i j

~1,T!d~ui
~1!!

1s i j
~3,T!d~ui

~3!!2pfd i j dwi #dx. ~2.8!
Santos et al.: Wave propagation in composite saturated solids
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SinceV remains in equilibrium under the action of the vi
tual displacements, it follows that

]

]xj
s i j

~1,T!5
]

]xj
s i j

~3,T!5
]

]xj
pfd i j 50,

and consequently, using the symmetry of the stress ten
s i j

(1,T) ands i j
(3,T) we obtain

dV505E
V

dW2E
V

~s i j
~1,T!d~e i j ~u~1!!!

1s i j
~3,T!d~e i j ~u~3!!!1pfdz!dx, ~2.9!

wherez52“"w represents the change in fluid content a

e i j ~u~m!!5
1

2 S ]ui
~m!

]xj
1

]uj
~m!

]xi
D , m51,3,

denotes the strain tensor inVm with linear invariantum

5e i i (u
(m)).

Thus from Eqs.~2.1! and~2.9! the following expression
for the variation in strain energy densitydW is finally ob-
tained:

dW5~s i j
~1!2S1fpfd i j !d~e i j ~u~1!!!

1~s i j
~3!2S3fpfd i j !d~e i j ~u~3!!!1pfdz. ~2.10!

Consequently, sincedW is an exact differential of the vari
ablese i j (u

(1)), e i j (u
(3)), andz we have that

]W
]e i j ~u~m!!

5s i j
~m!2Smfpfd i j , m51,3,

]W
]z

5pf .

~2.11!

Also, it follows from Eq.~2.10! that

W5 1
2 @~s i j

~1!2S1fpfd i j !~e i j ~u~1!!!

1~s i j
~3!2S3fpfd i j !~e i j ~u~3!!!1pfz#. ~2.12!

Next, to obtain the expression for thepotential energyof
our system, let us consider perturbations of the system f
the equilibrium state. Using Eq.~2.3!, the argument leading
to Eq. ~2.8! and expression~2.10! for dW yields

dVd52
]

]xj
@s i j

~1!2S1fpfd i j #dui
~1!

2
]

]xj
@s i j

~3!2S3fpfd i j #dui
~3!1

]

]xi
pfdwi .

~2.13!

If ui
(1) , ui

(3) , wi are chosen as generalized coordinates
describe our composite system, since the system is assu
to be conservative it follows that

]Vd

]ui
~m!

52
]

]xj
@s i j

~m!2Smfpfd i j #,

m51,3,
]Vd

]wi
5

]

]xi
pf . ~2.14!
J. Acoust. Soc. Am., Vol. 115, No. 6, June 2004
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III. THE LINEAR ISOTROPIC STRESS–STRAIN
RELATIONS

Let us denote the deviatoric strain tensor inVm as

di j
~m!5e i j ~u~m!!2 1

3 umd i j , m51,3.

In the linear isotropic case the strain energy densityW in Eq.
~2.12! is a quadratic positive definite form in the invarian
u1 , u3 , z, (d1)25di j

(1) di j
(1) , (d3)25di j

(3) di j
(3) and d1,3

5di j
(1) di j

(3) . Note that

~dm!25e i j ~u~m!!e i j ~u~m!!2 1
3~um!2, m51,3,

d1,35e i j ~u~1!!e i j ~u~3!!2 1
3u1u3 .

Then,

W5 1
2H1~u1!21m1~d1!21 1

2H3~u3!21m3~d3!22B1u1z

2B2u3z1B3u1u31 1
2 Kav~z!21m1,3d1,3. ~3.1!

Remark: TheB3 andm13 terms represent elastic intera
tion between the two solid phases.

Thus,

]W
]e i j ~u~1!!

5s i j
~1!2S1fpfd i j

5@H1u12B1z1B3u3#d i j 12m1di j
~1!1m1,3di j

~3! ,

~3.2!

]W
]e i j ~u~3!!

5s i j
~3!2S3fpfd i j

5@H3u32B2z1B3u1#d i j 12m3di j
~3!1m1,3di j

~1! ,

~3.3!

]W
]z

5pf52B1u12B2u31Kavz. ~3.4!

Equations~3.2!–~3.4! express the generalized stressess i j
(1)

2S1fpfd i j , s i j
(3)2S3fpfd i j and pf in terms of the strains

e i j (u
(1)), e i j (u

(3)), andz.

IV. DETERMINATION OF THE COEFFICIENTS IN THE
STRESS–STRAIN RELATIONS

This section presents a procedure to determine the c
ficients in the stress–strain relations~3.2!–~3.4! for the vari-
able porosity case. It is assumed that the moduli for the c
of uniform porosity can be obtained from known expressio
given in a previous formulations.4 First note that settingu2

5“"u(2), for the case of uniform porosity we have that

z5f~S1u11S3u32u2! ~4.1!

and consequently, from Eq.~3.4! we get

2fpf5~B1f2Kavf
2S1!u11~B2f2Kavf

2S3!u3

1Kavf
2u2 . ~4.2!

Next, combining Eqs.~3.2!, ~4.1!, and~4.2! yields
2751Santos et al.: Wave propagation in composite saturated solids
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s i j
~1!5$@H11~S1f!2Kav22S1fB1#u11@S1S3f2Kav

2S3fB12S1fB21B3#u32~f2S1Kav

2fB1!u2%d i j 12m1di j
~1!1m1,3di j

~3! . ~4.3!

Also, it follows from Eqs.~3.3!, ~4.1!, and~4.2! that

s i j
~3!5$@H31~S3f!2Kav22S3fB2#u31@S3S1f2Kav

2S3fB12S1fB21B3#u12~f2S3Kav

2fB2!u2%d i j 12m3di j
~3!1m1,3di j

~1! . ~4.4!

Set

K25Kavf
2, C125B1f2Kavf

2S1 ,

C235B2f2Kavf
2S3 ,

K15H11~S1f!2Kav22S1fB1 , ~4.5!

K35H31~S3f!2Kav22S3fB2 ,

C135S1S3f2Kav2S3fB12S1fB21B3 .

Then, the stress–strain relations~4.2!–~4.4! for constant po-
rosity can be stated as follows:

s i j
~1!5~K1u11C13u31C12u2!d i j 12m1di j

~1!1m1,3di j
~3! ,
~4.6!

s i j
~3!5~K3u31C13u11C23u2!d i j 12m3di j

~3!1m1,3di j
~1! ,
~4.7!

2fpf5C12u11C23u31K2u2 . ~4.8!

Relations similar to Eqs.~4.6!–~4.8! were derived by Le-
claire et al.6 for the case of uniform porosity and when on
of the solid phases is ice; it is also assumed in that paper
there is no contact between the solid and ice phases.
situation corresponds to the particular case in whichC13

5m1,350. Carcione and Tinivella4 generalized the model o
Leclaire et al.6 to include interaction between the solid an
ice phases and grain cementation with temperature and
tained stress–strain relations in the form given in Eqs.~4.6!–
~4.8!.

The nonsingular linear system of equations~4.5! yields
the following expressions for the coefficients of the varia
porosity formulation:

H15K11~S1!2K212S1C12,

H35K31~S3!2K212S3C23,

B15
S1K21C12

f
, B25

S3K21C23

f
, ~4.9!

B35~C131S3C121S1C231S3S1K2!, Kav5
K2

f2
.

In Appendix A the ideas presented in Refs. 6 and 4
used to obtain formulas for the computation of the coe
cientsK1 , K2 , K3 , C12, C13, C23, m1 , m3 , m1,3, which
combined with Eq.~4.9! allows for the evaluation of the
moduli H1 , H3 , B1 , B2 , B3 , Kav, needed for this new
formulation. However, it must be remarked that appropri
2752 J. Acoust. Soc. Am., Vol. 115, No. 6, June 2004
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theoretical~gedanken! experiments should be devised for
rigorous determination of these coefficients.

V. A LAGRANGIAN FORMULATION OF THE
EQUATIONS OF MOTION

A. The kinetic energy density

Let T denote the kinetic energy density onV and letrm ,
m51, 2, 3 denote the mass density of each solid and fl
constituent inV. Also let fm5Vm /Vb , m51, 3 be the frac-
tions of the two solid phases in the bulk material.

Let us consider the kinetic energy density in the so
partsV1 andV3 . Here the argument follows the ideas pr
sented in Ref. 4. Let us introduce the relative macroveloc
of each solid phase with respect to the other:

qi
~1,3!5f1~ui

~1!2ui
~3!!, qi

~3,1!5f3~ui
~3!2ui

~1!!, ~5.1!

and denotesi
(1,3) andsi

(3,1) the corresponding relative microv
elocity fields. Assuming that the relative flows of the so
phases are of laminar type, it follows that

si
~1,3!5b i j

~1,3!q̇ j
~1,3! , si

~3,1!5b i j
~3,1!q̇ j

~3,1! . ~5.2!

Note that by their definition,

1

Vb
E

V1

si
~1,3! dx5q̇i

~1,3! ,
1

Vb
E

V3

si
~3,1! dx5q̇i

~3,1! . ~5.3!

Then the kinetic energy densitiesT1 andT3 in V1 andV3 are
given by

T15
1

2

1

Vb
E

V1

r1~ u̇i
~3!1si

~1,3!!~ u̇i
~3!1si

~1,3!!dx

5
1

2
r1f1u̇i

~3!u̇i
~3!1r1u̇i

~3!q̇i
~1,3!1

1

2
ni j

~1,3!q̇i
~1,3!q̇ j

~1,3!,

~5.4!

T35
1

2

1

Vb
E

V3

r3~ u̇i
~1!1si

~3,1!!~ u̇i
~1!1si

~3,1!!dx

5
1

2
r3f3u̇i

~1!u̇i
~1!1r3u̇i

~3!q̇i
~3,1!1

1

2
ni j

~3,1!q̇i
~3,1!q̇ j

~3,1! ,

~5.5!

where

ni j
~1,3!5r1

1

Vb
E

V1

bki
~1,3!bk j

~1,3!dx,

ni j
~3,1!5r3

1

Vb
E

V3

bki
~3,1!bk j

~3,1!dx.

In terms or the original variablesui
(1) , ui

(3) and for the
case of statistical isotropy,~i.e., ni j

(1,3)5n(1,3)d i j , ni j
(3,1)

5n(3,1)d i j ), we can rewriteT1 andT3 in the form

T15 1
2~~f1!2n~1,3!2r1f1!u̇i

~3!u̇i
~3!1~r1f1

2~f1!2n~1,3!!u̇i
~1!u̇i

~3!1 1
2~f1!2n~1,3!u̇i

~1!u̇i
~1! , ~5.6!

and
Santos et al.: Wave propagation in composite saturated solids
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T35 1
2~~f3!2n~3,1!2r3f3!u̇i

~1!u̇i
~1!1~r3f3

2~f3!2n~3,1!!u̇i
~1!u̇i

~3!1 1
2~f3!2n~3,1!u̇i

~3!u̇i
~3! . ~5.7!

Next, let us define the macroscopic relative velocities of
fluid with respect to the two solid phases:

wi
~m!5f~ui

~2!2ui
~m!!, m51,3. ~5.8!

Then if v i
(1) and v i

(3) denote the corresponding relative m
crovelocity fields, the assumption that the relative fluid flo
is of laminar type yields

v i
~ l !5a i j

~ l ,2!ẇj
~ l ! , l 51,3. ~5.9!

Since (1/Vb)*V2
v i

( l )dx5ẇi
( l ) , l 51, 3, the kinetic energy

densityT2 in the fluid partV2 is given by

T25
1

2

1

Vb
E

V2

r2~ u̇i
~1!1v i

~1!!~ u̇i
~1!1v i

~1!!dx

1
1

2

1

Vb
E

V2

r2~~ u̇i
~3!1v i

~3!!!~ u̇i
~3!1v i

~3!!))

2
1

2
r2fu̇i

~2!u̇i
~2!

5
1

2
r2fu̇i

~1!u̇i
~1!1r2u̇i

~1!ẇi
~1!1

1

2
mi j

~1,2!ẇi
~1!ẇj

~1!

1
1

2
r2fu̇i

~3!u̇i
~3!1r2u̇i

~3!ẇi
~3!1

1

2
mi j

~3,2!ẇi
~3!ẇj

~3!
q.
oli

ly

s
k
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2
1

2
r2fu̇i

~2!u̇i
~2! , ~5.10!

where

mi j
~ l ,2!5r2

1

Vb
E

V2

aki
~ l ,2!ak j

~ l ,2!dx, l 51,3.

Next, using thatui
(2)5wi /f1S1ui

(1)1S3ui
(3) in Eq. ~5.8!

gives

wi
~1!5wi1S3f~ui

~3!2ui
~1!!,

wi
~3!5wi1S1f~ui

~1!2ui
~3!!, ~5.11!

and

wi
~1!wi

~1!5wiwi12S3fwi~ui
~3!2ui

~1!!

1~S3f!2~ui
~3!2ui

~1!!~ui
~3!2ui

~1!!,

wi
~3!wi

~3!5wiwi12S1fwi~ui
~1!2ui

~3!!

1~S1f!2~ui
~3!2ui

~1!!~ui
~3!2ui

~1!!, ~5.12!

wi
~1!wi

~3!5wiwi1~S32S1!fwi~ui
~3!2ui

~1!!

2S1S3~f!2~ui
~3!2ui

~1!!~ui
~3!2ui

~1!!.

Using Eqs.~5.11! and ~5.12! in Eq. ~5.10!, for the isotropic
case the following expression forT2 is obtained:
T25@ 1
2r2f1 1

2~f!2~~S3!2m~1,2!1~S1!2m~3,2!!2S3r2f2 1
2~S1!2r2f#u̇i

~1!u̇i
~1!

1@r21f~S1m~3,2!2S3m~1,2!!2S1r2#u̇i
~1!ẇi1@r2f2~f!2~~S3!2m~1,2!1~S1!2m~3,2!!2S1S3r2f#u̇i

~1!u̇i
~3!

1
1

2 Fm~1,2!1m~3,2!2
r2

f Gẇi ẇi1@rw1f~S3m~1,2!2S1m~3,2!!2S3r2#ẇi u̇i
~3!

1@ 1
2r2f1 1

2~f!2~~S3!2m~1,2!1~S1!2m~3,2!!2S1r2f2 1
2~S3!2r2f#u̇i

~3!u̇i
~3! . ~5.13!
ef.
the
d in

ur

the
The kinetic energy densityT in V is therefore

T5T11T21T3 . ~5.14!

Remark: The third term on the right-hand side of E
~5.13! represents dynamic interaction between the two s
phases.

B. Dissipation function

Here it is assumed that the dissipation functionD is a
quadratic non-negative form in the variables (u̇i

(3)2u̇i
(1)) and

ẇi . Then, if h denotes the fluid viscosity, in the statistical
isotropic case the dissipation function has the form

D5 1
2 f 11~ u̇i

~3!2u̇i
~1!!~ u̇i

~3!2u̇i
~1!!1 1

2 f 22ẇi ẇi

1 f 12~ u̇i
~3!2u̇i

~1!!ẇi . ~5.15!

Remark: Appendix B contains the derivation of formula
to compute the mass and dissipation coefficients in the
d

i-

netic energy densityT and the dissipation functionD so that
for the case of uniform porosity the model presented in R
4 is obtained. Thus, this new model is a generalization to
nonuniform porosity case of the previous models propose
Refs. 6 and 4.

C. The differential equations of motion

Set u5(uj )5(ui
(1) ,wi ,ui

(3)), 1< i<3, 1< j <9. The
Lagrangian formulation of the equations of motion for o
system is

d

dt S ]T
]u̇ j

D1
]D
]u̇ j

52
]Vd

]uj
, 1< j <9. ~5.16!

Next, combine Eqs.~2.13!, ~5.6!, ~5.7!, ~5.13!–~5.16! to
conclude that the equations of motion can be written in
form:
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x

p11üi
~1!1p12ẅi1p13üi

~3!1 f 11u̇i
~1!2 f 12ẇi2 f 11u̇i

~3!

5
]

]xj
@s i j

~1!2S1fpfd i j #, ~5.17!

p12üi
~1!1p22ẅi1p23üi

~3!2 f 12u̇i
~1!1 f 22ẇi1 f 12u̇i

~3!52
]pf

]xi
,

~5.18!

p13üi
~1!1p23ẅi1p33üi

~3!2 f 11u̇i
~1!1 f 12ẇi1 f 11u̇i

~3!

5
]

]xj
@s i j

~3!2S3fpfd i j #, i 51,2,3. ~5.19!

The mass coupling coefficients in Eqs.~5.17!–~5.19! are
given by

p115r2f1~f!2~~S3!2m~1,2!1~S1!2m~3,2!!22S3r2f

2~S1!2r2f1~f1!2n~1,3!1~f3!2n~3,1!2f3r3 ,

p125p215r21f~S1m~3,2!2S3m~1,2!!2S1r2 ,

p135p315r2f2~f!2~~S3!2m~1,2!1~S1!2m~3,2!!

2S1S3r2f1r1f12~f1!2n~1,3!1r3f3

2~f3!2n~3,1!,
~5.20!

p225m~1,2!1m~3,2!2
r2

f
,

p235p325rw1f~S3m~1,2!2S1m~3,2!!2S3r2 ,

p335r2f1~f!2~~S3!2m~1,2!1~S1!2m~3,2!!22S1r2f

2~S3!2r2f1~f1!2n~1,3!1~f3!2n~3,1!2f1r1 .

The coefficientspi j in Eq. ~5.20! can be written in terms
of the tortuositiesa13, a31, a12, anda32 defined in Refs. 4
and 6 as follows:

n~1,3!5a13

r1

f1
, n~3,1!5a31

r3

f3
,

m~1,2!5a12

r2

f
, m~3,2!5a32

r2

f
,

~5.21!

a125
f1r

fr2
r 1211, a325

f3r8

fr2
r 3211,

a135
f3r8

f1r1
r 1311, a315

f1r

f3r3
r 3111,

wherer i j are the geometrical aspects of the boundaries s
rating the phasesi and j ~equal to1

2 for spheres! and

r5
fr21f3r3

f1f3
, r85

fr21f1r1

f1f1
.

Using the relations~5.21! in Eq. ~5.20! yields

p115r2f~11~S1!2a321~S3!2a1222S32~S1!2!

1a13r1f11~a3121!r3f3 ,

p125r2~S3~12a12!1S1a32!,
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p135r2f~12~S1!2a322~S3!2a122S1S3!

1r1f1~12a13!1r3f3~12a31!,
~5.22!

p225
r2

f
~a121a3221!,

p235r2~S1~12a32!1S3a12!,

p335r2f~11~S1!2a321~S3!2a1222S12~S3!2!

1a31r3f31~a1321!r1f1 .

In Appendix B the mass coefficientspi j are related to the
mass coefficients of the previous formulations in Refs. 6 a
4.

VI. PLANE WAVE ANALYSIS

Let v denote the angular temporal frequency and let
define the matricesMPR737, EPR737 be defined by

M53
m11 0 0 m12 m13 0 0

0 q1 0 0 0 q2 0

0 0 q1 0 0 0 q2

m12 0 0 m22 m33 0 0

m13 0 0 m23 m33 0 0

0 q2 0 0 0 q3 0

0 0 q2 0 0 0 q3

4 ,

and

E53
H11 4

3 m1 0 0 B1 B31 2
3 m13 0 0

0 m1 0 0 0 1
2 m13 0

0 0 m1 0 0 0 1
2 m13

B1 0 0 Kav B2 0 0

B31 2
3 m13 0 0 B2 H31 4

3 m3 0 0

0 1
2 m13 0 0 0 m3 0

0 0 1
2 m13 0 0 0 m3

4 ,

where

m115p112 i
f 11

v
, m125p121 i

f 12

v
, m135p131 i

f 11

v
,

m225p222 i
f 22

v
, m235p231 i

f 12

v
, m335p331 i

f 11

v
,

q15m112
~m12!

2

m22
, q25m132

m12m23

m22
,

q35m332
~m23!

2

m22
.

Set

S5E21M. ~6.1!

Then a generalization of the argument using plane wa
given by Santoset al.14 shows that after finding the comple
eigenvalues 1/(cm)2, m51,...,7 of the matrixS by solving
Santos et al.: Wave propagation in composite saturated solids
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det(S2(1/c2)I )50, the phase velocitiesam and the attenu-
ation coefficientsdm ~in dB! of the compressional and she
waves are obtained in terms ofcm from

am5
1

Re~cm!
, dm52p8.685 889UIm~cm!

Re~cm!
U. ~6.2!

Three of the eigenvalues of the matrixS, associated with
the first, fourth, and fifth rows and columns are related w
the compressional modes, while of the other four eigenva
only two of them are different and they are related with t
two shear modes of propagation. These wave modes a
agreement with those predicted previously in Refs. 6, 7,
4.

The experimental observation of the additional~slow!
waves was reported by Leclaireet al.7 The slow wave modes
are important to explain attenuation and dispersion effe
observed on the faster modes associated with scattering
nomena due to the presence of heterogeneities inside
composite poroelastic materials being analyzed.

VII. AN EXISTENCE AND UNIQUENESS RESULT

Let the positive definite mass matrixPPR939 and the
non-negative dissipation matrixCPR939 be defined by

P5F p11I p12I p13I

p12I p22I p23I

p13I p23I p33I
G ,

C5F f 11I 2 f 12I 2 f 11I

2 f 12I f 22I f 12I

2 f 11I f 12I f 11I
G ,

whereI denotes the identity matrix inR333. Also, let L(u)
be the second-order differential operator defined by

L~u!5$“"@s i j
~1!~u!2S1fpf~u!d i j #,

2“pf~u!,“"@s i j
~3!~u!2S3fpf~u!d i j #%.

Then the equations of motion~5.17!–~5.19! can be stated in
the form

P ]2u

]t2
1C ]u

]t
2L~u!5 f ~x,t !,

~x,t !PV3~0,T![V3J. ~7.1!

Let us consider the solution of Eq.~7.1! with initial con-
ditions

u~x,0!5u0,
]u

]t
~x,0!5v0, xPV, ~7.2!

and boundary conditions

~s i j
~1!~u!2S1fpf~u!d i j !n j52g~1!, ~x,t !P]V3J,

~7.3!

~s i j
~3!~u!!2S3fpf~u!d i j )n j52g~3!, ~x,t !P]V3J,

~7.4!

pf~u!5g~2!, ~x,t !P]V3J. ~7.5!
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To state a weak form of problem~7.1!–~7.5! some no-
tation needs to be introduced. Let~•,•! and ^•,•& denote the
usual inner products inL2(V) and L2(]V), respectively.
Also, for any real numbers andE5V, ]V let Hs(E) denote
the usual Sobolev space with corresponding normi•is,E .
Let

H~div,V!5$vP@L2~V!#3:“"vPL2~V!%,
~7.6!

V5@H1~V!#33H~div,V!3@H1~V!#3,

with the natural norm

iviV5@ iv ~1!i1,V
2 1iv ~3!i1,V

2 1iv ~2!iH~div,V!
2 #1/2,

v5~v ~1!,v ~2!,v ~3!!PV.

Set

L~u,v !5~s i j
~1!~u!2S1fpf~u!d i j ,e i j ~v ~1!!1~s i j

~3!~u!

2S3fpf~u!d i j ,e i j ~v ~3!!2~pf~u!,“"v2!.

~7.7!

Next recall that the strain energy densityW in Eq. ~3.1! is a
positive definite quadratic form in the variablese i j (u

(1)),
e i j (u

(3)), andz, which implies that

W~u!>M F(
i j

~~e i j ~u~1!!!21~e i j ~u~3!!!2!1z2G , ~7.8!

and consequently applying Korn’s second inequality15,16 it
follows that

L~u,u!>ME
V
F(

i j
~~e i j ~u~1!!!21~e i j ~u~3!!!2!

1~“"w!2GdV

>M1@ iu~1!i1,V
2 1iu~3!i1,V

2 1iwiH~div,V!
2 #

2M2iui0,V
2 , ;uPV. ~7.9!

In Eqs.~7.8! and~7.9! M, M1 , andM2 denote positive con-
stants depending only on the upper and lower bounds of
coefficients of our differential problem and the domainV.

Next, the weak form of problem~7.1!–~7.5! is obtained
as usual by multiplying Eq.~7.1! by vPV and integrating the
result over V, using integration by parts in the
(L(u),v)-term and applying the boundary conditions~7.3!–
~7.5!. Thus a variational form for our problem can be form
lated as follows: find the mapu: J→V such that

S P ]2u

]t2
,v D 1S C ]u

]t
,v D1L~u,v !1^g~1!,v ~1!&1^g~3!,v ~3!&

1^v ~2!
•n,g~2!&5~ f ,v !, vPV, tPJ. ~7.10!

Set
2755Santos et al.: Wave propagation in composite saturated solids
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Qr
25I ] r f

]t r I
L2~J,@L2~V!#9!

1I ] rg~1!

]t r I
L`~J,@H21/2~]V!#3!

1I ] r 11g~1!

]t r 11 I
L2~J,@H21/2~]V!#3!

1I ] rg~3!

]t r I
L`~J,@H21/2~]V!#3!

1I ] r 11g~3!

]t r 11 I
L2~J,@H21/2~]V!#3!

1I ] rg~2!

]t r I
L`~J,H1/2~]V!!

1I ] r 11g~2!

]t r 11 I
L2~J,H1/2~]V!!

,

~7.11!

P25iu0i2,V
2 1iv0i1,V

2 1i f ~x,0!i0,V
2 11. ~7.12!

Let us state a theorem about the existence, uniqueness
regularity of the solutionu of problem~7.1!–~7.5!. The proof
is similar to that given by Santoset al.17 for the case in
which the porous solid matrix consists of only one so
phase and is omitted.

Theorem 1: Let f, g(1), g(2), g(3), u0, v0 be given and
such that Q0,`, Q1,`, P,`. Then there exists a uniqu
solution u(x,t) of (7.1)–(7.5) such that u, ]u/]tPL`(J,V)
and ]2u/]t2PL`(J,@L2(V)#9).

VIII. EXAMPLES

A. Shaley sandstones

The theory can be applied to various composite me
such as shaley sandstones,1 permafrost,3,18 gas-hydrate bear
ing sediments,4 and frozen foods.5 Let us consider a shale
sandstone, and denote the sand fraction byS1 and the clay
fraction byS3 . As stated previously, the theory predicts thr
compressional waves~P waves! and two shear waves~S
waves!, whose phase velocities can be obtained by solv
the eigensystem resulting from the equation of motion
indicated in Sec. VI@cf. Eq. ~6.2!#; see also Ref. 1. In this
example, we consider the faster P and S waves.

The bulk and shear moduli of the sand and clay~dry!
matrices versus porosityf are obtained from a relationshi
proposed by Kriefet al.19 using formulas~A6! and ~A7! in
Appendix A. We consider the data set published by H
et al.20 obtained at a confining pressure of 40 MPa. Han a
his co-workers provide ultrasonic measurements of P-
S-wave velocities for 75 sandstone samples with poros
ranging from 2% to 30% and clay content from 0 to 50
One feature of this data set is that a small amount of c
significantly softens the rock moduli, leading to reduced
locities. Table I shows the properties of the different co
stituents. The friction coefficients and permeabilities are c
culated by using the equations given in Appendix
Moreover, the mass coefficients arer 125r 325r 135r 31

51/2. The predictions of the theory against the measu
ments obtained by Hanet al.20 are shown in Figs. 1~a! and
2756 J. Acoust. Soc. Am., Vol. 115, No. 6, June 2004
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~b!, whereA52 anda50.5 @see Eqs.~A6! and~A7!#. To fit
the experimental data a frequency of 5 kHz was assum
Strictly speaking, this is not correct since the data have b
acquired at ultrasonic frequencies of the order of hundred
kilohertz. However, it is well known that Biot-type dissipa
tion mechanisms alone do not account for the level of atte
ation observed in rocks. A correct description of this ph
nomenon would require the generalization of the differe
stiffness moduli to relaxation functions.10 However, this fact
reflects the robustness of the model for this particular
ample. The figure shows the compressional and shear ve
ties versus porosity, where each curve corresponds to a

TABLE I. Material properties of the clay-bearing sandstone.

Solid grain Bulk modulus,Ks1 39 GPa
Shear modulus,ms1 39 GPa
Density,r1 2650kg/m3

Average radius,Rs1 50 mm

Clay Bulk modulus,Ks3 20 GPa
Shear modulus,ms3 10. GPa
Density,r3 2650kg/m3

Average radius,Rs3 1 mm

Fluid Bulk modulus,K f 2.4 GPa
Density,r2 1000kg/m3

Viscosity,h 1.798cP

FIG. 1. Velocities of the faster compressional~a! and shear~b! waves vs
porosityf for different values of clay contentS3 , indicated by the numbers
inside the boxes~1: S350%, 2:S3510%, 3:S3520%, 4:S3530% and 5:
S3540%). The experimental data, represented with numbers, correspo
the data set published by Hanet al. ~Ref. 20!. In this case, 1, 2, 3, 4, and 5
correspond toS3 values in the ranges@S3 ,S315%#, S350,...,40%. The
frequency is 5 kHz.
Santos et al.: Wave propagation in composite saturated solids
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The
. Its
ferent value of the clay contentS3 . The root-mean-squar
deviation computed for all samples, apart from five outlie
for P waves and seven outliers for S waves, is 93 m/s for
P-wave velocity and 100 m/s for the S-wave velocity.

B. Permafrost

To illustrate the use of the variable-porosity different
equations, let us consider wave propagation through an
terface separating two sandstones with different ice cont
Basically, the model consists of two homogeneous h
spaces separated by a plane boundary. The upper mediu
the sandstone used in the examples of Carcione
Seriani,18 with no ice in the pores. It has a porosity of 20
when the medium is unfrozen. The lower media has 90%
content in the pores. In this case the bulk and shear modu
the sandstone and ice matrices are computed using a p
lation model as indicated in Appendix A. We omit the pro
erties of the sandstone~including the ice and water prope
ties! since they are given in Ref. 18@the properties
correspond to those of Figs. 2~b! and 3~c! of that paper#.

The time stepping method is a Runge–Kutta four
order algorithm, and the spatial derivatives are calcula
with the Fourier method by using the fast Fouri
transform.13 This spatial approximation is infinitely accura
for band-limited periodic functions with cutoff spatial wav
numbers which are smaller than the cutoff wave number
the mesh. Since the presence of quasistatic modes make
differential equations stiff, a time-splitting integration alg
rithm is used to solve the stiff part analytically. Due to t
splitting algorithm, the modeling is second-order accurate
the time discretization. The method is illustrated in detail
Carcione and Helle21 for a two-phase medium and in Ca
cione and Seriani18 for a three-phase medium.

A 3573357 mesh is used, with square cells and a g
spacing of 14 m~the model has a dimension of approx
mately 535 km!. The source is a vertical force with a dom
nant frequency of 12 Hz, applied at 380 m above the in
face. The time step required by the Runge–Kutta algorit
is 0.5 ms. Snapshots of the wave field at 0.6 s are show
Fig. 2. The faster P and S waves and planar head waves
be seen in the snapshots. Strong converted waves, interp
as slow waves, can be observed in the lower medium.
high amplitudes of the slow waves at low frequencies can
due to the very high permeability of the ice frame
31024 m2).

IX. CONCLUSIONS

A theory was developed to study the processes of de
mation and wave propagation in porous media compose
three interacting phases~two solids and one fluid!, for the
case of spatially variable porosity. The model, based on
principles, can be generalized to the case of multiple s
constituents. Appropriate constitutive relations were est
lished, and equivalence between the elastic moduli and th
corresponding to the uniform porosity case, given in pre
ous formulations, was found, which can also be related
known petrophysical models. Using the classical Lagrang
approach, the differential equations of motion were obtain
J. Acoust. Soc. Am., Vol. 115, No. 6, June 2004
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and the problem of existence and uniqueness of the solu
under appropriate initial and boundary conditions was a
lyzed. It was shown that five wave modes can propagat
this composite medium~three compressional and two she
waves!.

The model was applied to the study of two geophysi
problems. First, the phase velocities of the faster waves
shaley sandstone were computed for different values of w
saturation and clay content. The predictions of our mo
agree very well with the observations. The second appl
tion consists of the numerical simulation of the wave fie
generated by a point source within a frozen sandstone w
variable ice content. The simulation reveals strong wa
mode conversions, indicating that the model can be usefu
study the freezing conditions of porous media.

In future works simulations in heterogeneous media w
be performed and the effects that the slow waves~modes!

FIG. 2. Snapshots of the particle velocities of the frame~a! and particle
velocity of the fluid relative to the solid phases~b! at 0.6 s. The upper
medium is unfrozen and the lower medium has an ice content of 90%.
source is a vertical force in the frame with a central frequency of 12 Hz
location is 380 m above the interface. The ratio maximum amplitude in~a!
to maximum amplitude in~b! is 547.
2757Santos et al.: Wave propagation in composite saturated solids
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have on the faster modes will be analyzed. The present p
has been written to obtain~and justify! the differential equa-
tions for such media.
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APPENDIX A: A FORM OF COMPUTING THE
COEFFICIENTS IN THE CONSTITUTIVE RELATIONS

This section presents a form of evaluating the coe
cients in the stress–strain relations~4.6!–~4.8!, which com-
bined with Eq.~4.9! yield the values of the coefficients fo
this new variable porosity formulation.

Let Ks1,m , Ks3,m , ms1,m , andms3,m denote the bulk and
shear modulus of the two solid~dry! frames, respectively. In
Appendices A1 and A2 it is indicated how to determine the
moduli for the two examples presented in this paper. Also,
Ks1 , ms1 , Ks3 , ms3 denote the bulk and shear moduli of th
grains in the two solid phases, respectively, and letK f denote
the bulk modulus of the fluid phase. For the coefficientsm1 ,
m3 , andm13 the formulas given in Ref. 4 were used:

m j5@~12gj !f j #
2mav1ms j,m , gj5

ms j,m

f jms j
, j 51,3,

m135~12g1!~12g3!f1f3mav, ~A1!

mav5F ~12g1!f1

ms1
1

f

2vh
1

~12g3!f3

ms3
G21

,

whereg1 andg3 are the so-called shear consolidation co
ficients of the solid frames 1 and 3.6 The symbolv in the
definition of mav above denotes the angular frequency.

Also, sinceK25f2Kav, @cf. Eq. ~4.5!#, to determineK2

the following expression forKav given in Ref. 4 is used:

Kav5F ~12c1!
f1

Ks1
1

f

K f
1~12c3!

f3

Ks3
G21

. ~A2!

The remaining elastic coefficients are given by4

K j5@~12cj !f j #
2Kav1Ks j,m , cj5

Ks j,m

f jKs j
, j 51,3,

~A3!
C125~12c1!f1fKav,

C135~12c1!~12c3!f1f3Kav,

C235~12c3!ff3Kav,

wherec1 , c3 are the bulk consolidation coefficients of th
solid frames 1 and 3.

These elastic moduli for constant porosity can be rew
ten in terms of a set of coefficients analogous to those gi
by Gassmann22 as follows:

K j5KG j22a jSjfKav1~Sjf!2Kav, j 51,3,
~A4!

C125fKav~a12S1f!, C235fKav~a32S3f!,

C135Kav~a12S1f!~a32S3f!,

where
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KG j5Ks j,m1~a j !
2Kav, a j5Sj2

Ks j,m

Ks j
, j 51,3.

~A5!

The moduli KG1 and KG3 are analogous to Gassmann
modulus~a calculation shows thatKG j5H j , H j , j 51,3),
while the coefficientsa1 anda3 correspond to the effective
stress coefficients in the classic Biot theory.10,13The bulk and
shear moduliKs1,m , Ks3,m , ms1,m andms3,m in Eqs.~A1! and
~A5! can be determined in several fashions. In some ca
they can be obtained from the measurements of comp
sional and shear wave velocities on the empty rock or al
natively, they can be estimated using known petrophys
models. The procedure used in this paper to determine th
moduli for the cases of shaley sandstones and frozen po
media is indicated in the following.

1. The case of shaley sandstones

The porosity dependence of the sand and clay~dry! ma-
trices is consistent with the concept of critical porosity, sin
the moduli should vanish above a certain value of the por
ity ~usually from 0.4 to 0.5!. This dependence is determine
by the empirical coefficientA in Eq. ~A6!. In some rocks
there is an abrupt change of rock matrix properties with
addition of a small amount of clay, attributed to softening
cements, clay swelling, and surface effects.23 That is, the
wave velocities decrease significantly when the clay con
increases from 0 to a few percentages. In order to model
effect, the shear modulus of the sand matrix is multiplied
a factor depending on the empirical coefficienta in Eq. ~A7!
~this factor tends to 1 whena→`). If V1 represents the san
andV3 the clay minerals, then the bulk and shear moduli
the sand and clay~dry! matrices are assumed to satisfy

Ks j,m5SjKs j~12f!11A/~12f!, j 51,3, ~A6!

ms1,m5exp$2@~12S3!S3!#a%Ks1,mms1 /Ks1 ,
~A7!

ms3,m5Ks3,mms3 /Ks3 .

2. The case of frozen porous media

Following Refs. 6 and 4 it is assumed thatKs1,m is
known, and that the other modulus may be computed usin
percolation-type model with critical exponent 3.8.24 As ex-
plained by Leclaireet al.,6 the percolation theory is use
here to describe the transition of a system from the conti
ous to the discontinuous state, which is governed by a po
law independent of the system material. Hence,ms1,m , ms3,m

andKs3,m are obtained using

ms j,m5@ms j,m
~max!2ms j,m

0 #F f3

12f1
G3.8

1ms j,m
0 , j 51,3,

~A8!

Ks3,m5@Ks3,m
~max!2Ks3,m

0 #F f3

12f1
G3.8

1Ks3,m
0 ,

wherems1,m
(max), ms3,m

(max), andKs3,m
(max) are computed using Kuste

and Tokso¨z’s model,25 taking the known values ofKs1 , ms1 ,
Ks3 , ms3 for the background medium with inclusions of a
with propertiesKa , ma . For the solid matrixV1 the concen-
tration of inclusions isc512f1 and for the ice matrixV3
Santos et al.: Wave propagation in composite saturated solids
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we consider that the water is totally frozen, i.e.,c5f1 . The
moduli ms1,m

0 , ms3,m
0 , andKs3,m

0 are appropriate reference va
ues. Here it is assumed that4

Ks3,m
0 5ms3,m

0 50. ~A9!

For variable temperatures, the porosity~or water proportion!
may be computed as function of temperature using the
pressions given in Refs. 6 and 4.

APPENDIX B: IDENTIFICATION OF THE MASS AND
DISSIPATIVE COEFFICIENTS FROM PREVIOUS
FORMULATIONS

In this section it is shown that under the assumption
uniform porosity from Eqs.~5.17! to ~5.19! the equations of
motion in the form presented in Refs. 6 and 4 are obtain

First, use Eqs.~2.7! and ~5.18! in Eq. ~5.17! to obtain

]

]xj
s i j

~1!5~p1122S1fp121~S1f!2p22!)üi
~1!1f~p12

2S1fp22!üi
~2!1~p132S1fp232S3fp12

1S1S3~f!2p22!üi
~3!2f~ f 121S1f f 22!

3~ u̇i
~2!2u̇i

~1!!2~ f 111~S12S3!f f 12

2S1S3~f!2f 22!~ u̇i
~3!2u̇i

~1!!. ~B1!

Next, settings52fpf , it follows from Eq. ~5.18! that

]

]xi
s5f~p122S1fp22!)üi

~1!1~f!2p22üi
~2!1f~p23

2S3fp22!üi
~3!1f~ f 121S1f f 22!~ u̇i

~2!2u̇i
~1!!

1f~S3f f 222 f 12!~ u̇i
~2!2u̇i

~3!!. ~B2!

Also, using Eqs.~2.7! and ~5.18! in Eq. ~5.19! yields

]

]xj
s i j

~3!5~p132S1fp232S3fp121S1S3~f!2p22!üi
~1!

1f~~p232S3fp22!üi
~2!1~p3322S3fp23

1~S3f!2p22!üi
~3!2f~S3f f 222 f 12!

3~ u̇i
~2!2u̇i

~3!!1~ f 111~S12S3!f f 12

2S1S3~f!2f 22!~ u̇i
~3!2u̇i

~1!!. ~B3!

Using the expressions given in Eq.~5.22! a calculation
shows the following equivalence between the mass co
cients defined in Ref. 4 and the new coefficientspi j :

r11[p1122S1fp121~S1f!2p22

5r1f1a131r2f2~a1221!1r3f3~a3121!,

r12[f~p122S1fp22!52r2f~a1221!),

r13[p132S1fp232S3fp121S1S3~f!2p22

52r1f1~a1321!2r3f3~a3121!,

~B4!
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r22[~f!2p225r2f2~a121a3221!,

r23[f~p232S3fp22!52r2f~a3221!,

r33[p3322S3fp231~S3f!2p22

5r1f1~a1321!1r2f2~a3221!1r3f3a31.

The expressions for the mass-coupling coefficientsr i j in Eq.
~B4! coincide with those given by Carcione and Tinivella.4

Next let us give a procedure to choose the dissipat
coefficientsf 11, f 22, and f 12. For the case of frozen porou
media, following Ref. 4, the dissipation coefficientsb12,
b23, andb13 are defined as follows:

b125~f!2
h

k1
, b235~f!2

h

k3
,

~B5!
b135friction coefficient between the ice

and the solid frames,

whereh denotes the fluid viscosity and the permeability c
efficientsk1 , k3 are defined in terms of the absolute perm
abilities k1,0, k3,0 of the two solid frames by~see also Ref.
6!

k15k1,0

~f!3

~12f1!3
, k35k3,0

~12f1!2

f3
2 S f

f1
D 3

. ~B6!

For the case of shaley sandstones, following Ref. 1
coefficient b13 can be assumed to be zero and the fricti
coefficientsb12 andb23 are taken to be of the form:

b12545hRs1
22f21~12f!f1 ,

b23545hRs3
22f21~12f!f3 , ~B7!

whereRs1 , Rs3 denote the average radii of the sand and c
particles, respectively. These expressions are given in
pendix B3 of Carcioneet al.1 ~but in that paper the viscou
drag coefficients are respectively denoted byb11 andb33).

It follows from Eqs. ~B1! to ~B3! that to recover the
uniform porosity formulation in Ref. 4 the coefficientsf 11,
f 22, and f 12 must be taken to satisfy the following nonsin
gular system of equations:

f 111~S12S3!f f 122S1S3~f!2f 225b13,

f~S3f f 222 f 12!5b23, ~B8!

f~ f 121S1f f 22!5b12.

The coefficientsf 11, f 12, andf 22 are determined by Eq.~B8!
with the coefficientb13 left as a free parameter chosen so th
the condition

f 11f 222 f 12
2 >0 ~B9!

is satisfied, which is needed in order to have a non-nega
dissipation functionD in the variables (u̇i

(3) 2u̇i
(1) ), andẇi .

Since the coefficientb13 takes into account friction betwee
the two solid phases, a proper model based, for example
Coulomb’s friction theory may be used, but this problem
beyond the scope of this work. For simplicity in all the n
merical examples presented in this article the coefficientb13

was set to be zero.
2759Santos et al.: Wave propagation in composite saturated solids
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