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Error Variation in Multienvironment Peanut Trials: Within-Trial Spatial Correlation
and Between-Trial Heterogeneity

F. Casanoves,* R. Macchiavelli, and M. Balzarini

ABSTRACT difficult to assure within block homogeneity. Plots close
together may be more similar than distant ones. SpatialMultienvironment Trials (MET) are used to make cultivar recom-
variability refers to the tendency of genotype responses,mendations about genotypes in plant breeding programs. Because of

the presence of genotype � environment interaction, METs are usu- such as yield trends, to follow the spatial arrangement
ally conducted in multiple environments using designs that involve of plots on the ground (Mercer and Hall, 1911). Varia-
several replications per environment. Blocking of plots within each tion from plot to plot within the same block may be
trial enables one to account for between plot variation. To improve due to competition between genotypes (Kempton and
the comparison of genotype means, taking into account within-trial Lockwood, 1984), heterogeneity in soil fertility (Pearce,
spatial correlation as well as between-trial residual variance hetero- 1980), insect dispersion, weeds, crop disease, or cultural
geneity, alternative mixed models can be used. The objective of this

aspects (Smith et al., 2001). Because of the spatial vari-study was to compare several spatial models, including or excluding
ability between and within blocks, the standard analysisheterogeneity of residual variances for cultivar evaluation in a set of
of variance for an RCBD does not always produce theindependent peanut (Arachis hypogaea L.) METs. The modeling im-
most efficient comparison of genotype effects.pact was evaluated by comparing genotype means from each trial. A

series of 18 METs from a peanut breeding program, as according to Statistical procedures that account for spatial varia-
a randomized complete block design (RCBD) at each location, were tion among plots within trials have been proposed
simultaneously fitted by (i) a classic analysis of variance model for an (Papadakis, 1937; Mead, 1971; Besag, 1974, 1977; Rip-
RCBD with blocks random and (ii) mixed models incorporating spa- ley, 1981; Wilkinson et al., 1983; Besag and Kempton,
tial correlation through isotropic and anisotropic covariance structures 1986). Brownie et al. (1993) addressed the topic of mod-
for the error terms (power correlation function) and including homog- eling spatial variation in crop evaluation trials by using
enous and heterogeneous residual variances to take into account the

polynomial trend analysis, nearest neighbor analysis,different environments having different precision. Results suggest that
and a model with correlated errors. They comparedthe model with stationary anisotropic error structure AR1�AR1 within
these methods in a set of independent maize (Zea mayseach environment and heterogeneous residual variances constitutes
L.) yield trials and in a soybean [Glycine max (L.) Merr.]a good alternative analysis for METs, but it was not always better

than the RCBD models for peanut. Differences were found between yield trial, with a single trial in each set. Stroup et al.
long- and short-cycle peanut cultivars with respect to the best model. (1994) also compared methods using one-location trials

and made conclusions about the benefits associated with
the spatial variation modeling in a wheat (Triticum aesti-
vum L.) MET conducted in the central region of theThe comparison of genotype performance in METs
USA. For yield trials at a single location, Gleeson andrequires the ability to make reliable mean yield com-
Cullis (1987), Cullis and Gleeson (1991), and Cullis et al.parisons. Commonly METs are conducted with multiple
(1996) obtained more precise estimates of the cultivarreplications at each location. The stratification or block-
means by modeling spatial variation with a correlateding of plots is a technique used to reduce the effect of
error structure compared with estimates obtained undervariation among plots. The blocks are groups of experi-
the classical analysis for an RCBD. Gilmour et al. (1997)mental units aligned in such a way that the plots within
partitioned the spatial variability between plots at a sin-the blocks are as homogeneous as possible. The RCBD
gle-location trial into local, global, and extraneous spa-is commonly used. This design is more efficient than the
tial variability. The local spatial variability refers to thecompletely randomized design when differences between
differences between plots on a small scale, and the globalplots in the same block are minimal and differences among
spatial variation represents nonstationary tendenciesblocks are substantial (Gusmao, 1986). Heterogeneity

within blocks may result in imprecise estimation of the
genotype effects because of a large error variance (Stroup Abbreviations: AIC, Akaike Information Criterion; AR1, first order

autoregressive; BIC, Schwarz Bayesian Information Criterion; BLUE,et al., 1994). Since METs often include a large number
best linear unbiased estimator; BLUP, best linear unbiased predictor;of genotypes, the block sizes are usually large, and it is
EEA, Estación Experimental Agropecuaria; G, genotype main effect;
GL, genotype by location interaction effect; INTA, Instituto Nacional
de Tecnologı́a Agropecuaria; L, location main effect; MET, multi-F. Casanoves, Centro Agronómico Tropical de Investigación y Enseñ-
environment trials; PBP, Peanut breeding program; Pow, isotropicanza, 7170 Turrialba, Costa Rica; R. Macchiavelli, Dep. of Agronomy
power spatial correlation; Powa, anisotropic power spatial correla-and Soils, Univ. of Puerto Rico Mayaguez, P.O. Box 9030, Mayaguez,
tion; PowaH, anisotropic power spatial correlation and heterogeneousPR 00681-9030; M. Balzarini, Facultad de Ciencias Agropecuarias,
residual variances; PowH, isotropic power spatial correlation and het-Universidad Nacional de Córdoba, cc 509, (5000) Córdoba, Argentina.
erogeneous residual variances; PowRB, isotropic power spatial corre-Received 15 Sept. 2004. *Corresponding author (casanoves@catie.ac.cr).
lation and heterogeneous random block; RB, random block; RBH,
random block with heterogeneous residual variances; RBHBH, ran-Published in Crop Sci. 45:1927–1933 (2005).
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throughout the field trial. Extraneous variation is fre- trial with an AR1�AR1 model for the error terms and
random genotype effects to simultaneously incorporatequently associated with the management of the trials

and includes intra- and interblock variation. One exam- genotypic correlations. They also simulated variety–en-
vironment data to investigate the impact on variety pre-ple is the effect of serpentine harvesting, where alter-

nating groups of rows are harvested in opposite direc- dictions (variety effects were regarded as random) when
ignoring spatial variation within trials and error variancetions and reflect a consistently greater or lower yield in

one direction than in the other. The global and extrane- heterogeneity between trials. The results showed the
gains in accuracy and precision of spatial analysis com-ous spatial variations are handled by including appro-

priate model terms such as design factors and poly- pared with RCBD analysis (fixed block effects), and
provided evidence about the impact of ignoring thesenomial functions.

In METs, the local spatial tendency within trials and effects. Since they worked with random genotype effects,
the effects were predicted with best linear unbiased pre-the residual heterogeneity between trials can be jointly

modeled. By using a two-dimensional coordinate system dictors (BLUPs) obtained from a Factor Analytic model
(Litell et al., 1996) for the covariance structure of theat each trial, it is possible to define the plot location in

a field, for example, from latitude and longitude of the random effects.
In this paper, we investigate the performance of theplot centers. These coordinates allow for the distance

between plots to be calculated and later used to express RCBD, the spatial AR1�AR1 and other modeling ap-
proaches for the error terms in a set of independentthe correlation between observations from different plots

as a function of their Euclidean distance. Modeling the peanut-METs rather than MET for cereals (which have
been used in most other papers related to spatial analy-spatial structure of the plots as distance functions can

be done in the context of mixed linear models (Zimmer- sis). This paper details the use of spatial analysis and
combined analysis of MET in a single model, while per-man and Harville, 1991; Gilmour et al., 1997; Cullis et al.,

1998; Smith et al., 2002a, 2002b). In the mixed model ap- mitting the fitting of heterogeneous error variances and
spatial parameters in different trials. Models were com-proach, it is not only possible to consider the correlation

structure among yield data obtained from different plots pared on the basis of model selection criteria and pre-
cision of genotype mean comparisons within environ-but also to model residual variance heterogeneity be-

tween the trials conducted in different environments ments. The equivalence between some spatial models in
the particular context of multienvironment MET is dis-with different levels of precision. The correlation functions

for stationary models, in which the correlation function cussed, and SAS code for fitting these models is provided.
depends only on the Euclidean distance vectors, can be
isotropic (identical in any direction) or anisotropic (dif-

MATERIALS AND METHODSferent parameter values in different directions). For sep-
arable two-dimensional processes, it is common to con- Database
sider the dependence between plots with an exponential At each breeding cycle of the Peanut Breeding Program atanisotropic correlation model, which is expressed as: EEA-Manfredi, INTA, (PBP-INTA) Argentina, experimental

lines of peanut are generated by the pedigree breeding method,Corri j � exp���r(d r
ij)pr � �c(d c

ij)pc�,
with plots bulk harvested at the F6 generation. The METs

where d r
ij and d c

ij are the distances between plot i and are conducted using advanced generations of breeding lines
by sowing the same genotypes at different locations. We usedplot j in the direction of the field rows and columns,
independent peanut-MET data sets conducted during 9 yrrespectively, pr and pc are the corresponding unknown
(1984–1985 to 1992–1993) for two types of experimental geno-powers, and �r and �c are unknown correlation param-
types. The METs for type 1 genotypes correspond to trials in-eters. Another spatial correlation function commonly
volving short-cycle genotypes, and METs for type 2 genotypesused is the power function. The isotropic power model
to trials where long-cycle genotypes are compared. A total ofdepends on a single parameter (�) which, when raised 18 independent data sets (two maturity classes within each ofto the distance between two plots (in any direction), pro- nine years) were used in this study to evaluate various statisti-

vides the correlation between them. The power function cal models. In each year, the METs were conducted in three
is a reparameterization of the exponential function (with locations in the peanut crop area in the Province of Córdoba
p � 1). The anisotropic power correlation model, i.e., (Argentina): Manfredi (Lat. S 31�41�, Long. W 63�26�), Gen-
�dr

ijr �dc
ijc , usually named AR1 � AR1, is a recommended eral Cabrera (Lat. S 32�49�, Long. W 63�51�) and Rı́o Tercero

(Lat. S 32�10�, Long. W 64�7�), with the exception of the 1991–approach (Smith et al., 2002a). The AR1�AR1 model
1992 and 1992–1993 years when Rı́o Tercero was excluded.depends on two parameters: one that represents the
The climate and soil characteristics of the three locations arecorrelation between plots in the direction of rows (�r)
very similar, as the Province at Córdoba crop area is highlyand the other that represents the correlation in the direc-
homogeneous (Casanoves et al., 2005). In each location andtion of columns (�c). The vector parameter elements �r year, approximately 15 genotypes of each maturity class (shortand �c , are called autoregressive coefficients. Cullis and
and long cycle) were evaluated. The set of genotypes evaluatedGleeson (1991) consider the AR1�AR1 and AR1 � I in each year was the same at each location. In each location,

models (autoregressive correlation only in one direc- both short-cycle genotype trials and long-cycle genotypes trials
tion) as the most plausible for modeling spatial correla- were conducted using an RCBD with four replications. The
tion in single-location yield trials. Smith et al. (2002b) plots were composed of two 10-m-long furrows with 70 cm
used ASREML (Gilmour et al., 1999) to analyze wheat between furrows. At each site, the blocks were composed of

contiguous plots, with one for each assayed genotype. A rect-MET data, adjusting for spatial field trends at each
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angle of four contiguous blocks was planted within each loca- as heterogeneous residual variances across locations (PowaH
tion. Recommended seeding rates (15 seed m�2) and cultural model). Two additional models were run to check specific
practices were followed in all of the METs. Each plot was assumptions. The two models are identified as the RBHBH
harvested manually after eliminating the border areas. Yield model (like the RBH model, but allowing heterogeneous block
data was expressed in kilograms of peanuts per plot at constant variances across trials), and the PowRB model (like the Pow
moisture (80 g kg�1). model, but including random block effects). All of the above

models were estimated in the context of the mixed linear models
using PROC MIXED, SAS, Version 8.2 (SAS Institute, 2001).Analysis Procedures
The program syntax used for each of the analysis models is

Each of the 18 year-maturity group combinations was treated presented in Table 1.
as an independent MET data set. First we compared different The models associated with each procedure were evaluated
spatial analyses (isotropic and anisotropic power correlation) with Akaike’s (AIC) criteria, calculated as follows:
with the classical RCBD model with random blocks at each
location for each MET data set. After comparing these models AIC � �2L � 2d
within locations, we conducted an across-locations analysis

where L is the restricted maximum likelihood value and dwithin each data set using the following MET models. The
is the number of estimated covariance parameters. The bestfirst two procedures were based on analysis of variance for
model is the one with the lowest value of AIC. We also used thean RCBD at each location:
Schwartz’s Bayesian Information Criterion (BIC) to compare

yijk � 	 � Lj � B(L)k(j) � Gi � GL( i j ) � εi jk [1] models with no random block effects. Variance components
were estimated by using the ridge stabilized Newton-Raph-where yijk is the yield of genotype i, in location j , block k ; 	 son algorithm implemented in SAS PROC MIXED for re-is the overall mean; Lj is the effect of location j with j � 1, stricted maximum likelihood (REML) estimation (Wolfinger. . ., s; B(L)k( j ) is the random effect of block k within location et al., 1994). We used the adjustment of degrees of freedomj with k � 1, . . ., n ; Gi is the effect of genotype i with i � 1,
proposed by Kenward and Roger (1997). The square root of. . ., g ; GL( i j ) is the effect of the interaction of genotype i with
the average variance of genotype mean differences (SAV) waslocation j and εi jk is the error term associated with observa-
used to show how the precision of mean differences changestion yi jk . Except for εi jk and the block effects, all of the model
under the different models. This was computed by averagingfactors were considered as fixed effects. The εi jk were assumed
across trials the variances of the differences between genotypeindependent with a constant variance 
 2 in the first method,
means within each trial. Pearson’s correlation coefficients be-assuming that local spatial variation and heterogeneous resid-
tween genotype means (BLUEs) for each genotype at each siteual variance between locations do not exist. The block effect
were computed for every pair of methods. The estimates ofvariances were also assumed to be homogeneous (RB model).
the covariance parameters associated with each model wereThe second procedure denoted as an RBH model was also
also obtained to compare procedures.based on Eq. [1], but permitted heterogeneous residual vari-

ances across locations.
The third procedure consisted of fitting an isotropic spa-

RESULTS AND DISCUSSIONtial correlation model within locations with a power correla-
tion function, including block effects and assuming no corre- According to the AIC values (Table 2), spatial models
lation between plots from different locations (Pow model). fitted the within trial data better than the RCBD model
The fourth procedure was the same as the previous one, but in 29 of the 50 independent data sets analyzed for pea-allowing heterogeneous error variances between locations

nut. Most of the models selected by the AIC also had the(PowH model). The other procedures were based on aniso-
smallest square root of the average variance to comparetropic spatial correlation models with a power correlation
genotype means (Table 3). This is one of the main im-function within locations. These models were fitted assum-

ing homogeneous residual variances (Powa model) as well pacts of using these models from a practical point of

Table 1. Summarized syntax for the Proc Mixed SAS (Version 8.2) commands to fit eight models for MET.

Syntax used for all models: proc mixed scoring � 200 maxfunc � 2500 maxiter � 5000 method � reml;†

Model‡ Syntax

RB class block genotype location; model yield � genotype location genotype*location/ddfm � kenwardroger; random block(location);
RBH class block genotype location; model yield � genotype location genotype*location/ddfm � kenwardroger; random block(location);

repeated/group � location;
Pow class genotype location; model yield � genotype location genotype*location/ddfm � kenwardroger; repeated/subject � location

type � sp(pow) (lat long);
PowH class genotype location; model yield � genotype location genotype*location/ddfm � kenwardroger; repeated/subject � location

type � sp(pow) (lat long) group � location;
Powa class genotype location; model yield � genotype location genotype*location/ddfm � kenwardroger; repeated/subject � location

type � sp(powa) (lat long);
PowaH class genotype location; model yield � genotype location genotype*location/ddfm � kenwardroger; repeated/subject � location

type � sp(powa) (lat long) group � location;
RBHBH class block genotype location; model yield � genotype location genotype*location/ddfm � kenwardroger; random block(location)/

group � location; repeated/group � location;
PowRB class block genotype location; model yield � genotype location genotype*location/ddfm � kenwardroger; random block(location);

repeated/subject � location type � sp(pow) (lat long);

† This command is written before the specific commands for each scenario.
‡ RB, random block; RBH, random block with heterogeneous residual variances; Pow, isotropic power spatial correlation; PowH, isotropic power spatial

correlation and heterogeneous residual variances; Powa, anisotropic power spatial correlation; PowaH, anisotropic power spatial correlation and
heterogeneous residual variances, RBHBH, random block with heterogeneous block variances and heterogeneous residual variances; PowRB, isotropic
power spatial correlation and random block.
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Table 2. Akaike information criteria (AIC) for three within-location models fitted in 18 peanut-MET data sets (nine years, two types
of genotype cycle). Smaller AIC values indicate better fitting models.

Models†

Short cycle Long cycle

Year Location RB Pow Powa RB Pow Powa

1984–1985 General Cabrera 29.32 33.81 34.28 30.34 31.13 30.88
1984–1985 Manfredi �3.22 �9.15 �7.89 70.73 68.55
1984–1985 Rı́o Tercero 34.86 24.31 25.71 46.21 45.30
1985–1986 General Cabrera 28.14 25.87 27.84 92.41 92.72 94.37
1985–1986 Manfredi 22.52 18.93 18.64 16.82 16.91 18.91
1985–1986 Rı́o Tercero 34.15 33.33 34.09 30.25 31.82 32.76
1986–1987 General Cabrera 18.86 14.96 9.75 92.57 93.71 95.62
1986–1987 Manfredi 51.52 56.63 57.35 56.89 55.76 54.17
1986–1987 Rı́o Tercero 25.85 19.85 21.14 3.18 3.76
1987–1988 General Cabrera 35.57 39.15 41.11 45.59 44.93 46.61
1987–1988 Manfredi 42.19 44.12 44.75 25.07 25.85 27.85
1987–1988 Rı́o Tercero 3.73 �7.41 �5.58 25.82 26.40 26.99
1988–1989 General Cabrera 45.69 24.67 23.55 54.23 51.47 51.49
1988–1989 Manfredi 44.96 39.60 41.59 9.70 13.50 10.18
1988–1989 Rı́o Tercero �23.55 �20.73 31.66 31.37 30.68
1989–1990 General Cabrera 69.62 71.55 72.71 21.37 17.75 17.67
1989–1990 Manfredi 61.98 57.22 57.59 38.65 34.34 33.05
1989–1990 Rı́o Tercero 62.65 56.10 55.93 60.88 60.90 62.41
1990–1991 General Cabrera 43.73 39.70 41.44 47.14 47.84 43.28
1990–1991 Manfredi 30.27 30.04 27.84 60.85 61.79
1990–1991 Rı́o Tercero 24.92 17.78 19.74 21.41 21.70 19.05
1991–1992 General Cabrera 9.68 11.80 12.89 7.97 7.71 9.25
1991–1992 Manfredi 28.81 27.77 29.76 46.39 52.59 51.83
1992–1993 General Cabrera 29.50 29.08 39.93 40.94 42.84
1992–1993 Manfredi 13.16 12.33 9.50 46.39 49.07 50.10

† RB, random block; Pow, isotropic power spatial correlation; Powa, anisotropic power spatial correlation. Empty cells indicate convergence problems
during the estimation process.

view, being able to detect smaller differences between locations (SLICE option in SAS). According to the AIC
values, the RB model was the best only in one MET (cy-genotypes.

When modeling the MET data, the genotype � lo- cle 2, 1987–1988) and the RBH model was best in only two
METs (cycle 2, 1985–1986 and 1986–1987). Furthermore,cation interaction was significant in all data sets (p �

0.0001). Therefore the genotype mean comparisons were there are two METs (cycle 2, 1991–1992 and 1992–1993)
in which the best model is the RB with heterogeneousperformed within each location using the standard er-

rors obtained from the combined analysis of the three residual and block variances. However, fitting models

Table 3. Square root of the average variance of the mean differences for three within-location models fitted in 18 peanut-MET data
sets (nine years, two types of genotype cycle).

Models†

Short cycle Long cycle

Year Location RB Pow Powa RB Pow Powa

1984–1985 General Cabrera 0.1685 0.1834 0.1834 0.1723 0.1667 0.1609
1984–1985 Manfredi 0.1241 0.1114 0.1135 0.2728 0.2480
1984–1985 Rı́o Tercero 0.1875 0.1567 0.1616 0.2132 0.2097
1985–1986 General Cabrera 0.1701 0.1568 0.1628 0.3713 0.3913 0.4007
1985–1986 Manfredi 0.1755 0.1598 0.1578 0.1553 0.1624 0.1691
1985–1986 Rı́o Tercero 0.2064 0.2065 0.2079 0.1875 0.1912 0.1896
1986–1987 General Cabrera 0.1619 0.1472 0.1321 0.3201 0.3352 0.3454
1986–1987 Manfredi 0.2076 0.2263 0.2217 0.2134 0.2054 0.1919
1986–1987 Rı́o Tercero 0.1689 0.1521 0.1547 0.1299 0.1360
1987–1988 General Cabrera 0.1714 0.1718 0.1768 0.2066 0.2087 0.2144
1987–1988 Manfredi 0.2014 0.2077 0.2076 0.1673 0.1794 0.1855
1987–1988 Rı́o Tercero 0.1300 0.1085 0.1109 0.1687 0.1788 0.1768
1988–1989 General Cabrera 0.1969 0.1488 0.1433 0.2266 0.2092 0.2022
1988–1989 Manfredi 0.2047 0.1929 0.1994 0.1333 0.1343 0.1336
1988–1989 Rı́o Tercero 0.0981 0.1076 0.1771 0.1821 0.1766
1989–1990 General Cabrera 0.2542 0.2686 0.2699 0.1562 0.1483 0.1437
1989–1990 Manfredi 0.2350 0.2220 0.2227 0.2041 0.1828 0.1804
1989–1990 Rı́o Tercero 0.2439 0.2226 0.2199 0.2479 0.2581 0.2623
1990–1991 General Cabrera 0.2098 0.1931 0.1963 0.2422 0.2409 0.2090
1990–1991 Manfredi 0.1781 0.1849 0.1724 0.2735 0.2961
1990–1991 Rı́o Tercero 0.1634 0.1448 0.1501 0.1627 0.1703 0.1592
1991–1992 General Cabrera 0.1358 0.1444 0.1450 0.1427 0.1492 0.1549
1991–1992 Manfredi 0.1966 0.1973 0.2072 0.2147 0.2429 0.2344
1992–1993 General Cabrera 0.1788 0.1873 0.2209 0.2289 0.2369
1992–1993 Manfredi 0.1442 0.1462 0.1292 0.2154 0.2248 0.2295

† RB, random block; Pow, isotropic power spatial correlation; Powa, anisotropic power spatial correlation. Empty cells indicate convergence problems
during the estimation process.
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Table 4. Akaike information criteria (AIC) obtained from fitting eight models for 18 peanut-METs. Smaller AIC values indicate better
fitting models.

Models†

Cycle‡ Year RB RBH Pow PowH Powa PowaH RBHBH PowRB

1 1984–1985 63.68 60.25 51.96 48.96 50.52 52.09 60.96 50.83
1 1985–1986 84.31 87.03 76.24 78.13 75.67 80.57 84.81 73.95
1 1986–1987 100.53 100.75 95.02 91.44 90.62 88.24 96.23 97.02
1 1987–1988 90.53 85.05 90.62 75.87 92.56 81.49 88.34
1 1988–1989 87.76 66.19 63.64 43.55 65.39 67.10 60.99
1 1989–1990 187.41 191.12 179.30 184.87 177.07 186.24 194.26 179.04
1 1990–1991 94.19 95.68 85.04 87.51 84.87 89.00 98.93 85.04
1 1991–1992 39.27 38.29 37.58 39.57 39.99 41.71 38.48 37.98
1 1992–1993 40.83 41.08 42.66 41.41 44.64 39.92 42.66 42.63
2 1984–1985 151.05 146.89 149.97 144.98 152.11 147.70 147.28 145.90
2 1985–1986 172.86 137.84 173.26 141.45 174.41 144.04 139.48 170.74
2 1986–1987 183.22 152.69 188.29 153.23 189.96 155.51 152.70 190.28
2 1987–1988 91.90 93.10 95.93 97.18 96.38 99.69 96.48 93.80
2 1988–1989 107.74 98.54 99.76 96.34 100.80 92.35 95.59 99.76
2 1989–1990 126.08 121.43 117.38 113.14 115.46 113.00 120.90 118.83
2 1990–1991 134.13 128.26 134.55 131.34 133.74 123.86 129.40 136.33
2 1991–1992 61.33 57.13 70.75 60.30 71.06 61.08 54.35 55.96
2 1992–1993 87.79 89.77 93.85 90.00 95.30 86.32 93.85

† RB, random block; RBH, random block with heterogeneous residual variances; RBHBH, random block (heterogeneous across environments) with
heterogeneous residual variances; Pow, isotropic power spatial correlation; PowRB, isotropic power spatial correlation plus random block; PowH,
isotropic power spatial correlation and heterogeneous residual variances; Powa, anisotropic power spatial correlation; PowaH, anisotropic power spatial
correlation and heterogeneous residual variances.

‡ 1, short-cycle genotypes; 2, long-cycle genotypes. Empty cells indicate convergence problems during the estimation process. Underscored values indicate
the minimum AIC in each row.

with spatial correlation rather than with block effects it with the Pow and the Powa models. The model includ-
ing both the block effects and the spatial correlationproduced reductions of AIC values in 72% of the METs

(13 out of 18 METs). (PowRB model) was the selected model in only one of
the METs. The value of the spatial correlation param-The reason that the AIC indicated that heterogene-

ous error models were often superior was that, in many eter was larger in all the METs when the block effect
was not included in the model (maximum value r �cases, there were large differences between error vari-

ances estimated within each environment. In 62% of the 0.75). This result was expected since, in the PowRB
model, part of the correlation for spatial variability wasMETs, the ratio between the highest and lowest within-

location residual variances was greater than two (results considered in the term related to the blocking. When
working with anisotropic models, the inclusion of thenot shown), which made the model with heterogeneous

residual variances a more appropriate choice. The per- block effect seems redundant since, in both cases, the
spatial variability is modeled separately in two direc-centage difference between the highest and the lowest

within-trial residual variance of an MET varied from 36 to tions. According to the AIC criteria, the models in-
volving an AR1�AR1 spatial correlation (Powa and623%. The largest differences between residual vari-

ances between trials were observed in the METs with PowaH) were the most appropriate ones for 8 of the 18
analyzed METs. The homogeneous (Powa) AR1�AR1long-cycle experimental genotypes. These genotypes re-

main in the ground longer, thus the trials could have model was superior to the heterogeneous model (PowaH)
in the METs involving short-cycle genotypes and con-greater experimental error and greater differences be-

tween locations, because of the impact of climatic factors ducted in years that correspond to the METs with the
smallest difference between residual variances acrossduring a longer period. With the exception of the 1987–

1988 and 1992–1993 year, in all of the METs for long- locations.
The heterogeneous AR1�AR1 model can present com-cycle genotypes, the AIC criteria suggested that the mod-

els with heteroscedastic residual variance were more putational problems, at least with the estimation algo-
rithm used in SAS. We used the PARMS command,appropriate than their homogeneous residual variance

versions (Table 4). The two years when the models with inputting as initial values in the REML process the es-
timates obtained by using an ML algorithm. This solvedheterogeneous residual variance were not superior to

the RB were the only years with negligible differences convergence problems in three of the six cases that did
not converge originally. The convergence troubles couldin residual variances between trials. In Table 4, we in-

clude the RBHBH model to check whether the assump- be more frequent in combined analysis of METs when
there are only a few trials, since the trial plays the roletion of homogeneous block variances was satisfied. Only

in two METs (1991–1992 and 1992–1993 for long-cycle of replication during the estimation process.
In general, and mainly for short-cycle peanut cul-genotypes) did the RBHBH have the smallest AIC, and

in these cases the differences between the AIC with tivars, the SAV values were smaller for the combined
MET analyses including spatial correlations than thoserespect to the RBH model were very small. From these

results, we suggest that modeling heterogeneous block incorporating the block effects (Table 5). We also com-
pared the models with no block effect using the BICvariances between trials is unnecessary for these METs.

Table 4 also includes the PowRB model to compare criterion (results not shown) and according to this cri-
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Table 5. Square root of the average variance (SAV) of the mean differences obtained from fitting eight models that incorporate spatial
correlations for 18 METs.

Models†

Cycle‡ Year RB RBH Pow PowH Powa PowaH

1 1984–1985 0.1622 0.1625 0.1631 0.1490 0.1517 0.1536
1 1985–1986 0.1847 0.1844 0.1778 0.1726 0.1682 0.1741
1 1986–1987 0.1808 0.1817 0.1828 0.1769 0.1661 0.1709
1 1987–1988 0.1715 0.1712 0.1700 0.1661 0.1703
1 1988–1989 0.1735 0.1741 0.1581 0.1510 0.1559
1 1989–1990 0.2445 0.2445 0.2518 0.2360 0.2300 0.2356
1 1990–1991 0.1849 0.1844 0.1806 0.1741 0.1709 0.1718
1 1991–1992 0.1688 0.1679 0.1622 0.1715 0.1729 0.1783
1 1992–1993 0.1625 0.1622 0.1715 0.1676 0.1735 0.1631
2 1984–1985 0.2232 0.2236 0.2052 0.2015 0.2049 0.2042
2 1985–1986 0.2565 0.2594 0.2629 0.2683 0.2627 0.2724
2 1986–1987 0.2345 0.2347 0.2542 0.2377 0.2400 0.2390
2 1987–1988 0.1817 0.1822 0.1905 0.1889 0.1895 0.1903
2 1988–1989 0.1852 0.1841 0.1913 0.1766 0.1752 0.1712
2 1989–1990 0.2081 0.2078 0.2110 0.2002 0.1942 0.1997
2 1990–1991 0.2317 0.2317 0.2339 0.2408 0.2330 0.2274
2 1991–1992 0.1822 0.1833 0.2083 0.1997 0.2005 0.1960
2 1992–1993 0.2193 0.2193 0.2476 0.2245 0.2425

† RB, random block; RBH, random block with heterogeneous residual variances; Pow, isotropic power spatial correlation; PowH, isotropic power spatial
correlation and heterogeneous residual variances; Powa, anisotropic power spatial correlation; PowaH, anisotropic power spatial correlation and
heterogeneous residual variances.

‡ 1, short-cycle genotypes; 2, long-cycle genotypes. Empty cells indicate convergence problems during the estimation process.

terion the heterogeneous AR1�AR1 model (PowaH) the structure chosen may affect both the mean estimates
and their within-trial standard errors.was more often the best choice (12 out of 15 trials with-

out convergence troubles). Although the BIC penalizes
CONCLUSIONSmodels with more parameters more than the AIC does,

the larger likelihood of the PowaH model made it often The incorporation of spatial dependence can improve
the best model. the genotype mean comparisons, but it is not always

The previous results show that modeling the local spa- better than traditional models that include block ef-
tial tendencies through an analysis of variance includ- fects. In this paper, we showed that even for the same
ing spatial correlation structures in the error terms in- crop (peanut) the choice of the best model may depend
creases, in many cases, the ability to identify differences on other features, such as length of the growing season.
between genotypes. Smith et al. (2001) suggest that in Long-cycle peanut cultivars are subject to climate varia-
field experiments the plots are generally the same size tions longer and did not benefit in general from using
and are organized in regular continuous arrangements. spatial correlation structures. A possible reason is that
Since the distance between them can be expressed in terms local spatial tendencies may be smoothed with longer
of row and column numbers, it seems possible to express seasons, and thus the homogeneity within each block
the distance between plots as distances between rows favored models with block effects. We conclude that re-
and columns in which they are located by the quantities searchers should evaluate different covariance models
1, . . ., R � 1 and 1, . . ., C � 1, respectively. For station- and select the best models for their specific crops and
ary anisotropic models which originated from the expo- environments before comparing genotype means. The
nential model, i.e., R � 
 2Corr(�) � 
 2(Corrr(�r) � mixed model procedure with REML estimation pro-
Corrc(�c)), this recommendation simplifies the analysis vides a general framework to select the best analysis
since it is not necessary to obtain the latitude and the strategy. For METs, the modeling of the between trial
longitude at the plot centers; the covariance function residual heterogeneity can greatly improve the combined
does not change but the scale of the coefficients �r and analysis, both in models with block effects and with a
�c changes. If, on the other hand, the proposed model is spatial correlation structure.
isotropic, a scale change affecting distances between both
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