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Abstract

In this paper an assumed strain approach is presented in order to improve the membrane behaviour of a thin shell

triangular element. The so called Basic Shell Triangle (BST) has three nodes with only translational degrees of freedom

and is based on a Total Lagrangian Formulation. As in the original BST element the curvatures are computed resorting

to the surrounding elements (patch of four elements). Membrane strains are now also computed from the same patch of

elements which leads to a non-conforming membrane behaviour. Despite this non-conformity the element passes the

patch test. Large strain plasticity is considered using a logarithmic strain–stress pair. A plane stress behaviour with

an additive decomposition of elastic and plastic strains is assumed. A hyperplastic law is considered for the elastic part

while for the plastic part an anisotropic quadratic (Hill) yield function with non-linear isotropic hardening is adopted.

The element, termed EBST, has been implemented in an explicit (hydro-)code adequate to simulate sheet-stamping

processes and in an implicit static/dynamic code. Several examples are given showing the good performance of the

enhanced rotation-free shell triangle.
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1. Introduction

Development of efficient and robust shell finite elements for modelling large-scale industrial applications

have been a field of constant research in the last 30 years. The continuing efforts of many scientists have

focused in the direction of deriving simple elements (preferably triangles) applicable to large scale compu-
tation, typical of practical shell problems. Some recent successful shell triangles are reported in [1,2]. For a

comprehensive review of shell elements see [3]. From the theoretical point of view Kirchhoff hypothesis are

enough for the simulation of the essential aspects of most shells problems, including structures in civil,

mechanical and naval engineering, sheet metal forming, crash-worthiness analysis and others. Due to the

well-known difficulties associated to C1 continuity, ‘‘thick shell’’ approaches which need C0 continuity only

have been extensively used, although they are computationally more expensive due to the number of de-

grees of freedom necessary to obtain thin solutions with a similar precision. The development of shell ele-

ments without transversal shear strains then collides with the need for C1 continuity which is not simple to
satisfy in general conditions and has led to the development of non-conforming approaches. Among the

many options of this kind, the use of shell elements with only displacements as degrees of freedom (rota-

tion-free) is very attractive.

Few shell elements exists in the literature with only translations as degrees of freedom. They are generally

based on non-conforming approaches. A state of the art can be found in [1]. Recently Cirak and Ortiz [2]

have developed a conforming thin shell element, but it departs in some aspects from the standard finite ele-

ment formulation. The use of rotation-free shell elements in large scale simulations of sheet metal forming

processes is expanding [3–6], specially in explicit integration codes.
In [7] we presented a thin shell triangular element with only displacements as degrees of freedom, based

on a total Lagrangian formulation. The element is an extension of the rotation-free Basic Shell Triangle

(BST) originally developed by Oñate and Zárate [1] using an updated Lagrangian formulation. The element

has three nodes and a linear approximation of the displacement field. The membrane part is identical to the

standard constant strain triangle. The bending part is also constant and is computed from an integration

over the element boundary using information from the deflection gradients of the adjacent elements.

This leads to a non-conforming element for the bending part, but it converges to the right solution and

is robust. The BST element has a very good performance in bending for structured meshes, but it is less
accurate for irregular grids. On the other hand, for membrane dominated problems, as is the case for most

sheet metal forming simulations, it requires fine discretizations associated to the constant strain triangle

behaviour.

In this paper an extension of the rotation-free BST element is presented. The displacement gradient

terms needed for the membrane and bending strains are computed from the nodal displacements of a patch

of element using a new procedure. This allows to improve the membrane behaviour and obtain a smoother

curvature field. The outline of this paper is as follows. In Sections 2 and 3 we introduce the kinematics of

the shell and the constitutive models used in the numerical simulations. Sections 4–6 describe the finite ele-
ment approximation, including the new proposal for the gradient evaluation from a patch of elements, the

computation of the metric tensor, the curvatures and the derivation of the necessary element expressions for

the computer implementation. Sections 7 and 8 summarize the numerical experiments performed in the lin-

ear and non-linear range. Numerical results demonstrate the excellent performance of this enhanced three

node rotation-free shell triangle.
2. Shell kinematics

A summary of the most relevant hypothesis related to the kinematic behaviour of the shell are presented.

Further details may be found in the wide literature dedicated to this field [8].
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Let us consider a shell with undeformed mid surface occupying the domain X0 in R3 with a boundary C0.

At each point of the mid surface a thickness h0 is defined. The positions x0 and x of any point in the unde-

formed and the deformed configurations can be respectively written as a function of the position of the mid

surface u and the normal t3 at the point as
x0ðn1; n2; n3Þ ¼ u0ðn1; n2Þ þ n3t
0
3ðn1; n2Þ; ð1Þ

xðn1; n2; n3Þ ¼ uðn1; n2Þ þ n3kt3ðn1; n2Þ; ð2Þ
where n1, n2 are curvilinear local coordinates defined over the mid surface of the shell, and n3
� h0

2
6 n3 6

h0
2

� �
is the distance in the undeformed configuration of the point to the mid surface. The prod-

uct n3k is the distance between the point and the mid surface measured on the deformed configuration. This

implies a constant strain in the normal direction associated to the parameter k relating the thickness at the

present and initial configurations, i.e.
k ¼ h

h0
: ð3Þ
A convective system is defined at each point as
aiðnÞ ¼
ox

oni
; ð4Þ

aaðnÞ ¼
oðuðn1; n2Þ þ n3kt3Þ

ona
¼ u0a þ n3ðkt3Þ0a; ð5Þ

a3ðnÞ ¼
oðuðn1; n2Þ þ n3kt3Þ

on3

¼ kt3: ð6Þ
This can be particularized for the points on the mid surface as (a, b = 1, 2)
aaðn3 ¼ 0Þ ¼ u0a; ð7Þ

a3ðn3 ¼ 0Þ ¼ kt3: ð8Þ
This allows to introduce the covariant (first fundamental form) metric tensor of the mid surface as
aab ¼ u0a � u0b ð9Þ
and the curvatures (second fundamental form) of the mid surface as
jab ¼ 1
2
ðu0a � t30b þ u30b � t30aÞ: ð10Þ
The deformation gradient can be written as
F ¼ a1 a2 a3½ 	 ¼ u01 þ n3ðkt3Þ01 u02 þ n3ðkt3Þ02 kt3½ 	: ð11Þ
The product FTF = U2 = C (where U is the right stretch tensor, and C the right Cauchy–Green deformation

tensor) is
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U2 ¼
uT

01 þ n3ðkt3ÞT01
uT

02 þ n3ðkt3ÞT02
ktT3

2
64

3
75 u01 þ n3ðkt3Þ01 u02 þ n3ðkt3Þ02 kt3½ 	

¼
u01 � u01 u01 � u02 0

u01 � u02 u02 � u02 0

0 0 k2

2
64

3
75þ n3k

2u01 � t301 u01 � t302 þ u02 � t301 0

u01 � t302 þ u02 � t301 u02 � t302 0

0 0 0

2
64

3
75

þ n2
3k

2

t301 � t301 t301 � t302 0

t301 � t302 t302 � t302 0

0 0 0

2
64

3
75; ð12Þ
where the derivatives of the thickness ratio k0a have been neglected. Neglecting also the term associated to n2
3

and introducing the definition of the covariant metric tensor aab at the mid surface and the curvatures jab

gives
U2 ¼
a11 þ 2j11n3k a12 þ 2j12n3k 0

a12 þ 2j12n3k a22 þ 2j22n3k 0

0 0 k2

2
64

3
75: ð13Þ
Above expression shows that U2 is no the unit tensor at the original configuration for curved surfaces

ðj0
ij 6¼ 0Þ. The changes of curvature of the mid surface are computed by
vab ¼ jab � j0
ab: ð14Þ
For computational convenience the following approximate expression (which is exact for initially flat

surfaces) will be adopted:
U2 ¼
a11 þ 2v11n3k a12 þ 2v12n3k 0

a12 þ 2v12n3k a22 þ 2v22n3k 0

0 0 k2

2
64

3
75: ð15Þ
Above expression of U2 is useful to compute different Lagrangian strain measures. An advantage of
these measures is that they are associated to material fibres, what makes it easier to take into account mate-

rial anisotropy. It is also useful to compute the eigen decomposition of U as
U ¼
X3
i¼1

ki ri � ri; ð16Þ
where ki and ri are the eigenvalues and eigenvectors of the right stretch tensor U.

In order to treat plasticity at finite strains an adequate stress-strain pair must be used. The Hencky meas-

ures will be adopted here. The (logarithmic) strains are defined as
Eln ¼
e11 e21 0

e12 e22 0

0 0 e33

2
64

3
75 ¼

X3
i¼1

lnðkiÞri � ri: ð17Þ
Consistently, the Hencky stress tensor T will be used as the stress measure. Using a total Lagrangian

formulation it is convenient to work with the second Piola–Kirchhoff stresses (S) for the evaluation of
the residual forces. We define the rotated tensors as
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TL ¼ RT
L TRL;

SL ¼ RT
L SRL;

ð18Þ
where RL is the rotation tensor obtained from the eigenvectors of U given by
RL ¼ r1 r2 r3½ 	: ð19Þ
The relation between the Hencky and Piola–Kirchhoff stresses is
½SL	aa ¼
1

k2
a

½T L	aa;

½SL	ab ¼ lnðka=kbÞ
1
2
ðk2

a � k2
bÞ
½T L	ab:

ð20Þ
The second Piola–Kirchhoff stress tensor can be finally computed with
S ¼ RLSLR
T
L : ð21Þ
The generalized stresses (forces and moments) are obtained by integrating through the original thickness

the second Piola–Kirchhoff stress tensor using the actual distance to the mid surface for the evaluation of

the bending moments, i.e.
N ¼
Z
h0
Sdn3; ð22aÞ

M ¼
Z
h0
Skn3 dn3: ð22bÞ
With these values the weak form of the equilibrium equations can be written as
dP ¼
Z

X0

½dE : Nþ dK :M	dX0 þ dPext ¼ 0; ð23Þ
where dK is the virtual curvature tensor and dE is the virtual Green–Lagrange strain tensor of the mid sur-

face, with
Eab ¼ 1
2
ðaab � dabÞ: ð24Þ
3. Constitutive models

In this section, a brief description of the constitutive models used in the numerical examples presented in

Sections 7 and 8 is given. Two types of materials are described: an elastic–plastic material associated to thin

rolled metal sheets and a hyper-elastic material for rubbers.
In the case of metals, where the elastic strains are small, using a logarithmic strain measure reasonably

allows to adopt an additive decomposition of elastic and plastic components as
Eln ¼ Ee
ln þ E

p
ln: ð25Þ
A constant linear relation between (plane) stresses and elastic strains is also adopted giving
T ¼ CEe
ln: ð26Þ
These constitutive equations are integrated using a standard return algorithm. The following Mises–Hill

[9] yield function with initial anisotropy and non-linear isotropic hardening is adopted:
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ðGþ HÞT 2
11 þ ðF þ HÞT 2

22 � 2HT 11T 22 þ 2NT 2
12 ¼ jðe0 þ epÞn; ð27Þ
where F, G, H and N define the non-isotropic shape of the yield surface and the parameters j, e0 and n

define its size as a function of the effective plastic strain ep.

The Mises–Hill yield function has the advantage of simplicity and it allows, as a first approximation, to

treat rolled thin metal sheets with planar and transversal anisotropy.
For rubbers, the Ogden [10] model extended to the compressible range is considered. The material

behaviour is characterized by the strain energy density per unit undeformed volume of the form
w ¼ K
2
ðln JÞ2 þ

XN
p¼1

lp

ap
J�ap

3

X3
i¼1

kap�1
i

 !
� 3

" #
; ð28Þ
where K is the bulk modulus of the material, J is the determinant of U, N, li and ai are material parameters,

li, ai are real numbers such that liai > 0 ("i = 1, N) and N is a positive integer.
The stress measures associated to the principal logarithmic strains are denoted by bi. They can be com-

puted noting that
bi ¼
owðKÞ
oðln kiÞ

¼ Kðln JÞ þ ki

XN
p¼1

lpJ
�ap

3 kap�1
i � 1

3

1

ki

X3
j¼1

kap
j

 !
ð29Þ
we define now
ap ¼
X3
j¼1

kap
j ð30Þ
which gives
bi ¼ Kðln JÞ þ
XN
p¼1

lpJ
�ap

3 kap
i � 1

3
ap

� �
: ð31Þ
The values of bi, expressed in the principal strains directions, allow to evaluate the stresses in the con-
vective coordinate system as
T ¼
X3
i¼1

bi ri � ri: ð32Þ
We note that the Hencky stress tensor T can be easily particularized for the plane stress case to use in con-
junction with the thin shell theory.
4. Interpolation functions and gradient evaluation

The starting point of the enhanced rotation-free of BST element is to discretize the shell surface with a

standard 3-node triangular mesh. The difference with a standard finite element method is that, for the com-

putation of strains within an element, the configuration of the three adjacent triangular elements is used.
Then at each triangle a patch of four elements, formed by the central triangle and the three adjacent ones

is considered (see Fig. 1a). This allows to define a quadratic interpolation of the geometry from the position

of the 6 nodes. In the isoparametric space, we keep the vertices of the 3-node master element (standard lin-

ear triangle) with the positions
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• node 1: (g1, g2) = (0, 0)

• node 2: (g1, g2) = (1, 0)

• node 3: (g1, g2) = (0, 1)

and the three additional nodes that complete the patch with the positions

• node 4: (g1, g2) = (1, 1)

• node 5: (g1, g2) = (�1, 1)

• node 6: (g1, g2) = (1, �1)

It is possible to define now a set of (non-standard) quadratic shape functions over the six node element,

introducing g3 = 1 � g1 � g2, as
N 1 ¼ g3 þ g1g2; N 4 ¼ g3

2
ðg3 � 1Þ;

N 2 ¼ g1 þ g2g3; N 5 ¼ g1

2
ðg1 � 1Þ;

N 3 ¼ g2 þ g3g1; N 6 ¼ g2

2
ðg2 � 1Þ;

ð33Þ
and
u ¼
X6
I¼1

NIðg1; g2ÞuI : ð34Þ
This interpolation allows to compute the displacement gradients at selected points in order to use an as-

sumed strain approach. The computation of the gradients is performed at three points over the boundaries

of the central element of the patch. These points are located at the mid-point of each side, denoted G1, G2

and G3 in Fig. 1b. This choice has the following characteristics:

• Gradients at these points depend only on the nodes pertaining to the two elements adjacent to the

side. This can be easily verified by sampling the derivatives of the shape functions at each mid-side

point.
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• When gradients are computed at the common mid-side point from two adjacent elements, the same val-

ues are obtained, since the coordinates of the same four points are used. That is, the gradients at the mid-

side points are independent of the element where they are computed. A side-oriented implementation of

the finite element could lead to a unique evaluation of the gradients per side.

Next, some details of the implementation are presented. We denote by t1 and t2 the orthogonal unit vec-

tors over the tangent plane (undeformed configuration) associated to a conveniently selected local Carte-

sian system. The Cartesian derivatives of the shape functions are computed at the original configuration

by the standard expression
NI
01

NI
02

" #
¼ J�1

NI
0g1

NI
0g2

" #
; ð35Þ
where the Jacobian matrix at the original configuration is
J ¼
uð0Þ

0g1 � t1 u
ð0Þ
0g2 � t1

u
ð0Þ
0g1 � t2 u

ð0Þ
0g2 � t2

" #
: ð36Þ
With the previous definitions the deformation gradient on the mid surface, associated to an arbitrary

spatial Cartesian system and to the material Cartesian system defined on the mid surface, is
½u01;u02	 ¼ ½u0g1 ;u0g2 	J
�1: ð37Þ
The covariant metric tensor can be computed from above expression as
g ¼
a11 a12
a21 a22

� �
¼

u01 � u01 u01 � u02

u02 � u01 u02 � u02

� �
: ð38Þ
The components of g can be used to compute any convenient membrane strain measures. For example

the Green–Lagrange strain tensor is obtained by
EGL ¼
1

2

u01 � u01 � 1 u01 � u02

u02 � u01 u02 � u02 � 1

� �
¼ 1

2

a11 � 1 a12
a21 a22 � 1

� �
: ð39Þ
In the usual FEM matrix notation
E11

E22

2E12

2
64

3
75 ¼ 1

2

u01 � u01 � 1

u02 � u02 � 1

2u01 � u02

2
64

3
75: ð40Þ
The virtual strains are obtained by the variation of above expression as
d

E11

E22

2E12

2
64

3
75 ¼

u01 � du01

u02 � du02

u01 � du02 þ du01 � u02

2
64

3
75: ð41Þ
At the sides of elements where the adjacent element does not exist (i.e. at the boundaries of the shell), the

gradient on that side is made equal to the gradient computed over the 3 nodes of the central element of the

patch. From the definition of the gradients at the three mid-side points of the triangle, the element formu-

lation can be interpreted as an assumed strain approach, where the metric tensor is interpolated over the
element using the values computed on the sides by
gðg1; g2Þ ¼ ð1� 2g3Þg1 þ ð1� 2g1Þg2 þ ð1� 2g2Þg3: ð42Þ
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The above election for the evaluation of strains leads to an element that satisfies the patch test. Some

other possibilities have been explored by the authors but they are difficult to extend to the non-linear range

or do not pass the patch test.
5. Computation of curvatures

The curvatures are assumed to be constant over the element. They are computed by performing an aver-

age over the central element as
jab ¼ �1

AM

Z
AM
t3 � u0ba dA

M ; ð43Þ
where AM is the original area of the element (index M refers to the central element of the patch).

Integrating by parts Eq. (43), the following integral over the element boundary CM is obtained (see fur-
ther details about nb after Eq. (48)):
jab ¼ �1

AM

I
CM
t3 � u0a nb dCM : ð44Þ
The three distinct components of the curvature tensor are
j11

j22

2j12

2
64

3
75 ¼ �1

AM

I
CM

n1 0

0 n2
n2 n1

2
64

3
75 t3 � u01

t3 � u02

� �
dCM : ð45Þ
The numerical evaluation of the boundary integral in Eq. (45) results in a sum over the integration points

on the element boundary which are, in fact, the same points used for the computation of the gradients in the

membrane formulations, i.e.
j11

j22

2j12

2
64

3
75 ¼ �1

AM

X3
G¼1

lG

n1 0

0 n2
n2 n1

2
64

3
75

G

uG
01 � t3

uG
02 � t3

� �
: ð46Þ
For the definition of t3, instead of the quadratic interpolation (34), a linear interpolation over the central

element is used. In this case the tangent plane components are (with ai and bi being the usual Cartesian

projections of the sides when area coordinates are used)
u01

u02

� �M
¼ 1

2AM

X3
i¼1

�bi
ai

� �
ui ¼

N
1

01 N
2

01 N
3

01

N
1

02 N
2

02 N
3

02

" # u1

u2

u3

2
64

3
75; ð47Þ

t3 ¼
uM

01 � uM
02

uM
01 � uM

02j j ¼ kuM
01 � uM

02 : ð48Þ
From these expressions it is also possible to compute in the original configuration the element area AM,

the outer normals (n1, n2)
i at each side and its lengths li. Eq. (48) also allows to evaluate the thickness ratio k

in the deformed configuration and the actual normal t3. In Eq. (47), N
I
are the linear shape functions of the

three node linear triangle [11].

As one integration point is used over each side, it is not necessary to distinguish between sides (I) and

integrations points (G) any more. In this way the curvatures can be computed by
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j11

j22

2j12

2
64

3
75 ¼ �1

AM

X3
I¼1

lI

n1 0

0 n2
n2 n1

2
64

3
75

G

uI
01 � t3

uI
02 � t3

� �
ð49Þ

¼ 2
X3
I¼1

N
I
01 0

0 N
I
02

N
I
02 N

I
01

2
664

3
775 uI

01 � t3
uI

02 � t3

� �
: ð50Þ
In the original BST element [1,7] the gradient normal component at each side uI
n was computed as the

average of the linear approximations over the two adjacent elements. In this new version, the gradient is

computed at each side I from the quadratic interpolation
u01

u02

� �I
¼ N 1

01 N 2
01 N 3

01 NIþ3
01

N 1
02 N 2

02 N 3
02 NIþ3

02

" #I u1

u2

u3

uIþ3

2
6664

3
7775: ð51Þ
On one hand, this is computationally more efficient as these gradients are already calculated for the

membrane strains. On the other hand this approach leads to a smoother computation of curvatures and
moments.

Note again than at each side the gradients depend only on the positions of the three nodes of the central

triangle and of an extra node (I + 3), associated precisely to the side (I) where the gradient is computed.

Then it is convenient for future use to rewrite (51) as
u01

u02

� �I
¼ N 1ðIÞ

01 N 2ðIÞ
01 N 3ðIÞ

01 N 4ðIÞ
01

N 1ðIÞ
02 N 2ðIÞ

02 N 3ðIÞ
02 N 4ðIÞ

02

" # u1

u2

u3

u4

2
6664

3
7775

ðIÞ

¼
X4
J¼1

NJðIÞ
01

NJðIÞ
02

" #
uJðIÞ ð52Þ
denoting by an index I surrounded by parentheses when the local to the side numeration is used.
An alternative form to express the curvatures, which is useful when their variations are needed, is to de-

fine the vectors:
hab ¼
X3
I¼1

ðNI
0a uI

b þ N
I
0b uI

aÞ: ð53Þ
This gives
jab ¼ hab � t3: ð54Þ

This last expression allows to interpret the curvatures as the projections of the vectors hij over the normal

of the central element. Direction t3 can be seen as a reference direction. If a different direction is chosen, at

an angle h with the former, this has an influence of order h2 in the projection. This justifies Eq. (48) for the
definition of t3 as a function exclusively of the three nodes of the central triangle, instead of the 6-node iso-

parametric interpolation (34).
5.1. Variation of the curvatures

From Eq. (54) the variation of the curvatures is obtained as
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djab ¼ dhab � t3 þ hab � dt3: ð55Þ

The first term is crucial in the evaluation of the curvatures variation. The variations of hab are
dhab ¼
X3
I¼1

ðNI
0a duI

0b þ N
I
0b duI

0aÞ; ð56Þ
where
du01

du02

� �I
¼
X4
J¼1

NJðIÞ
01

NJðIÞ
02

" #
duJðIÞ: ð57Þ
The variations of t3 can be computed as shown in the original BST element [7].
dt31 ¼ �t3 � duM
01 ;

dt32 ¼ �t3 � duM
02

ð58Þ
leading to
dt3 ¼ dt31~u01 þ dt32~u02; ð59Þ

where ~u0a are the contravariant base vectors in the central triangle
~u01 ¼ kuM
02 � t3;

~u02 ¼ �kuM
01 � t3:

ð60Þ
Then we have
dt3 ¼ð�t3 � duM
01 Þ~u01 þ ð�t3 � duM

02 Þ~u02

¼�
X3
J¼1

½NJ
01~u01 þ N

J
02~u02	ðt3 � duJÞ: ð61Þ
Substituting the last expression in Eq. (55), results
dj11

dj22

2dj12

2
64

3
75 ¼ 2

X3
I¼1

N
I
01 0

0 N
I
02

N
I
02 N

I
01

2
664

3
775X

4

J¼1

NJðIÞ
01 ðt3 � duJðIÞÞ

NJðIÞ
02 ðt3 � duJðIÞÞ

" #
� 2

X3
I¼1

ðNI
01q

1
11 þ N

I
02q

2
11Þ

ðNI
01q

1
22 þ N

I
02q

2
22Þ

ðNI
01q

1
12 þ N

I
02q

2
12Þ

2
664

3
775ðt3 � duIÞ; ð62Þ
where the projections of the vectors hab over the contravariant base vectors ~u0a have been included
qd
ab ¼ hab � ~u0d: ð63Þ
These projections together with Eq. (54) allows to write
hab ¼
X2
d¼1

qd
ab u0d þ jabt3: ð64Þ
5.2. Boundary conditions

Elements at the domain boundary, where an adjacent element does not exist, deserve a special attention.

The treatment of essential boundary conditions associated to translational constraints is straightforward, as

they are the natural degrees of freedom of the element. The conditions associated to the normal vector are

crucial in this formulation. For clamped sides or symmetry planes, the normal vector t3 must be kept fixed



Fig. 2. Local cartesian system for the treatment of boundary conditions.
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(clamped case), or constrained to move in the plane of symmetry (symmetry case). The former case can be

seen as a special case of the latter, so we will consider symmetry planes only. This restriction can be imposed

through the definition of the tangent plane at the boundary, including the normal to the plane of symmetry
u

ð0Þ
0n that does not change during the process.

The tangent plane at the boundary is expressed in terms of two orthogonal unit vectors referred to a

local-to-the-boundary Cartesian system (see Fig. 2) defined as
½uð0Þ
0n ; �u0s	; ð65Þ
where vector u
ð0Þ
0n is fixed while direction �u0s emerges as the intersection of the symmetry plane with the

plane defined by the central element (M). The plane (gradient) defined by the central element is
½uM
01 ; uM

02 	; ð66Þ

the intersection of this plane with the plane of symmetry can be written in terms of the position of the nodes

that define the side (J and K) and the original length of the side L0, i.e.
u0s ¼
1

L0

ðuK � uJ Þ: ð67Þ
That together with the outer normal to the side n = [n1, n2]
T (resolved in the selected original convective

Cartesian system) leads to
½uI
01; uI

02	 ¼ ½u0n; u0s	
n1 n2
�n2 n1

� �
; ð68Þ
where the normal component of the gradient u0n is
u0n ¼
u

ð0Þ
0n

kju0sj
: ð69Þ
In this way the contribution of the gradient at side I to vectors hab results in
hT11

hT22

2hT12

2
64

3
75

I

¼ 2

N
I
01 0

0 N
I
02

N
I
02 N

I
01

2
664

3
775 n1 �n2

n2 n1

� �
uT

0n

uT
0s

" #
: ð70Þ
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The only difference with Eq. (56), necessary for the computation of the curvature variations, is that, now,

the contribution from the gradient at side I is
d

hT11

hT22

2hT12

2
64

3
75

I

¼2

N
I
01 0

0 N
I
02

N
I
02 N

I
01

2
664

3
775 n1 �n2

n2 n1

� � 0
1

Lo
½duK � duJ 	T

2
4

3
5 ð71Þ

¼ 2

L0

�N
I
01n2

N
I
02n1

N
I
01n1 � N

I
02n2

2
664

3
775½duK � duJ 	T; ð72Þ
where the influence of variations in the length of vector u0n has been neglected.

In the case of natural boundary conditions (either free or simple supported) the gradient at the sides is

supposed to be equal to the gradient in the central element, similarly as in the membrane approach, i.e.
½uI
01; uI

02	 ¼ ½uM
01 ; uM

02 	: ð73Þ

Using Eq. (73), vectors hab and their variations can be easily computed. A second possibility is to make

use of the natural boundary condition constraining the normal curvature to a zero value. In simple sup-

ported sides where the curvature along the side is zero, this leads to zero values for both bending moments.
6. Stiffness matrix evaluation

When a predictor–corrector scheme is used to trace the movement of the shell, the derivative (stiffness

matrix) of the weak form of the momentum Eq. (23) is needed. As usual, material and geometric compo-

nents are computed separately. The material part does not offer difficulties and it is computed from the

integral
Z
AM
BTCBdA; ð74Þ
where matrix B = Bm + B/ includes:

(a) a membrane part Bm computed at each mid side point I from
d

E11

E22

2E12

2
64

3
75

I

¼
uT

01 0T3�1

0T3�1 uT
02

uT
02 uT

01

2
64

3
75

I

N 1
01 N 2

01 N 3
01 NIþ3

01

N 1
02 N 2

02 N 3
02 NIþ3

02

" # du1

du2

du3

duIþ3

2
6664

3
7775

¼
uT

01 0T3�1

0T3�1 uT
02

uT
02 uT

01

2
64

3
75

I

N 1ðIÞ
01 N 2ðIÞ

01 N 3ðIÞ
01 N 4ðIÞ

01

N 1ðIÞ
02 N 2ðIÞ

02 N 3ðIÞ
02 N 4ðIÞ

02

" # du1

du2

du3

du4

2
6664

3
7775

ðIÞ

¼ BðIÞ
m duðIÞ ð75Þ
(b) a bending part B/ which results from Eq. (62) that is constant over the element.

In Eq. (74), C is the elasticity matrix integrated in the thickness. If material non-linearity is considered, a

layer wise numerical integration across the thickness is required. This leads to the tangent or algorithmic



920 F.G. Flores, E. Oñate / Comput. Methods Appl. Mech. Engrg. 194 (2005) 907–932
elastic–plastic constitutive matrix Cep. Typically one integration point is used for computing the terms in

Bm in this case, leading to a well conditioned stiffness matrix without spurious zero energy modes.

6.1. Geometric stiffness (membrane part)

The geometric stiffness due to membrane forces results from computing
duTKG
m Du ¼

Z
AM

o

ou
ðdeTNÞDudA: ð76Þ
This can be written as the sum of the contributions of the three sides, i.e.
duTKG
mDu ¼

Z
AM

o

ou
ðdeTÞNDudA ¼ AM

3

X3
K¼1

X4
I¼1

X4
J¼1

½NIðKÞ
01 NJðKÞ

01 N ðKÞ
11 þ NIðKÞ

02 NJðKÞ
02 N ðKÞ

22

þ ðNIðKÞ
01 NJðKÞ

02 þ NIðKÞ
02 NJðKÞ

01 ÞN ðKÞ
12 	duJðKÞ � DuIðKÞ

¼ AM

3

X3
K¼1

X4
I¼1

X4
J¼1

duI N I
01 NI

02
� � N 11 N 12

N 21 N 22

� �
NJ

01

NJ
02

" #
DuJ

( )ðKÞ

: ð77Þ
6.2. Geometric stiffness (bending part)

The geometric stiffness associated to bending moments is much more involved. Its expression stems from
duTKG
b Du ¼

Z
AM

o

ou
dvT
� �

M

� �
DudA: ð78Þ
Recalling expressions (53) and (54) it can be written
duTKG
b Du ¼ AM Mij D d t3 � hij

� �� �
; ð79Þ
where
D½dðt3 � hijÞ	 ¼ Dt3 � dhij þ dt3 � Dhij þ Dðdt3Þ � hij: ð80Þ

The first two terms lead to symmetric components. The second one (dt3 Æ Dhij) can be expressed as
¼ �
X3
J¼1

½NJ
01~u01 þ N

J
02~u02	ðt3 � duJ Þ

( )
�
X3
I¼1

X4
K¼1

N
I
0i N

KðIÞ
0j þ N

I
0j N

KðIÞ
i

� �
DuKðIÞ

( )

¼ �
X3
J¼1

X3
I¼1

X4
K¼1

ðduJÞT½NJ
01ðt3 � ~u01Þ þ N

J
02ðt3 � ~u02Þ	ðN

I
0i N

KðIÞ
0j þ N

I
0j N

KðIÞ
i ÞDuKðIÞ: ð81Þ
Then, a first component of the geometric bending stiffness can be written as
duTKG
b1Du¼AM �

X3
J¼1

ðduJÞT N
J
011 N

J
021

h i t3� ~u01

t3� ~u02

� �( )X3

I¼1
N

I
01 N

I
02

h i M11 M12

M12 M22

� �X4
K¼1

NKðIÞ
01

NKðIÞ
02

" #
DuKðIÞ:

ð82Þ

The last term in (80), can be obtained observing that (sum in a and b)
Dðdt3Þ ¼ ½Dðdt3Þ	1~u01 þ ½Dðdt3Þ	2~u02 þ ½Dðdt3Þ	3t3
¼ �ð~u0a � ~u0bÞ½duT

0a t3 � t3ð ÞDu0b	t3 þ ½duT
0aðt3 � ~u0aÞDu0b	~u0b þ ½duT

0að~u0b � t3ÞDu0b	~u0a ð83Þ
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then
Dðdt3Þ � hij ¼ �ð~u0a � ~u0bÞ½duT
0aðt3 � t3ÞDu0b	ðt3 � hijÞ

þ ½duT
0aðt3 � ~u0aÞDu0b	ð~u0b � hijÞ þ ½duT

0að~u0b � t3ÞDu0b	ð~u0a � hijÞ

¼ duT
0a qb

ijðt3 � ~u0aÞ þ qa
ijð~u0b � t3Þ � aabjijðt3 � t3Þ

n o
Du0b; ð84Þ

Dðdt3Þ � hij ¼
X3
J¼1

X3
K¼1

X2
a¼1

X2
b¼1

N
J
0aN

K
0b½duJ 	

T
Pab

ij DuK ð85Þ
with
Pab
ij ¼ ½�aab jij ðt3 � t3Þ þ qb

ijðt3 � ~u0aÞ þ qa
ijð~u0b � t3Þ	; ð86Þ
where the covariant metric tensor at the mid surface aab has been used.

Denoting the sum
Qab ¼ AM
X2
i¼1

X2
j¼1

Pab
ij Mij ð87Þ
the term
duTKG
b2Du ¼ AM MijðDðdt3Þ � hijÞ ð88Þ
results in
duTKG
b2Du ¼

X3
J¼1

X3
K¼1

X2
a¼1

X2
b¼1

N
J
0aN

K
0b½duJ 	

T
QabDuK : ð89Þ
The last expression (89) has components only in the nodes of the central element, which stems from the

definition used for t3.

Numerical experiments have shown that the bending part of the geometric stiffness is not so important

and can be disregarded in the iterative process.
7. Numerical examples in the linear range

In this section, a summary of the results obtained in the assessment of the proposed element in the

linear range are presented. In this first part of the numerical experiments, results have been obtained with

a static/dynamic code that uses a implicit solution of the discretized equilibrium equations. In the exam-

ples, the original BST element [7] is compared with the enhanced version here proposed, denoted by

EBST when a numerical integration is performed with three points, and EBST1 when only one integra-
tion point is used. Note that one integration quadrature is equivalent to averaging the metric tensors

computed at each side, this does not introduce spurious zero-energy deformation patterns even in coarse

meshes. Also for comparison, results obtained with a variant element (denoted by NBST1) are included.

This element uses the enhanced membrane approach described above with one integration point and the

original BST bending approach. As one of the main features of present formulation is that no rotation

DOFs are used, convergence comparisons are made in terms of the total non-constrained DOFs of the

numerical models.



Fig. 3. Membrane patch test.
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7.1. Membrane patch test

The main object of the present formulation is to obtain a (non-conforming) membrane element with a

similar performance than the linear strain triangle, that satisfies the patch test. To assess this, a square do-
main subjected to nodal forces associated to a constant stress state (in both directions and in shear) is con-

sidered. Fig. 3 shows the patch of elements and the necessary nodal forces to obtain a uniform tensile stress

in direction x1. Note that the nodal forces used correspond to the constant strain triangle, not to the linear

one. For the distorted mesh shown, correct results are obtained using either 1 or 3 integration points.

7.2. Bending patch test (torsion)

The element bending formulation does not allow to apply external bending moments (there are not rota-
tional DOFs). Hence it is not possible to analyse a patch of elements under loads leading to a uniform

bending moment. A uniform torsion can be considered if a point load is applied at the corner of a rectan-

gular plate with two consecutive free sides and two simple supported sides. Fig. 4 shows three patches lead-

ing to correct results both in displacements and stresses. All three patches are structured meshes. When the

central node in the third patch is displaced from the center, the results obtained with the EBST element are

not accurate. The original element BST gives accurate results in all cases, if natural boundary conditions are

imposed in the formulation as in [7]. If this is not the case, wrong results are obtained even with structured

meshes.

7.3. Cook�s membrane problem

This example is used to assess the membrane performance of the EBST element and to compare it with

the linear triangle (constant strain) and the quadratic triangle (linear strain). This example involves impor-

tant shear energy and was proposed to assess the distortion capability of elements. Fig. 5a shows the geo-

metry and the applied load. Fig. 5b plots the vertical displacement of the upper vertex as a function of the

number of nodes in the mesh. In this figure results obtained with other isoparametric elements have been
also plotted for comparison. They include the constant strain triangle (CST), the bilinear quadrilateral

(QUAD4) and the linear strain triangle (LST). Note that in this membrane problem both the BST and

the CST elements give identical results.
Fig. 4. Patch test for uniform torsion.



Fig. 5. Cook membrane problem: (a) Geometry, (b) Results.
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From the plot shown it can be seen that the new element with three integration points (EBST) gives val-

ues slightly better that the constant strain triangle for the most coarse mesh (only two elements). However,

when the mesh is refined, a performance similar to the linear strain triangle is obtained, that is dramatically

superior that the former. On the other hand, if a one point quadrature is used (EBST1) the convergence in

the reported displacement is notably better than the one achieved with other elements used here.

7.4. Cylindrical roof

In this example an effective membrane interpolation is of primary importance. Hence this is good test to

assess the new element. The geometry is a cylindrical roof supported by a rigid diaphragm at both ends and

it is loaded by a uniform dead weight (see Fig. 6a). Only one quarter of the structure is meshed due to
Fig. 6. Cylindrical roof under dead weight. E = 3 · 106, m = 0.0, Thickness = 3.0, shell weight = 0.625 per unit area.



Table 2

Cylindrical roof under dead weight—normalized displacements for mesh orientation B

NDOFs Point-A Point-B

EBST EBST1 NBST1 BST EBST EBST1 NBST1 BST

16 0.26029 0.83917 0.83862 0.40416 0.52601 0.86133 0.85767 0.89778

56 0.81274 1.10368 1.10425 0.61642 0.67898 0.93931 0.93795 0.68238

208 0.97651 1.04256 1.04272 0.85010 0.93704 1.00255 1.00216 0.86366

800 1.00085 1.01195 1.01198 0.95626 0.99194 1.00211 1.00199 0.95864

3136 1.00129 1.00337 1.00337 0.98879 0.99828 1.00017 1.00014 0.98848

Table 3

Cylindrical roof under dead weight—normalized displacements for non-structured mesh

NDOFs Point-A Point-B

EBST EBST1 NBST1 BST EBST EBST1 NBST1 BST

61 1.01635 1.22460 1.22338 0.87949 0.76958 1.01906 1.03061 0.81291

201 0.91502 1.00218 1.01759 0.89983 0.92302 0.99064 1.00457 0.90116

851 0.98792 0.99848 1.00803 0.97598 0.98299 0.99247 0.99717 0.97194

3311 0.98964 0.99160 0.99795 0.98968 0.98598 0.98789 0.99244 0.98598

13,536 1.00065 1.00102 1.00263 1.00057 0.99590 0.99632 0.99751 0.99596

Table 1

Cylindrical roof under dead weight—normalized displacements for mesh orientation A

NDOFs Point-A Point-B

EBST EBST1 NBST1 BST EBST EBST1 NBST1 BST

16 0.65724 0.91855 0.92077 0.74161 0.40950 0.70100 0.70349 1.35230

56 0.53790 1.03331 1.03338 0.74006 0.54859 1.00759 1.00947 0.75590

208 0.89588 1.04374 1.04368 0.88491 0.91612 1.02155 1.02202 0.88269

800 0.99658 1.01391 1.01391 0.96521 0.99263 1.00607 1.00620 0.96393

3136 1.00142 1.00385 1.00385 0.99105 0.99881 1.00102 1.00105 0.98992
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symmetry conditions. Unstructured and structured meshes are considered. In the latter case two orienta-

tions are possible (Fig. 6a shows orientation B).

Tables 1–3 present the normalized vertical displacements at the crown (point A) and in the midpoint of

the free side (point B) for the two orientations of structured meshes and a non-structured mesh. Values used

for normalization are uA = 0.5407 and uB = �3.610 that are quoted in reference [12].

Fig. 6b shows the normalized displacement of point-B over both (A and B) structured meshes as a func-

tion of the number of free degrees of freedom. An excellent convergence of the EBST element can be seen.

The version with only one integration point (EBST1) presents a behaviour a little more flexible and con-
verges from above. Table 3 shows that for non-structured meshes the result converges to the reference value

but more slowly.

Note in Tables 1–3 that results obtained with variant element NBST1 and element EBST1 are almost the

same. It reflects that this example is a membrane dominated one and shows that the convergence velocity

depends mostly on the membrane approach.



Fig. 7. Pinched hemispherical shell with a hole: (a) geometry, (b) normalized displacement.
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7.5. Open semi-spherical dome with point loads

The main problem of finite elements with initially curved geometry is the so called ‘‘membrane lock-

ing’’. The EBST element proposed has a quadratic interpolation of the geometry, then it may suffer from

this problem. To assess this we resort to an example of inextensional bending. This is an hemispherical

shell of radius r = 10 and thickness h = 0.04 with an 18� hole in the pole and free at all boundaries, sub-

jected to two inward and two outward forces 90� apart. Material properties are E = 6.825 · 107 and

m = 0.3. Fig. 7a shows the discretized geometry (only one quarter of the geometry is considered due to
symmetry).

In Fig. 7b the displacements of the points under the loads have been plotted versus the number of nodes

used in the discretization. Due to the orientation of the meshes chosen, the displacement of the point under

the inward load is not the same as the displacement under the outward load, so in the figure an average (the

absolute values) has been used. Results obtained with other elements have been included for comparison:

two membrane locking free elements namely the original linear BST and a transverse shear-deformable

quadrilateral [13] (QUAD); a transverse shear deformable quadratic triangle (TRIA) [14] using a standard

displacement formulation for membrane that is vulnerable to locking and an assumed strain quadratic tri-
angle [15] that does not exhibit membrane locking.

From the plotted results it can be seen that the EBST element presents membrane locking in bending

dominated problems with initially curved geometries. This locking is much less severe than with a standard

quadratic triangle. When only one integration point is used (EBST1 element) membrane locking vanishes

but for very coarse meshes.



Fig. 8. Pinched hemispherical shell with a hole, displacement of the loaded points versus the applied load.
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8. Non-linear numerical examples

Results for examples with geometric and material non-linearities are now presented using just the EBST1

element. First example is computed using the same code used for linear examples. But for the rest of the

examples, due to the features of the modellized problems, with strong non-linearities associated to instabil-

ities and frictional contact conditions, a code with explicit integration of the dynamic equilibrium equations

has been used [16]. This code allows to obtain pseudo-static solutions through dynamic relaxation.

8.1. Open semi-spherical dome with point loads

The problem depicted in Fig. 7a used before to assess membrane locking is again considered but now in

the geometrical non-linear range. This is a widely used benchmark analyzed for instance in [13]. Converged

results obtained with program ABAQUS [17] and by Simo et al. [13] and also with the original BST element

(using a 640 element mesh) are used for comparison. Fig. 8 plots the displacements of the points under both

loads for two meshes with 640 elements (mesh-A) and 5760 elements (mesh-B) respectively. Element EBST1

shows a very good behaviour in this problem.

8.2. Inflation of a sphere

The example is the inflation of a spherical shell under internal pressure. An incompressible Mooney–Riv-

lin constitutive material have been considered. The Ogden parameters are N = 2, a1 = 2, l1 = 40, a2 = �2,

l2 = �20. Due to the simple geometry an analytical solution exists [18] (with c = R/R(0)):
p ¼ hð0Þ

Rð0Þc2
dW
dc

¼ 8hð0Þ

Rð0Þc2
ðc6 � 1Þðl1 � l2c

2Þ:
In this numerical simulation the same geometric and material parameters used in [19] have been adopted:

R(0) = 1 and h(0) = 0.02. The three meshes considered to evaluate convergence are shown in Fig. 9a. The

value of the actual radius as a function of the internal pressure is plotted in Fig. 9b for the different meshes



Fig. 9. Inflation of sphere of Mooney–Rivlin material: (a) meshes used in the analysis, (b) change of radius as a function of the internal

pressure.
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and is also compared to the analytical solution. It can be seen that with a few degrees of freedom it is pos-

sible to obtain an excellent agreement (free of membrane locking) for the range of strains considered. The

final value (internal pressure p = 4) corresponds to a thickness radius ratio of h/R = 0.00024.

8.3. Inflation of an air-bag

This example has also been taken from [19] where it is shown that the final configuration is mesh depend-

ent due to the strong instabilities leading to a non-uniqueness of the solution. In [19] it is also discussed the

important regularizing properties of the bending energy, that when disregarded leads to massive wrinkling

in the compressed zones.

The air bag geometry is initially square with an undeformed diagonal of 1.20. The constitutive material is

a linear isotropic elastic one with modulus of elasticity E = 5.88 · 108 and Poisson�s ratio m = 0.4. Only one

quarter of the geometry has been modelled due to symmetry. Only the normal to the original plane is con-

strained along the boundaries. The thickness considered is h = 0.001 and the inflation pressure is 5000.
Using a density d = 1000, pressure is linearly increased from 0 to the final value in t = 0.1.

With comparative purposes and also to backup the comments in [19] two analyses have been performed,

a purely membrane one and another one including bending effects. Fig. 10 shows the final deformed con-

figurations for three meshes with 289, 1089 and 4225 nodes. The top row corresponds to a full analysis



Fig. 10. Inflation of a square air-bag. Deformed configurations for three different meshes with 800, 3136 and 12,416 degrees of

freedom.
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including bending and the central row is a pure membrane analysis. The bottom row is also an analysis

including bending where the mesh orientation has been changed.

The top and bottom lines show the final shapes change according to the degree of discretization and

mesh orientation due to instabilities and non-uniqueness of the solution. The central row shows the note-

worthy increment of wrinkles as the mesh is refined. Finally Fig. 11 presents the convergence of the max-
imum displacement of the central point as the mesh is refined.

8.4. Deep drawing of a rolled sheet

The element performance in problems involving large strains and anisotropic plastic behaviour is as-

sessed in a benchmark proposed in a recent NUMISHEET [20] meeting. This is the deep drawing of a cir-

cular mild steel sheet with a spherical punch of radius 50 mm (Rp). The original radius of the sheet (Rs) is

100 mm ðRL
RP

¼ b ¼ 2Þ. The drawing depth is (DD) is 85 mm ðDD
RP

¼ 1:7Þ and the force over the blank holder is
80 kN. The constitutive material of the rolled sheet is characterized by three tensile tests along three differ-

ent directions respect to rolling direction (RD) (Table 4). Note that the modellization requires to treat the

material as transversely anisotropic, as this improves the deep drawability and, if not considered, leads to

an early localized necking of the material. The yield function originally proposed by Hill [9] has been chosen

for both associative and non-associative potential functions. For elastic–plastic problems a numerical inte-

gration along the thickness direction is necessary. This is accomplished here using four integration points.



Table 4

Plastic characterization of the constitutive material

Thickness Orientation respect to RD Yield stress Tensile strength eu (uniform) et (total) n r

[mm] [deg] [N/mm2] [N/mm2] [%] [%]

0 176 322 24 40 0.214 1.73

0.98 45 185 333 22 39 0.203 1.23

90 180 319 23 44 0.206 2.02

Fig. 11. Inflation of a square air-bag. Convergence of the maximum displacement versus the number of degrees of freedom in the

model.
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Only one quarter of the geometry has been considered due to symmetry. Tools are modellized as rigid

surfaces, the punch has been defined by 1439 points and 2730 triangles. For the die 744 points and 490

quadrilaterals have been used. Finally the blank holder has been discretized with 155 points and 120 quad-

rilaterals. Fig. 12a shows a perspective of the tools and Fig. 12b the final deformed sheet. The sheet has

been modelled with 6370 3-node triangles and 3284 nodes (9274 DOFs).

The reported results are associated to three different meridians: A at 90� of the rolling direction, B at 45�
of the rolling direction and C in the rolling direction. The numerical results are compared with a set of

experimental values reported by Thyssen Krupp Stahl AG (who proposed the benchmark and supplied
the sheet samples) [20]. It must be noted that there was a great scattering in the experimental data send

to NUMISHEET, so it is difficult to extract conclusions from a unique comparison. In any case the exper-

imental data supplied seems to be enough consistent to get an idea whether the numerical model gives rea-

sonable results.

The first element of comparison associated to the planar anisotropy, are the different displacements

(draw in) of the points in the boundary of the sheet. Table 5 shows the values obtained for the three ref-

erence meridians chosen.

The values for the non-associative model are closer to the experimental ones, while those obtained with
the associative model are a little bit further. The largest draw-in is at the meridian at 45� of rolling direction

(‘‘B’’). In the numerical simulation the draw-in at meridian ‘‘C’’ is larger than in meridian ‘‘A’’, while in the

experimental results the latter are larger than the former. It should be reminded that other numerical results



Fig. 12. Deep drawing of a circular sheet: (a) geometry of the tools, (b) final deformed shape of the sheet.
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presented at NUMISHEET and most of the numerical simulations showed the same tendency as present

values.

The experimental data supplied are the three logarithmic principal strains associated to the three merid-
ians defined above. Here one strain at each meridian has been chosen for comparison. Fig. 13a shows the

meridian strain (E1) along meridian ‘‘A’’ (direction transversal to rolling); Fig. 13b shows the circumferen-

tial strain (E2) along meridian ‘‘B’’ and in Fig. 13c the thickness strain (E3) along meridian ‘‘C’’ (rolling

direction) has been plotted.

The experimental data show an objectionable saw-tooth profile (specially for the thickness strain). These

values are therefore not reliable point-wise but in a mean sense. Based on this fact and on the above men-

tioned differences between experimental values, it can be said that the present simulations agree quite well

with the experimental values, specially with the non-associative plasticity model.
In the central part of the sheet the experimental data gives strains lower than the numerical simulation. It

can be said that experimentally the sheet has better drawability. In the external zone the differences for in

plane strains are small but for thickness strains they are larger. Experimentally thickness strains are more or

less uniform between �0.1 and �0.2, this differs from present numerical simulations and also from other

numerical simulations and experimental data presented at NUMISHEET [20].

Finally Fig. 13d shows resistance to punch as a function of punch travel. In the final part simulation

forces are smaller than experimental values. This may be due to an incorrect definition of friction with

the tools.
Table 5

Flange draw in at three reference meridians

Model Draw in [mm]

Section A Section B Section C

EBST1-non-associative 29.06 31.91 30.77

EBST1-associative 27.08 31.36 28.95

Experimental 30.75 32.30 30.00



Fig. 13. Results from NUMISHEET benchmark. (a) Meridional strain E1 along transversal direction to rolling (meridian ‘‘A’’);

(b) hoop strain E2 along direction at 45� of rolling (meridian ‘‘B’’); (c) thickness strain E3 along rolling direction (meridian ‘‘C’’);

(d) punch force versus punch travel.
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9. Conclusions

A membrane and bending non-conforming rotation-free shell finite element has been presented. The ele-

ment pass the membrane patch test and the numerical experiments performed do not show significant prob-

lems associated to this non-conformity. From the bending point of view the element is a bit stiffer than the

original BST element, but presents a smoother continuity of displacement gradients. Convergence rate in

membrane dominated problems is similar to the linear strain triangle. Using three integration points the

elements is vulnerable to membrane locking for initially curved surfaces. This locking effect disappears
when only one integration point is used, which is the usual case for elastic–plastic problems and for any

large scale simulation.
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