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Evaluation of Multienvironment Trials of Peanut Cultivars

F. Casanoves,* J. Baldessari, and M. Balzarini

ABSTRACT The EEA-Manfredi, INTA, Argentina, conducts MET
in a Peanut Breeding Program (PBP-INTA) in differentMultienvironment yield trials (MET) for advanced peanut lines
environments (locations and years). The selected loca-are conducted each year at the EEA-Manfredi Peanut Breeding Pro-

gram, the main INTA program for developing new peanut (Arachis tions of MET are representative of the environmental
hypogaea L.) cultivars for cultivation in the Argentinean crop area. characteristics of the northern, central and the southern
The main objective of this work was the simultaneous analysis of zones of the Argentinean peanut crop area (Córdoba
several multienvironment yield tests first to identify superior cultivars province) that extends from 32� to 33�50� S latitude and
for the peanut crop area in Argentina, and second to investigate if from 63� to 64�35� W longitude. This region produces
different megaenvironments exist. The simultaneous evaluation of 95% of the Argentinean peanuts since it shows high
several years of MET provides information that allows researchers

homogeneity of climate and soil characteristics appro-to better guide breeding strategies. We analyze a 6-yr series of grain
priated for the cropping. The genotypes evaluated dur-yield data from MET, involving 18 genotypes and five test locations
ing all 6 yr of MET vary from year to year because newusing six by-year analyses of complete yield data sets and an Additive
genotypes are introduced every year and others areMain Effect and Multiplicative Interaction (AMMI) mixed model

analysis combining all 6 yr of MET. AMMI models in a mixed model withdrawn. Therefore, the MET databases through the
framework were used for exploring genotype–environment (GE) in- years are incomplete, i.e., all of the genotypes are not
teraction since the lists of genotypes annually tested in multienviron- present in all of the combinations of locations and years.
ment trials vary from year to year since new genotypes are introduced The unbalanced data sets obtained from compiling
every year and others are withdrawn. The results allowed us to identify several years of MET data was handled by modeling
mf484 and mf505 as superior cultivars and confirm the existence of the response under the mixed model theory (Balzarini,
a unique megaenvironment for identifying high yield cultivars in the

2000). This modeling strategy allows inferring the geno-peanut crop area of Argentina. The mixed model approach of MET
type performance across environments even when thedata was successfully implemented to analyze highly unbalanced GE
GE tables are incomplete. Additionally, the stabilitydata sets.
and interaction measures can be obtained as certain
mixed model parameters (Piepho, 1998; Balzarini, 2002).

In this study, the genotype effects were consideredThe germplasm evaluation is a crucial activity in
fixed because they refer to genotype sets in advancedplant breeding (Stroup, 2000). MET are commonly
selection stages. The environmental effects were consid-conducted annually to obtain information that supports
ered random, except for an annual MET analysis whererecommendations of superior cultivars for cultivation.
differences among environments refer to differencesMET are used to evaluate several genotypes in multiple
among locations and they could be associated with pre-environments (locations and/or years), and they are es-
dictable differences among locations (Allard and Brad-sential because of the presence of GE interaction, i.e.,
shaw, 1964). For the combined MET analysis (throughdifferential genotypic responses in different environ-
6 yr), the environments were defined as combinationsments. The main objective in the evaluation of a series
of location and year effects, and treated as random.of MET is to identify superior cultivars for a target
For both by-year and all-year MET analyses, the GEregion and to determine if this region can be subdivided
interaction was modeled by an AMMI model, but withinto different megaenvironments to better guide breed-
the fixed or the mixed approach to AMMI accordinging strategies (Kang, 2002). Important concepts such as
to the balancedness of the data sets. The evaluation ofecological regions, ecotypes, megaenvironments, spe-
several years of multienvironment yield trials providescific adaptations, and stability originated from the GE
useful information to help researchers to better guideinteraction analysis (Yan and Hunt, 2002). The identifi-
breeding strategies.cation of megaenvironments is associated with the ex-

Up until now, studies have not been done to investi-ploration of the annually repeatable GE interaction pat-
gate better cultivars and the possible existence of differ-terns. For a particular megaenvironment, genotypes are
ent megaenvironments using yield data from severalevaluated on the basis of mean yield and stability of
MET. The main objective of this work was the simulta-yields across environments.
neous analysis of several multienvironment yield tests
to identify superior cultivars for the peanut crop area
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Table 1. Participating locations in multienvironment trials of the INTA-EEA-Manfredi Peanut Breeding Program of Argentina from
1996–1997 to 2001–2002.

Altitude
(meters above Latitude Longitude

Locations (sites) Soil type sea level) south west

Location 1 (General Deheza and General Cabrera) loam-sandy loam 325 32�44� 63�45�
Location 2 (Manfredi) silty loam 300 31�50� 63�44�
Location 3 (Santa Eufemia) finest sandy loam 250 33�12� 63�17�
Location 4 (El Sur, San Ambrosio, Las Vertientes, finest sandy loam 330 32�48� 64�25�

Reducción, Las Acequias)
Location 5 (Gigena) sandy loam 450 32�44� 64�17�

that characterized the years involved in this evaluation ofin Argentine, and secondarily to determine if different
MET data are shown.megaenvironments exist.

Statistical Analysis of METMATERIALS AND METHODS
Considering the locations as the basic megaenvironmentDatabase

units and that the genotype � year and location � year data
The information sources used include the MET of PBP- tables are highly unbalanced, genotype � location (GL) inter-

INTA conducted from year 1996–1997 to 2001–2002, which action was explored via individual yearly analyses (complete
correspond to the first 6 yr of multienvironmental evaluation data tables). In this first modeling attempt, we run an analysis
in the program. The trials were conducted in 10 sites, some of variance model which included fixed effects for location
of which because of their proximity and similarity in soil and (L), genotypes (G), and genotype � location interaction (GL).
weather conditions were regarded as the same location for The adjusted model was:
the purposes of the analysis (Table 1). Altogether 18 geno-

Yi j k � � � Lj � B(L)k( j ) � Gi � GL( ij ) � εi j k [1]types, four short cycle and 14 long cycle, were evaluated
(Table 2). The set of evaluated genotypes was the same for where Yijk is the yield of Genotype i, in the Location j, Block
all the locations within a year, but the genotype list in the k; � is the overall mean; Lj is the effect of Location j with j �
study period varied from year to year. The MET of the PBP- 1,…,s; B(L)k(j) is the effect of Block k within Location j with
INTA for advanced lines began in 1996 with 11 genotypes k � 1,...,n; Gi is the effect of Genotype i with i � 1,.. g; GL(ij)without structural changes (genotypes and locations) in the is the interaction effect between Genotype i with Location j
first 2 yr. During the next 4 yr, seven new genotypes were and εijk is the random error term associated with observation
incorporated, six genotypes were dropped and new locations Yijk. Two models were developed, one model assumed homog-
were added. Florman, mf484, mf485, mf487, and mf489 were enous residual variances and the other allowed heterogeneous
the only cultivars evaluated during all 6 yr. The genotype � residual variances across locations. The latter model was eval-
location � year database is highly unbalanced. Table 2 con- uated because the trials conducted in different locations could
tains a list of the evaluated genotypes. In all of the sites, the have different precision (residual variance).
trials were laid out as a randomized complete block design, For each year, the comparison of genotype performance
with four replications. The plots were made of two 10-m-long across environments (broad inference) was based on the least
furrows with 70 cm between furrows. Recommended seeding squares means. Since a fixed effects model was considered,
rates (15 seeds/m2) and cultural practices were used at all the standard errors of mean differences only depended on
locations. Each plot was manually harvested. The analyzed the residual variance. The narrow inferences (environment-
yield values correspond to kilograms of peanuts per plot at specific inference) about a genotype performance were ob-
constant moisture (80 g kg�1). In Table 3, the main events tained from genotype means in each environment. Symmetri-

cal biplots were used (Gabriel, 1971) to analyze GL interactionTable 2. Genotypes evaluated in multienvironment trials in the
patterns associated with the AMMI model (Gauch, 1988) andEEA-Manfredi Peanut Breeding Program, INTA, from 1996–
with the site regression model (SREG) (Cornelius et al., 1996).1997 to 2001–2002.
The biplot algorithm is based on the single value decomposi-

Genotype Cycle† Ancestry tion of a residual matrix. The AMMI model biplots are con-
manf393 S Robut 33-1/NC Ac 2698 structed from the residual matrix of the additive model, i.e.,
mf447 S Florman/Manfredi Virginia 5 Eq. [1] without the GL interaction effect. The SREG model
mf478 S MGS 9/NC Ac 2232 biplots, known as GGE biplot (Yan et al., 2000), are con-mf480 S CS 9/ICGS 5
Florman L Selection of Florunner
mf457 L Florman/Tachimasari Table 3. Main characteristics of the agricultural years 1996–1997mf484 L Florman/Marc 1‡ to 2001–2002 in the EEA-Manfredi Peanut Breeding Pro-mf485 L Florman/Marc 1‡

gram, INTA.mf486 L Florman/Marc 1‡
mf487 L Florman/Marc 1 Year Eventsmf489 L Florman/Marc 1
mf496 L Florman/(Mf321/RCM 1451) 1996–1997 Low precipitation.
mf499 L Florman§2/Colorado Irradiado 1997–1998 Late harvest (mainly in Manfredi). Sclerotinia [caused by
mf505 L Florman/F435-2-3-B-2-1-b4-B-3-b3-1-B Sclerotinia sclerotiorum (Lib.) de Bary and
mf506 L Florman/F435-2-3-B-2-1-b4-B-3-b3-1-B Sclerotinia minor Jagger] infection in General Deheza.
mf508 L Florman/F435-2-3-B-2-1-b4-B-3-b3-1-B 1998–1999 Low precipitation during the crop cycle and high during
mf510 L Florman/F435-2-3-B-2-1-b4-B-3-b3-1-B the harvest. Early frost.
Tegua L Selection of Florunner 1999–2000 Low precipitation in the reproductive stage. Late harvest.

2000–2001 Low precipitation (except in Manfredi). Late harvest.† S � short cycle, L � long cycle. 2001–2002 Low precipitation in the late stages in Sta. Eufemia and‡ Their pedigree translates to the same plant F1. Cabrera.§ Crossing, / indicates parental separation.



R
ep

ro
du

ce
d 

fr
om

 C
ro

p 
S

ci
en

ce
. P

ub
lis

he
d 

by
 C

ro
p 

S
ci

en
ce

 S
oc

ie
ty

 o
f A

m
er

ic
a.

 A
ll 

co
py

rig
ht

s 
re

se
rv

ed
.

20 CROP SCIENCE, VOL. 45, JANUARY–FEBRUARY 2005

Table 4. Fitting criteria for the fixed effects multienvironment trials model with and without heterogeneous residual variance across
the locations

Homogeneous residual variance (HoRV) Heterogeneous residual variance (HeRV)

�2 res �2 res Best
Year AIC BIC Log(likelihood) AIC BIC Log(likelihood) model

1996–1997 �96.3 �97.5 190.6 �84.1 �88.5 162.3 HeRV
1997–1998 �70.0 �71.2 138.0 �68.8 �73.2 131.7 HeRV
1998–1999 �129.9 �131.4 257.7 �132.4 �141.0 254.8 HoRV
1999–2000 �109.7 �111.2 217.5 �104.0 �110.6 200.1 HeRV
2000–2001 �60.3 �61.7 118.6 �46.6 �53.1 85.2 HeRV
2001–2002 �113.4 �114.9 224.8 �115.2 �121.8 225.5 HoRV

structed from the residual matrix corresponding to an adjust- The overall genotype performance (broad inference) was
ment Eq. [1], which omits G and GL. based on the genotype means, but the standard errors of the

Scatter plots were generated for each year using mean yield mean differences depended on the mixed model used for the
(x axis) and stability measurement (y axis) for each genotype. variance of genotype means that included variance compo-
Four stability statistics were calculated: (i) the CV (Francis nents associated with the GE interaction. Thus, the statistical
and Kannenberg, 1978) because it is the statistic traditionally comparison of the genotype performance, both yield differ-
used in the PBP-INTA, (ii) the stability variances of Shukla ences and differences in yield stability were considered. The
(1972), (iii) the first principal component (PC1) of the AMMI variance components were estimated via restricted maximum
model analysis, and (iv) the first and/or second principal com- likelihood (REML) using SAS (SAS Institute, 1997) PROC
ponent (PC1 and PC2) of the SREG model. MIXED.

Different models were developed for the variance and co-
variance matrix of the random interaction terms for a givenCombined MET analysis
environment: (i) traditional mixed model, i.e., Eq. [2] assumingA model with environment, genotype, and genotype � envi-
homoscedastic variances for the random GE terms and (ii)ronment effects was used. Environmental effects were defined
mixed stability variance model, i.e., model analogous to Eq.as the combination of the location and years. All the effects
[2] considering heteroscedastic variances across genotypes forused in the model were considered random, except for geno-
the GE interaction terms, and 3) AMMI mixed model. Thetype. The equation for the response of Genotype i in Block
AMMI mixed model is expressed ask in Environment j is:

Yi j k � � � Gi � Ej � GEi j � B(E)k( j ) � εi j k [2] yi j k � � � Gi � Ej � B(E)k( j ) � �
M

m�1

�m	im
mj � Ei j k ,
where Yijk is the response of Genotype i, in Environment j
and Block k, � is the overall mean, Gi is the fixed effect of where yijk is the response of Genotype i, in Environment j and
Genotype i, Ej is the random effect of the Environment j, GEij Block k, � is the overall mean, Gi is the fixed effect of Geno-
is the random effect of the interaction of Genotype i and type i, Ej is the random effect of the Environment j, and
Environment j, B(E)k(j) is the effect of Block k within the

�
M

m�1

�m	im
mj models the GE interaction as the sum of M multi-Environment j, εijk is the random error term associated with
Observation Yijk. plicative components that explain the GE interaction in M

orthogonal directions [in each direction, fixed genotype scores
Table 5. Variability of yields between genotypes (G), locations (	im) and random environment (
mj) intervene]; �m is a weight

(L), block between site [B(L)], and G � S interaction for PBP- factor associated with the mth direction; and εijk representsINTA multienvironment trials, for the 1996–1997 to 2001–
the portion of the GEij interaction not explained by the model2002 years.
plus the random error term associated with yijk.

Year Source df† SS‡ P value % (G�L�GL) Using the homocedastic factor analytic (FA1) structure
1996–1997 L 2 77.83 �0.0001 85.8 (Jennrich and Schluchter, 1986) to model the variance and

G 10 6.91 0.0038 7.6 covariance matrix of the GE interaction terms within environ-
G � L 20 6.03 0.2340 6.6 ment, the estimated covariance parameters can be used asB(L) 9 9.33 �0.0001

genotype scores (genotypic sensitivity) to explain the GE in-1997–1998 L 2 112.96 �0.0001 74.9
G 10 6.35 �0.0001 4.2 teraction. The general factor analytic (FA) model is QQ’ �
G � L 20 31.45 �0.0001 20.8 D, where Q is a scores matrix of qs and D is a diagonal matrix
B(L) 9 6.29 �0.0001

with the possibility of nonnegative parameters on the diagonal.1998–1999 L 4 173.78 �0.0001 90.0
G 11 6.29 �0.0001 3.2 If matrix D is omitted, that is to say D � 0, then the model
G � L 44 12.83 0.0026 6.7 is denoted as FA0. If matrix D has all its diagonal elements
B(L) 14 7.23 0.0001 equal (D � � 2I), then the model is denoted as FA1. In this1999–2000 L 3 269.32 �0.0001 86.7

work structures FA1, of order 1, 2, and 3 corresponding toG 11 21.71 �0.0001 7.0
G � L 33 19.66 �0.0001 6.3 AMMI models with M � 1, M � 2 and M � 3 multiplicative
B(L) 12 6.52 0.0001 terms, respectively, were used. The selection of the most suit-2000–2001 L 3 191.50 �0.0001 96.0

able parameterization to model the GE interaction was madeG 11 2.10 0.0043 1.0
G � L 33 5.96 0.0001 3.0 through maximum likelihood ratio tests, the Akaike informa-
B(L) 12 5.60 �0.0001 tion criterion (AIC) and the Schwarz Bayesian criteria (BIC)

2001–2002 L 3 169.76 �0.0001 81.5 (Littell et al., 1996). The graphical biplots associated with aG 11 18.14 �0.0001 8.7
AMMI mixed model (AMMI biplot) were obtained by graph-G � L 33 20.28 �0.0001 9.8

B(L) 12 8.10 �0.0001 ing the covariance (standardized) parameters associated with
each genotype in each multiplicative term versus the empirical† df � degrees of freedom.

‡ SS � sum of squares. best linear unbiased estimator (BLUP) of the environmental
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Fig. 1. GGE biplots based on 6 yr of PBP-INTA multienvironment trials. The dark points represent genotypes and the light points represent lo-
cations.

effect on the same term using the statistical software Info- nous variances in 4 of the 6 yr of MET data analyzed
Gen (Info-Gen, 2003). (Table 4). The Akaike information criteria (AIC) and

Schwarz (BIC) (in which a greater value implies a better
fit) coincided with the likelihood ratio test in identifyingRESULTS AND DISCUSSION
the years with different precision from the trials con-

Analysis of MET by Year ducted in different locations.
Table 5 contains the analysis of variance for each yearThe model with heterogeneous residual variances

across locations fit better than the model with homoge- of MET data processed with the models with better fits
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as it is suggested in Table 4. In all the years analyzed, cultivars were evaluated, and the harvests in all of the
MET, mainly in Location 2, were delayed during thisexcept 1996–1997, the GL interaction was statistically

significant (P � 0.01). The PBP-INTA MET began in year.
In the year 1998–1999 (Fig. 1.c), the correlation of1996, the year in which the residual variance was highest.

This low accuracy of the tests could mask the presence the PC1 with yield was 0.89 (P � 0.0001). The genotypes
with greater PC1 values were mf505 and mf484 (longof GL interaction. The relative magnitude of the GL

interaction with respect to the variability explained by cycle), both with the highest ranking in most of the
locations, except Location 2. The short-cycle cultivars,(G�L�GL) for each year is given in Table 5. The varia-

tion caused by the GL interaction was smaller than the mf447 and mf480 (negative PC1), showed relatively
poor performances except in Location 2. The precipita-variation among genotypes in 5 of the 6 yr of the MET

analyzed. The variation between locations was always tion was low during the cultivation cycle and high during
the harvest, which could explain the differential perfor-the most important one, explaining between 74.9 and a

96.0% of the total variation, which justifies the selection mance of the short-cycle cultivars. The differences in
the genotype response across environments were lessof the biplots based on the SREG model for MET analy-

sis (Yan et al., 2000). than the differences in the mean genotype response,
thus the data did not suggest the presence of megaenvir-The first two principal components (PC1 and PC2)

obtained by singular value decomposition of the cen- onments. Location 4 was more favorable than Location
2 in this year for genotype mf505. Nevertheless, in thetered data (SREG model) explained more than 85% of

the total variability caused by (G�GL) for all the years following year (Fig. 1.d), this genotype showed advan-
tages relative to the other genotypes in Location 4 andexcept in 1998–1999 and 2000–2001 where these per-

centages were 79 and 83%, respectively. Figure 1 repre- 2. The remaining genotypes are grouped into a unique
megaenvironment where the short cycle mf447, mf480,sents the GGE biplots obtained for each year of MET.

In the year 1996–1997 (Fig. 1.a), there was a high and manf393 genotypes had the worst performance.
In the year 2000–2001 (Fig. 1.e), the contribution ofcorrelation of the PC1 (r � 0.98, P � 0.0001) and low

correlation of the PC2 (r � 0.15, P � 0.641) with yields. the GL interaction was approximately equal to the vari-
ability among genotypes and the yield correlated signifi-The extreme genotypes on the PC1 axis, mf478 (positive

PC1) and Florman (negative PC1), do not show a cross- cantly (P � 0.05) with PC1 and PC2, which suggested
that the projections of PC2 did not necessarily indicateover interaction (COI); these were genotypes of higher

and lower rankings, respectively. The GL interaction COI. The extreme genotypes in their projections on the
PC1, mf508, Florman, and mf487, showed greater COI.was not significant and all the locations behaved as a

unique megaenvironment where some advantages were The Florman and mf487 rankings were relatively higher
in Location 1 than in the rest, which showed a behaviordemonstrated for the short-cycle cultivars over those of

long cycle. This is possibly due to the low precipitation opposite to mf508. The mf484 and mf496 genotypes with
opposite PC2 values responded proportionally to theregistered during this year. The mf487 and mf489 geno-

types (positive PC2) and the mf480 genotype (negative differences between high- and low-ranking locations, re-
spectively.PC2) were the only ones that showed a differential re-

sponse, COI across environments. In the year 2001–2002 (Fig. 1.f), the variability be-
tween genotypes was much greater than the GL interac-In the year 1997–1998 (Fig. 1.b), the yields of the

long-cycle check cultivars were relatively high and ho- tion and the yields correlated significantly with PC1
(r � 0.95, P � 0.0001). The mf484, mf505 and mf489mogenous across environments, showing advantages

with respect to the other genotypes in Location 2 where genotypes had the best performance in Locations 2, 3,
and 4, whereas Florman and mf487 showed an advan-the harvest was late. The mf485 and mf484 genotypes

showed COI, with a relatively superior performance in tage in Location 1. The genotypes mf508 and mf496
were the worst performers. The separation of LocationLocation 4 and with a lower ranking in Location 1.

The mf480 and mf457 genotypes showed the opposite 1 with respect to the rest, where Florman and mf487
showed relatively high yields, could be due to factorsbehavior with relatively high performances in Location

1, where the crop was subjected to stress by a Sclerotinia such as scarce rainfall during the grain filling and fruit
loss due to the high precipitation registered at harvestminor Jaegger infection. In this year, the yield did not

correlate with the PC1 (r � 0.062; P � 0.857). Therefore, in that location. In Location 3, the precipitation was
also low, but the differences between the yields of thethe genotypes with greater projections of the PC1

(mf485, mf484, mf457 and mf480) showed COI, whereas genotypes were small since a low yield in all of the
genotypes was registered.the Tegua, Florman, and mf480 genotypes, with greater

positive projections of the PC2, yielded relatively better Figure 2 represents a comparison of the performances
of mf480 (short-cycle genotype) and mf489 genotypesthan the rest during this year.

The year 1997–1998 was the only year of MET data (long-cycle) across three locations using the GGE biplot
for year 1997–1998, where the GL contribution waswhere the GL interaction explained a greater percent-

age of (G�L�GL) than G. Although this result could greater than that of G. The comparison was made by
connecting the point that represents the mf480 genotypesuggest the possible existence of different megaenviron-

ments in the PBP-INTA target region, it is important with the point that represents mf489 genotype with a
straight line and drawing a perpendicular line that passesto note that the observed pattern was not consistent

through the years. Besides that, short- and long-cycle through the origin (Yan and Hunt, 2002). The perpen-
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Table 7. Variance components for genotypes (G), environments
(E) and G � E interaction for PBP-INTA multienvironment
trials. Joint analysis of the 1996–1997 to 2001–2002 years.

Variance component Estimate Percent

Environment 1.1813 90.5
Genotype 0.0137 1.0
G � E 0.1100 8.5
Genotype � location 0.029 23.9
Genotype � year 0.026 21.5
Genotype � year � location 0.066 54.6
Residual 0.1489

result in Fig. 2, suggest that the peanut region in which
cultivars were tested does not show repeatable meg-
aenvironments for breeding purposes. From the results
obtained with the analysis of MET data conducted in
1997–1998 where the COI was significant because of
differences in natural infections across locations, experi-
ments specially designed to create different environ-
mental conditions appear as appropriated for breeding
with respect to pathogen resistance.

Fig. 2. Comparison of short and long cycle genotype performance in Table 6 contains for each one of the analyzed years
all of the intervening multienvironment trials locations during the of MET data, the mean yield for the genotypes, the1997-1998 year. The dark points represent genotypes and the light

AMMI model PC1, and the coefficient of variation (CV)points represent locations.
as a stability statistics. Although the simultaneous inter-
pretation of the CV and the yield mean constitute adicular line separates the locations into two groups,

which shows that mf480 genotype had greater relative common strategy of analysis implemented in this breed-
ing program, our results show that use of the CV isyields than mf489 genotype in Location 1. Meanwhile,

for the mf489 genotype the favorable location was Loca- associated with recommendations for low performance
genotypes. For example, in the year 1996–1997, thetion 4 followed by Location 2, although yields at Loca-

tion 2 were barely above average. If genotypes mf480 mf480 genotype has a low CV, and nevertheless, it is a
major contributor to the GL interaction. In Location 1,(short cycle) and mf485, mf484, mf487, and Florman

(long-cycle) are compared this way, one concludes that this genotype had a ranking of 11 whereas in Location
4, it ranked third. Something similar happened for theLocations 4 and 2 are favored by the long-cycle cultivars.

A collective analysis of the six GGE biplots, plus the 1997–1998 data where although the ranking of mf480

Table 6. Yield means and stability measures for each genotype during the 6 yr (1996–1997 to 2001–2002).

1996–1997 Year 1997–1998 Year 1998–1999 Year

Genotype Mean† CV PC1 Genotype Mean† CV PC1 Genotype Mean† CV PC1

mf478 2.24 a 45.70 0.21 Florman 3.18 a 33.48 0.17 mf484 2.96 a 25.51 1.28
manf393 2.03 ab 54.64 1.03 Tegua 3.16 ab 34.42 �0.10 mf505 2.84 ab 38.17 3.23
mf447 1.94 ab 53.31 �0.19 mf480 2.97 abc 15.88 3.14 mf489 2.82 ab 39.95 1.44
mf457 1.88 abc 41.57 �1.21 mf487 2.90 abcd 46.98 �0.69 manf393 2.79 abc 29.07 0.29
mf484 1.87 abc 42.72 �1.09 mf484 2.86 cdef 59.20 �1.60 mf506 2.78 abc 35.46 1.41
mf480 1.85 abc 32.20 �1.89 mf457 2.69 cdef 41.39 1.87 mf478 2.67 bcd 41.35 �0.41
mf489 1.85 bc 65.18 1.73 manf393 2.68 def 37.82 �0.11 mf447 2.61 bcde 36.25 �1.97
mf487 1.76 bcd 70.35 1.74 mf478 2.68 def 27.71 1.27 Tegua 2.58 bcde 46.52 �1.96
mf485 1.66 bcd 70.71 1.65 mf485 2.65 def 73.83 �2.25 Florman 2.53 cde 48.03 �1.36
Tegua 1.51 cd 53.57 �0.62 mf447 2.57 ef 49.55 �0.46 mf487 2.49 de 42.23 �0.81
Florman 1.36 d 51.84 �1.37 mf489 2.49 f 63.71 �1.24 mf485 2.44 e 32.94 0.16

mf480 2.39 e 41.42 �1.29
LSD � 0.398 LSD � 0.297 LSD � 0.252

1999–2000 Year 2000–2001 Year 2001–2002 Year

Genotype Mean† CV PC1 Genotype Mean† CV PC1 Genotype Mean† CV PC1

mf505 3.39 a 44.25 �0.98 mf484 2.00 a 59.22 0.13 mf484 3.53 a 42.35 0.22
mf484 3.34 ab 45.36 �2.74 mf508 1.94 ab 65.76 �2.22 mf489 3.17 b 39.64 �1.60
Florman 3.30 abc 46.04 1.01 mf506 1.93 ab 60.36 0.39 mf505 3.13 b 36.90 �2.13
mf489 3.17 abc 37.08 0.61 mf485 1.89 abc 69.43 �1.31 mf485 3.04 bc 44.23 �0.56
mf485 3.15 abc 51.43 �1.40 mf486 1.83 abcd 59.52 �1.47 Florman 2.93 bcd 40.01 2.57
Tegua 3.09 bc 45.99 1.00 mf505 1.82 abcde 61.96 �0.20 mf506 2.81 cd 37.93 �0.62
mf506 3.09 bc 51.23 0.61 mf510 1.77 bcde 58.84 0.18 mf486 2.77 cd 31.61 0.21
mf487 3.04 c 54.52 0.80 Florman 1.77 bcde 71.35 2.02 mf487 2.76 cd 31.65 1.86
mf478 3.03 c 39.21 0.00 mf489 1.76 bcde 63.96 1.01 mf499 2.72 de 45.29 0.11
manf393 2.71 d 49.24 �1.78 mf499 1.71 cde 68.33 1.37 mf510 2.69 de 35.15 1.00
mf447 2.42 e 51.60 0.17 mf487 1.69 de 68.25 1.91 mf508 2.48 ef 40.98 0.23
mf480 2.29 e 47.67 2.70 mf496 1.64 e 68.52 �1.82 mf496 2.35 f 50.32 �1.29
LSD � 0.273 LSD � 0.188 LSD � 0.281

† Different letters indicate differences in the mean yields across the locations (LSD, P � 0.05).
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Table 8. Fitting criteria for 3 mixed models adjusted to the PBP-INTA multienvironment trials data. Joint analysis of the 1996–1997
to 2001–2002 years.

Homogeneous variance Heterogeneous variance Mixed AMMI [2] for
Fitting criteria for G � E terms for G � E terms G � E terms

AIC �802.3 �799.2 �765.1
BIC �804.3 �810.0 �787.3
�2 res log(likelihood) 1596.1 1560.4 1452.2
No. of covariance G � A parameters 1 18 36
P value (no genotype effects) 0.0027 0.0017 �0.0001

changed from 11 to 1 across locations, this genotype used to explore the GE interaction in the joint analysis
showed the lowest CV. On the contrary, the use of across 6 yr. The mf480 and Florman genotypes made
the PC1 from the AMMI model as a stability measure high contributions to the GE interaction; the first had
allowed for better identification of the cultivars with important COI (Environments 1 and 4). Florman re-
COI. Genotype mf484 was among the superior ones in sponded proportionally to the differences between En-
5 of the 6 yr and mf505 genotype in 3 of the 4 yr of vironment 1 and 4 environments in the majority of the
MET data. years. The dispersion of the environmental scores, al-

though they demonstrate a high interaction between
Combined Analysis of MET years and locations, also show that Location 1 was one

of the greater contributors to the GE interaction, espe-The environments (combination of years and loca-
cially in the 1997–1998 year because the mf480 andtions) constituted a source of important variation (90.5%
mf457 genotypes yielded better in this location thanof the total variation). The high variations due to envi-
in others.ronmental differences is expected in MET conducted

The GE interaction pattern could be difficult to re-through several years (Yan and Kang, 2003). The GE
peat since groups are not visible between the environ-interaction was considerably higher than the variability
mental scores from the same location. The GL inter-attributable to G, and more than 50% of GE interaction
action is small in relation to the GLY interaction.variation is due to the G � L � Y interaction (Table 7).
Therefore, the GE interaction is not expected to beThe GL interaction only represents 23.9% of the GE in-
repeatable. The results suggest that this set of locationsteraction.
should be considered a unique megaenvironment forTable 8 includes the statistical values that were used to
breeding objectives.select between the best mixed models: (i) homogenous

Figure 4 is a dispersion graph of the product of thevariance model for GE, (ii) heterogeneous across geno-
genotype scores in the PC1 and PC2 of the AMMItypes variance model for GE, and (iii) AMMI mixed
model (2) versus the yield means for each genotype. Itmodel for GE. The best model for the joint analysis
shows that Florman, mf480 and mf457 genotypes hadacross the 6 yr of MET data was AMMI mixed model
lower stability. The mf484 and mf505 genotypes had thewith two multiplicative terms (AMMI [2]).

Figure 3, obtained from the AMMI mixed model, was best performance across all environments.

Fig. 3. Biplot based on 6-yr multienvironment trials data for PBP-INTA. Dark points represent genotypes and light points represent environments
coded according to the harvest year-location.
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Fig. 4. Yield stability versus yield mean.

Yield means across all of the environments and the was consistent with the results obtained from the mixed
standard errors to evaluate mean differences, obtained AMMI biplot. The coefficient of variation fails to iden-
from the AMMI[2] mixed model are shown in Table 9. tify unstable genotypes that showed relatively high in-
These errors depend on the amount of information teraction with environments, e.g., mf480, mf478, man-
available for each genotype through the collection of f393, and mf447, which are all short-cycle cultivars.
analyzed MET and on the contribution of the genotype Taking into account variability across environments, the
to the GE interaction (Balzarini, 2000). In addition, the cultivar with the best mean response was mf484.
table contains the coefficients of variation (CV) across
environments and the stability variances (SV) (Shukla,

CONCLUSIONS1972) obtained as covariance parameters of model 2.
The stability variances for genotypes mf480, mf457, The by-year analysis of MET data showed that the
mf484, Florman, mf447, and manf393 were significantly variability due to the GL interaction in the PBP-INTA
different from zero (P � 0.05). is relatively small in relation to the variability among

The main differences in yield stability across environ- genotypes. Although the GGE biplots obtained for each
ments were observed in mf480, mf457, mf484, and Flor- year of MET data allowed us to identify superior geno-
man genotypes according to stability variance, which types in some locations, the locations that were favor-

able in a particular year for some genotypes were notTable 9. Genotypic performance across 23 environments.
favorable through out the years. In 5 of the 6 yr of MET,

Genotype Yield mean (kg plot�1)† SE‡ SV§ CV¶ the GGE PC1 biplot significantly correlated with yield
mf484 2.80a 0.27 0.14 45.45 means demonstrating proportional genotype responses
mf505 2.66abc 0.27 0.07 44.67 across the locations; on occasion, it implied rank changesmf478 2.61abde 0.21 0.09 36.46

in genotype order. Using additional information of reg-mf489 2.59bcd 0.26 0.07 47.37
mf506 2.56bcdf 0.25 0.01 43.98 istered climatic contingencies in each year could explain
Florman 2.53bcdef 0.26 0.14 50.28

the interaction. The results obtained from mixed AMMImanf393 2.53bcde 0.22 0.11 38.14
Tegua 2.51bcdef 0.25 0.07 46.71 models using data from 6 yr confirmed the random
mf485 2.50defg 0.27 0.10 52.64 nature and the relatively low magnitude of the GE inter-mf487 2.45bcdefg 0.25 0.07 49.06
mf486 2.43bcdef 0.23 0.02 45.39 action in the PBP-INTA. Both strategies to evaluate
mf510 2.38bcdef 0.23 0.05 46.88 MET data, the by-year analyses and the joint analysismf499 2.36egh 0.26 0.01 55.73

indicate the existence of a unique megaenvironment formf447 2.35fh 0.21 0.12 42.22
mf508 2.33defgh 0.23 0.09 50.05 breeding purposes in the peanut crop area of Argentina.
mf457 2.29cfgh 0.22 0.35 42.38 The results suggest that it is not necessary to partitionmf480 2.26cfgh 0.21 0.47 36.64
mf496 2.09h 0.24 0.05 56.79 the region into subregions to make cultivar recommen-

dations. It also suggests that instead of increasing the† Yield means across environments, different letters indicate statistically
significant differences (p � 0.05). number of locations where MET are conducted, it would

‡ Mean difference standard errors (SE) used to mixed model. be better to redirect the resources available toward im-§ Stability variances (SV) for each genotype obtained from a mixed model.
¶ Coefficient of variation (CV) across environments. plementing more efficient experimental designs.
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