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Abstract

A family of rotation-free three node triangular shell elements is presented. The simplest element of the family is

based on an assumed constant curvature field expressed in terms of the nodal deflections of a patch of four elements

and a constant membrane field computed from the standard linear interpolation of the displacements within each tri-

angle. An enhanced version of the element is obtained by using a quadratic interpolation of the geometry in terms of the

six patch nodes. This allows to compute an assumed linear membrane strain field which improves the in-plane behav-

iour of the original element. A simple and economic version of the element using a single integration point is presented.

The efficiency of the different rotation-free shell triangles is demonstrated in many examples of application including

linear and non-linear analysis of shells under static and dynamic loads, the inflation and de-inflation of membranes

and a sheet stamping problem.

� 2005 Elsevier B.V. All rights reserved.
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1. Introduction

Triangular shell elements are very useful for the solution of large scale shell problems such as those
occurring in many practical engineering situations. Typical examples are the analysis of shell roofs under

static and dynamic loads, sheet stamping processes, vehicle dynamics and crash-worthiness situations.

Many of these problems involve high geometrical and material non-linearities and time changing frictional
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contact conditions. These difficulties are usually increased by the need of discretizing complex geometrical

shapes. Here the use of shell triangles and non-structured meshes becomes a critical necessity. Despite re-

cent advances in the field [1–6] there are not so many simple shell triangles which are capable of accurately

modelling the deformation of a shell structure under arbitrary loading conditions.

A promising line to derive simple shell triangles is to use the nodal displacements as the only unknowns
for describing the shell kinematics. This idea goes back to the original attempts to solve thin plate bending

problems using finite difference schemes with the deflection as the only nodal variable [7–9].

In past years some authors have derived a number of thin plate and shell triangular elements free of rota-

tional degrees of freedom (d.o.f.) based on Kirchhoff�s theory [10–26]. In essence all methods attempt to

express the curvatures field over an element in terms of the displacements of a collection of nodes belonging

to a patch of adjacent elements. Oñate and Cervera [14] proposed a general procedure of this kind combin-

ing finite element and finite volume concepts for deriving thin plate triangles and quadrilaterals with the

deflection as the only nodal variable and presented a simple and competitive rotation-free three d.o.f. tri-
angular element termed BPT (for Basic Plate Triangle). These ideas were extended and formalized in [20] to

derive a number of rotation-free thin plate and shell triangles. The basic ingredients of the method are a

mixed Hu–Washizu formulation, a standard discretization into three node triangles, a linear finite element

interpolation of the displacement field within each triangle and a finite volume type approach for comput-

ing constant curvature and bending moment fields within appropriate non-overlapping control domains.

The so called ‘‘cell-centered’’ and ‘‘cell-vertex’’ triangular domains yield different families of rotation-free

plate and shell triangles. Both the BPT plate element and its extension to shell analysis (termed BST for

basic shell triangle) can be derived from the cell-centered formulation. Here the ‘‘control domain’’ is an
individual triangle. The constant curvatures field within a triangle is computed in terms of the

displacements of the six nodes belonging to the four elements patch formed by the chosen triangle and

the three adjacent triangles. The cell-vertex approach yields a different family of rotation-free plate and

shell triangles. Details of the derivation of both rotation-free triangular shell element families can be found

in [20].

An extension of the BST element to the non-linear analysis of shells was implemented in an explicit dy-

namic code by Oñate et al. [25] using an updated Lagrangian formulation and a hypo-elastic constitutive

model. Excellent numerical results were obtained for non-linear dynamics of shells involving frictional con-
tact situations and sheet stamping problems [17–19,25].

A large strain formulation for the BST element using a total Lagrangian description was presented by

Flores and Oñate [23]. A recent extension of this formulation is based on a quadratic interpolation of

the geometry of the patch formed by the BST element and the three adjacent triangles [26]. This yields a

linear displacement gradient field over the element from which linear membrane strains and constant cur-

vatures can be computed within the BST element.

In this paper the formulation of the BST element is revisited using an ‘‘assumed strain’’ approach. The

content of the paper is the following. First some basic concepts of the formulation of the original BST ele-
ment using an assumed constant curvature field are given. Next, the basic equations of the non-linear thin

shell theory chosen based on a total Lagrangian description are presented. Then the non-linear formulation

of the BST element is presented. This is based on an assumed constant membrane field derived from the

linear displacement interpolation and an assumed constant curvature field expressed in terms of the dis-

placements of the nodes of the four element patch using a finite volume type approach. An enhanced ver-

sion of the BST element is derived using an assumed linear field for the membrane strains and an assumed

constant curvature field. Both assumed fields are obtained from the quadratic interpolation of the patch

geometry following the ideas presented in [26]. Details of the derivation of the tangent stiffness matrix
needed for a quasi-static implicit solution are given for both the BST and EBST elements. An efficient ver-

sion of the EBST element using one single quadrature point for integration of the tangent matrix is pre-

sented. An explicit scheme adequate for dynamic analysis is briefly described.
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The efficiency and accuracy of the standard and enhanced versions of the BST element is validated in a

number of examples of application including linear and non-linear analysis of shells under static and dy-

namic loads, the inflation and de-inflation of membranes and a sheet stamping problem.
2. Formulation of the basic plate triangle using an assumed constant curvature field

Let us consider a patch of four plate three node triangles (Fig. 1). The nodes 1, 2, and 3 in the main

central triangle (M) are marked with circles while the external nodes in the patch (nodes 4, 5 and 6) are

marked with squares. Mid-side points in the central triangle are also marked with smaller squares. Kirch-

hoff�s thin plate theory will be assumed to hold. The deflection is linearly interpolated within each three

node triangle in the standard finite element manner as
F

w ¼
X3
i¼1

Le
i w

e
i ; ð1Þ
where Le
i are the linear shape functions (area coordinates) of the three node triangle, we

i are nodal deflec-

tions and superindex e denotes element values.

The curvatures within the central triangle can be expressed in terms of a constant assumed curvatures

field as
j ¼
jxx

jyy

jxy

8><
>:

9>=
>; ¼ ĵ; ð2Þ
where j is the curvature vector and ĵ is the assumed constant curvature field defined as
ĵ ¼ 1

AM

Z Z
AM

� o2w
ox2

;� o2w
oy2

;�2
o2w
oxoy


 �T
dA; ð3Þ
where AM is the area of the central triangle in Fig. 1.

Integrating by parts Eq. (3) and substituting the resulting expression for ĵ into Eq. (2) gives the constant

curvature field within the element as
1
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5
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M
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2 3

2 3

1

ig. 1. Patch of three node triangular elements including the central triangle (M) and three adjacent triangles (1, 2 and 3).
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where CM is the boundary of the central triangle and n = (nx,ny) is the boundary normal. Eq. (4) defines the
assumed constant curvature field within the central triangle in terms of the deflection gradient along the

sides of the triangle. Eq. (4) can be found to be equivalent to the standard conservation laws used in finite

volume procedures as described in [27,28].

The computation of the line integral in Eq. (4) poses a difficulty as the deflection gradient is discontin-

uous along the element sides. A simple method to overcome this problem is to compute the deflection gra-

dient at the element sides as the average values of the gradient contributed by the two triangles sharing the

side [20,28]. Following this idea the constant curvature field with the element is computed as
j ¼ 1

AM

X3
j¼1

lM
j

2

�nj
x 0

0 �nj
y

�nj
y �nj

x

2
64

3
75

M

rLM
i wM
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2
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� �
¼ Bbw
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ð5Þ

where wp = [w1,w2,w3,w4,w5,w6]

T is the deflection vector of the six nodes in the patch. In Eq. (5) the sum

extends over the three sides of the central element M, lM
j are the lengths of the element sides and superin-

dexes M and j refer to the central triangle and to each of the adjacent elements, respectively. The standard

sum convention for repeated indexes is used. Note that triangular area coordinates satisfy
rLM
i ¼

LM
i;x

LM
i;y

" #
¼ � lM

i

2AM

ni
x

ni
y

" #
: ð6Þ
Note also that the constant curvature field is expressed in terms of the six nodes of the four element
patch linked to the element M. The expression of the 3 · 6 Bb matrix can be found in [14,20].

The virtual work expression is written as
Z Z
A

djTmdA ¼
Z Z

A
dwqdA; ð7Þ
where m is the bending moment field related to the curvatures by the standard constitutive equations
m ¼ ½Mxx;Myy ;Mxy �T ¼ Dbj; Db ¼
h3

12

E
ð1� m2Þ

1 m 0

m 1 0

0 0
1� m
2

2
664

3
775 ¼ h3

12
D: ð8Þ
In Eqs. (7) and (8) h is the plate thickness, E is the Young�s modulus, m is the Poisson�s ratio, dj and dw
are the virtual curvatures and the virtual deflection, respectively, and q is a distributed vertical load.

Substituting the approximation for the vertical deflection and the assumed constant curvature field into

(7) leads to the standard linear system of equations
Kw ¼ f; ð9Þ

where the stiffness matrix K and the equivalent nodal force f can be found by assembly of the element con-
tributions given by
Ke ¼
Z Z

Ae

BT
bDbBb dA; ð10Þ
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fe ¼
Z Z

Ae

q

Le
1

Le
2

Le
3

8><
>:

9>=
>;dA: ð11Þ
Note that Ke is a 6 · 6 matrix, whereas fe has the same structure than for the standard linear triangle. The

explicit form of Ke and fe can be found in [14].

The resulting basic plate triangle (BPT) has one degree of freedom per node and a wider bandwidth than
the standard three node triangles as each triangular element is linked to its three neighbours through Eq.

(5).

Examples of the good performance of the BPT element for analysis of thin plates can be found in [14,20].

The extension of the BPT element to the analysis of shells yields the basic shell triangle (BST) [20]. Different

applications of the BST element to linear and non-linear analysis of shells are reported in [14,17–

20,23,25,26].

The ideas used to derive the BPT element will now be extended to derive two families of basic shell tri-

angles using a total Lagrangian description.
3. Basic thin shell equations using a total Lagrangian formulation

3.1. Shell kinematics

A summary of the most relevant hypothesis related to the kinematic behaviour of a thin shell are pre-

sented. Further details may be found in the wide literature dedicated to this field [8,9].
Consider a shell with undeformed middle surface occupying the domain X0 in R3 with a boundary C0. At

each point of the middle surface a thickness h0 is defined. The positions x0 and x of a point in the unde-

formed and the deformed configurations can be, respectively, written as a function of the coordinates of

the middle surface u and the normal t3 at the point as
x0ðn1; n2; fÞ ¼ u0ðn1; n2Þ þ kt03; ð12Þ

xðn1; n2; fÞ ¼ uðn1; n2Þ þ fkt3; ð13Þ
where n1,n2 are arc-length curvilinear principal coordinates defined over the middle surface of the shell and

f is the distance from the point to the middle surface in the undeformed configuration. The product fk is the

distance from the point to the middle surface measured on the deformed configuration. The parameter k
relates the thickness at the present and initial configurations as
k ¼ h

h0
: ð14Þ
This approach implies a constant strain in the normal direction. Parameter k will not be considered as an

independent variable and will be computed from purely geometrical considerations (isochoric behaviour)

via a staggered iterative update. Besides this, the usual plane stress condition of thin shell theory will be

adopted.

A convective system is computed at each point as
giðnÞ ¼
ox

oni
i ¼ 1; 2; 3; ð15Þ
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gaðnÞ ¼
oðuðn1; n2Þ þ fkt3Þ

ona
¼ u0a þ fðkt3Þ0a a ¼ 1; 2; ð16Þ

g3ðnÞ ¼
oðuðn1; n2Þ þ fkt3Þ

of
¼ kt3: ð17Þ
This can be particularized for the points on the middle surface as
aa ¼ gaðf ¼ 0Þ ¼ u0a; ð18Þ

a3 ¼ g3ðf ¼ 0Þ ¼ kt3: ð19Þ
The covariant (first fundamental form) metric tensor of the middle surface is
aab ¼ aa 
 ab ¼ u0a 
 u0b: ð20Þ
The Green–Lagrange strain vector of the middle surface points (membrane strains) is defined as
em ¼ ½em11
; em12

; em12
�T ð21Þ
with
emij ¼ 1
2

aij � a0
ij

� �
: ð22Þ
The curvatures (second fundamental form) of the middle surface are obtained by
jab ¼ 1
2
ðu0a 
 t30b þ u0b 
 t30aÞ ¼ �t3 
 u0ab; a; b ¼ 1; 2: ð23Þ
The deformation gradient tensor is
F ¼ ½x01; x02; x03� ¼ u01 þ fðkt3Þ01 u02 þ fðkt3Þ02 kt3½ �: ð24Þ
The product FTF = U2 = C (where U is the right stretch tensor, and C the right Cauchy-Green deforma-

tion tensor) can be written as
U2 ¼
a11 þ 2j11fk a12 þ 2j12fk 0

a12 þ 2j12fk a22 þ 2j22fk 0

0 0 k2

2
64

3
75: ð25Þ
In the derivation of expression (25) the derivatives of the thickness ratio k0a and the terms associated to f2

have been neglected.
Eq. (25) shows that U2 is not a unit tensor at the original configuration for curved surfaces (j0

ij 6¼ 0). The

changes of curvature of the middle surface are computed by
vij ¼ jij � j0
ij: ð26Þ
Note that dvij = djij.

For computational convenience the following approximate expression (which is exact for initially flat

surfaces) will be adopted
U2 ¼
a11 þ 2v11fk a12 þ 2v12fk 0

a12 þ 2v12fk a22 þ 2v22fk 0

0 0 k2

2
64

3
75: ð27Þ
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This expression is useful to compute different Lagrangian strain measures. An advantage of these mea-

sures is that they are associated to material fibres, what makes it easy to take into account material aniso-

tropy. It is also useful to compute the eigendecomposition of U as
U ¼
X3
a¼1

kara � ra; ð28Þ
where ka and ra are the eigenvalues and eigenvectors of U.

The resultant stresses (axial forces and moments) are obtained by integrating across the original thick-

ness the second Piola–Kirchhoff stress vector r using the actual distance to the middle surface for evaluat-
ing the bending moments. This gives
rm  N 11;N 22;N 12½ �T ¼
Z

h0
rdf; ð29Þ

rb  ½M11;M22;M12�T ¼
Z

h0
rkfdf: ð30Þ
With these values the virtual work can be written as
Z Z
A0

deTmrm þ djTrb

� �
dA ¼

Z Z
A0

duTtdA; ð31Þ
where du are virtual displacements, dem is the virtual Green–Lagrange membrane strain vector, dj are the

virtual curvatures and t are the surface loads. Other load types can be easily included into (31).

3.2. Constitutive models

In order to treat plasticity at finite strains an adequate stress-strain pair must be used. The Hencky mea-

sures will be adopted here. The (logarithmic) strains are defined as
Eln ¼
e11 e21 0

e12 e22 0

0 0 e33

2
64

3
75 ¼

X3
a¼1

lnðkaÞra � ra: ð32Þ
Two types of material models are considered here: an elastic–plastic material associated to thin rolled

metal sheets and a hyper-elastic material for rubbers.

In the case of metals, where the elastic strains are small, the use of a logarithmic strain measure reason-

ably allows to adopt an additive decomposition of elastic and plastic components as
Eln ¼ Ee
ln þ Ep

ln: ð33Þ

A constant linear relationship between the (plane) Hencky stresses and the logarithmic elastic strains is

adopted giving
T ¼ DEe
ln: ð34Þ
These constitutive equations are integrated using a standard return algorithm. The following Mises–Hill

[29] yield function with non-linear isotropic hardening is chosen
ðG þ HÞT 2
11 þ ðF þ HÞT 2

22 � 2HT 11T 22 þ 2NT 2
12 ¼ r0ðe0 þ epÞn

; ð35Þ

where F, G, H and N define the non-isotropic shape of the yield surface and the parameters r0, e0 and n

define its size as a function of the effective plastic strain ep.
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The simple Mises–Hill yield function allows, as a first approximation, to treat rolled thin metal sheets

with planar and transversal anisotropy.

For the case of rubbers, the Ogden [30] model extended to the compressible range is considered.

The material behaviour is characterized by the strain energy density per unit undeformed volume defined

as
w ¼ K
2
ðln JÞ2 þ

XN

p¼1

lp

ap
J�ap

3

X3
i¼1

kap�1
i

 !
� 3

" #
; ð36Þ
where K is the bulk modulus of the material, J is the determinant of U, N, li and ai are material parameters,

li, ai are real numbers such that liai > 0 ("i = 1,N) and N is a positive integer.

The stress measures associated to the principal logarithmic strains are denoted by bi. They can be com-

puted noting that
bi ¼
owðkaÞ
oðln kiÞ

¼ Kðln JÞ þ ki

XN

p¼1

lpJ
�ap

3 kap�1
i � 1

3

1

ki

X3
j¼1

kap
j

 !
ð37Þ
we define now
ap ¼
X3
j¼1

kap
j ð38Þ
which gives
bi ¼ Kðln JÞ þ
XN

p¼1

lpJ
�ap

3 kap
i � 1

3
ap

� �
: ð39Þ
The values of bi, expressed in the principal strains directions, allow to evaluate the Hencky stresses in the

convective coordinate system as
T ¼
X3
i¼1

biri � ri: ð40Þ
The Hencky stress tensor T can be easily particularized for the plane stress case.

We define the rotated Hencky and second Piola–Kirchhoff stress tensors as
TL ¼ RT
LTRL; ð41Þ

SL ¼ RT
LSRL; ð42Þ
where RL is the rotation tensor obtained from the eigenvectors of U given by
RL ¼ r1; r2; r3½ �: ð43Þ
The relationship between the rotated Hencky and Piola–Kirchhoff stresses is (a,b = 1,2)
½SL�aa ¼
1

k2
a

½T L�aa;

½SL�ab ¼ lnðka=kbÞ
1
2
ðk2

a � k2
bÞ
½T L�ab:

ð44Þ
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The second Piola–Kirchhoff stress tensor can be computed by
Table

Eleme

Eleme

M

1

2

3

S ¼
X2
a¼1

X2
b¼1

½SL�abra � rb: ð45Þ
The second Piola–Kirchhoff stress vector r of Eqs. (29) and (30) can be readily extracted from the S

tensor.
4. Total Lagrangian formulation of the basic shell triangle

4.1. Definition of the element geometry and discretization of the displacement field

The rotation-free BST element has three nodes with three displacement degrees of freedom at each node.

As for the BPT element a patch is defined by the central triangle and the three adjacent elements (Fig. 1).

This four elements patch helps to define the curvature field within the central triangle (the BST element) in

terms of the displacements of the six patch nodes.
The node-ordering in the patch is the following (see Fig. 1).

• The nodes in the main element (M) are numbered locally as 1, 2 and 3. They are defined counter-clock-

wise around the positive normal.

• The sides in the main element are numbered locally as 1, 2, and 3. They are defined by the local node

opposite to the side.

• The adjacent elements (which are part of the patch) are numbered with the number associated to the

common side.
• The extra nodes of the patch are numbered locally as 4, 5 and 6, corresponding to nodes on adjacent

elements opposite to sides 1, 2 and 3 respectively.

• The connectivities in the adjacent elements are defined beginning with the extra node as shown in

Table 1.

The following local Cartesian coordinate system is defined for the patch. In the main element the unit

vector t1 (associated to the local coordinate n1) is directed along side 3 (from node 1 to node 2), t3 (asso-

ciated to the coordinate f) is the unit normal to the plane, and finally t2 = t3 · t1 (associated to the coordi-
nate n2).

The coordinates and the displacements are linearly interpolated within each three node triangle in the

mesh in the standard manner, i.e.
u ¼
X3
i¼1

Le
i ui ¼

X3
i¼1

Le
i u0

i þ ui

� �
; ð46Þ
1

nt numbering and nodal connectivities of the four elements patch of Fig. 1

nt N1 N2 N3

1 2 3

4 3 2

5 1 3

6 2 1
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u ¼
u1

u2

u3

8><
>:

9>=
>; ¼

X3
i¼1

Le
i ui; ui ¼

u1

u2

u3

8><
>:

9>=
>;

i

: ð47Þ
In above ui and ui contain, respectively, the three coordinates and the three displacements of node i.

4.2. Computation of the membrane strains

The Green–Lagrange membrane strains are expressed by substituting the linear displacement interpola-

tion into Eq. (22). This gives
em ¼ 1

2

u01 
 u01 � 1

u02 
 u02 � 1

2u01 
 u02

2
64

3
75: ð48Þ
The membrane strain field is constant within each triangle similarly as in the standard CST element. The
variation of the membrane strains is obtained by
dem ¼ Bm dae ð49Þ

with
Bm ¼ ½Bm1
;Bm2

;Bm3
�; ae ¼

u1

u2

u3

8><
>:

9>=
>; ð50Þ
and
Bmi
3�3

¼
LM

i;1u
T
01

LM
i;2u

T
02

LM
i;1u

T
02 þ LM

i;2u
T
01

2
64

3
75: ð51Þ
4.3. Computation of bending strains (curvatures)

We will assume the following constant curvature field within each element
jab ¼ ĵab; ð52Þ

where ĵab is the assumed constant curvature field defined by
ĵab ¼ � 1

A0
M

Z
A0

M

t3 
 u0badA0; ð53Þ
where A0
M is the area (in the original configuration) of the central element in the patch.

Substituting Eq. (53) into (52) and integrating by parts the area integral gives the curvature vector within

the element in terms of the following line integral
j ¼
j11

j22

2j12

8><
>:

9>=
>; ¼ 1

A0
M

I
C0

M

�n1 0

0 �n2

�n2 �n1

2
64

3
75 t3 
 u01

t3 
 u02


 �
dC; ð54Þ



2416 E. Oñate, F.G. Flores / Comput. Methods Appl. Mech. Engrg. 194 (2005) 2406–2443
where ni are the components (in the local system) of the normals to the element sides in the initial config-

uration C0
M .

For the definition of the normal vector t3, the linear interpolation over the central element is used. In this

case the tangent plane components are
u0a ¼
X3
i¼1

LM
i;aui; a ¼ 1; 2; ð55Þ

t3 ¼
u01 � u02

ju01 � u02j
¼ ku1 � u2: ð56Þ
From these expressions it is also possible to compute in the original configuration the element area A0
M ,

the outer normals (n1,n2)
i at each side and the side lengths lM

i . Eq. (56) also allows to evaluate the thickness

ratio k in the deformed configuration and the actual normal t3.

In order to compute the line integral of Eq. (54) the averaging procedure described in Section 2 is used.

Hence along each side of the triangle the average value of u0a between the main triangle and the adjacent

one is taken leading to
j ¼ 1

A0
M

X3
i¼1

lM
i

�ni
1 0

0 �ni
2

�ni
2 �ni

1

2
64

3
75 t3 
 12 uM

01 þ ui
01

� �
t3 
 12 uM

02 þ ui
02

� �
" #

; ð57Þ
where the sum extends over the three elements adjacent to the central triangle M.

Noting that t3 
 uM
0a ¼ 0 in the main triangle and using (6) it can be found [23]
j ¼
X3
i¼1

LM
i;1 0

0 LM
i;2

LM
i;2 LM

i;1

2
64

3
75 t3 
 ui

01

t3 
 ui
02


 �
: ð58Þ
This can be seen as the projection of the local derivatives of u in the adjacent triangles (ui
0a where index i

denotes values associated to the adjacent elements) over the normal to the main triangle t3. As the triangles

have a common side, t3 
 ui
0s ¼ 0, where ui

0s is the derivative of u along the side. Hence only the derivative of

u along the side normal (ui
0n) has non-zero component over t3. This gives
t3 
 ui
01

t3 
 ui
02


 �
¼ t3 
 ui

0n

� �
ni: ð59Þ
An alternative form to express the curvatures, which is useful when their variations are needed, is to de-
fine the vectors
hij ¼
X3
k¼1

1

2
LM

k;iu
k
0j þ LM

k;ju
k
0i

� �
: ð60Þ
This gives
jij ¼ hij 
 t3: ð61Þ

The last expression allows to interpret the curvatures as the projections of the vectors hij over the normal

of the central element. The variation of the curvatures can be obtained as
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dj ¼
X3
i¼1

LM
i;1 0

0 LM
i;2

LM
i;2 LM

i;1

2
664

3
775X

3

J¼1

Li
j;1 t3 
 dui

j

� �
Li

j;2 t3 
 dui
j

� �
2
64

3
75� 2

LM
i;1q

1
11 þ LM

i;2q
2
11

� �
LM

i;1q
1
22 þ LM

i;2q
2
22

� �
LM

i;1q
1
12 þ LM

i;2q
2
12

� �

2
666664

3
777775 t3 
 duM

i

� �
8>>>>><
>>>>>:

9>>>>>=
>>>>>;
; ð62Þ
where the projections of the vectors hij over the contravariant base vectors ua have been included
qa
ij ¼ hij 
 ua; a; i; j ¼ 1; 2 ð63Þ
with
u1 ¼ ku02 � t3; ð64Þ

u2 ¼ �ku01 � t3; ð65Þ

In above expressions superindexes in Lk

j and duk
j refer to element numbers in the patch whereas subscripts

denote node numbers of each element in the patch. As usual the superindex M denotes values in the central

triangle (Fig. 1). Note that as expected the curvatures (and their variations) in the central element are a

function of the nodal displacements of the six nodes in the four elements patch. Note also the isochoric
approach
k ¼ h

h0
¼ A0

M

AM
: ð66Þ
The derivation of Eq. (62) can be found in [26]. This equation can be rewritten in the form
dj ¼ Bbda
p; ð67Þ
where
dap
18�1

¼ duT1 ; du
T
2 ; du

T
3 ; du

T
4 ; du

T
5 ; du

T
6

� �T ð68Þ
is the virtual displacement vector of the patch and
Bb ¼ ½Bb1;Bb2; . . . ;Bb6� ð69Þ

is the curvature matrix relating the virtual curvatures within the central element and the 18 virtual displace-

ments of the six nodes in the patch.

The form of matrix Bb is given in the Appendix A.
5. Enhanced basic shell triangle

An enhanced version of the BST element (termed EBST) has been recently proposed by Flores and

Oñate [26]. The main features of the element formulation are the following:

1. The geometry of the patch formed by the central element and the three adjacent elements is quadratically

interpolated from the position of the six nodes in the patch.

2. The membrane strains are assumed to vary linearly within the central triangle and are expressed in terms
of the (continuous) values of the deformation gradient at the mid-side points of the triangle.

3. The assumed constant curvature field within the central triangle is obtained by expression (54) using now

twice the values of the (continuous) deformation gradient at the mid-side points.
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Details of the derivation of the EBST element are given below.

5.1. Definition of the element geometry and computation of membrane strains

As mentioned above a quadratic approximation of the geometry of the four elements patch is chosen

using the position of the six nodes in the patch. It is useful to define the patch in the isoparametric space

using the nodal positions given in the Table 2 (see also Fig. 2).

The quadratic interpolation is defined by
Table

Isopar

n
g

u ¼
X6
i¼1

Niui ð70Þ
with (f = 1 � n � g)
N 1 ¼ f þ ng N 4 ¼
f
2
ðf � 1Þ;

N 2 ¼ n þ gf N 5 ¼
n
2
ðn � 1Þ;

N 3 ¼ g þ fn N 6 ¼
g
2
ðg � 1Þ:

ð71Þ
This interpolation allows to compute the displacement gradients at selected points in order to use an as-

sumed strain approach. The computation of the gradients is performed at the mid-side points of the central

element of the patch denoted by G1, G2 and G3 in Fig. 2. This choice has the following advantages.

• Gradients at the three mid-side points depend only on the nodes belonging to the two elements adjacent
to each side. This can be easily verified by sampling the derivatives of the shape functions at each mid-

side point.

• When gradients are computed at the common mid-side point of two adjacent elements, the same values

are obtained, as the coordinates of the same four points are used. This in practice means that the gra-

dients at the mid-side points are independent of the element where they are computed. A side-oriented

implementation of the finite element will therefore lead to a unique evaluation of the gradients per side.
2

ametric coordinates of the six nodes in the patch of Fig. 2

1 2 3 4 5 6

0 1 0 1 �1 1

0 0 1 1 1 �1

1 2

3 45

6

η

ξ
. .
.

GG

G

12

3

Fig. 2. Patch of elements in the isoparametric space.
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The Cartesian derivatives of the shape functions are computed at the original configuration by the stan-

dard expression
Ni;1

Ni;2


 �
¼ J�1

Ni;n

Ni;g


 �
; ð72Þ
where the Jacobian matrix at the original configuration is
J ¼
u0

0n 
 t1 u0
0g 
 t1

u0
0n 
 t2 u0

0g 
 t2

" #
: ð73Þ
The deformation gradients on the middle surface, associated to an arbitrary spatial Cartesian system and

to the material Cartesian system defined on the middle surface are related by
½u01;u02� ¼ ½u0n;u0g�J�1: ð74Þ
The membrane strains within the central triangle are now obtained using a linear assumed strain field êm.

If, for example, Green Lagrange strains are used, i.e.
em ¼ êm ð75Þ

with
êm ¼ ð1� 2fÞe1m þ ð1� 2nÞe2m þ ð1� 2gÞe3m ¼
X3
i¼1

Nie
i
m; ð76Þ
where ei
m are the membrane strains computed at the three mid-side points Gi (i = 1,2,3 see Fig. 2). In Eq.

(76) N 1 ¼ ð1� 2fÞ, etc.
The gradient at each mid-side point is computed from the quadratic interpolation (70):
ðu0aÞGi
¼ ui

0a ¼
X3
j¼1

Ni
j;auj

" #
þ Ni

iþ3;auiþ3; a ¼ 1; 2; i ¼ 1; 2; 3: ð77Þ
Substituting Eq. (22) into (76) and using Eq. (20) gives the membrane strain vector as
em ¼
X3
i¼1

1

2
Ni

ui
01 
 ui

01 � 1

ui
02 
 ui

02 � 1

2ui
01 
 ui

02

8><
>:

9>=
>; ð78Þ
and the virtual membrane strains as
dem ¼
X3
i¼1

Ni

ui
01 
 dui

01

ui
2 
 dui

02

dui
01 
 ui

02 þ ui
01 
 dui

2

8><
>:

9>=
>;: ð79Þ
We note that the gradient at each mid-side point Gi depends only on the coordinates of the three nodes

of the central triangle and on those of an additional node in the patch, associated to the side i where the

gradient is computed.
Combining Eqs. (79) and (77) gives
dem ¼ Bm dap; ð80Þ
where dap is the patch displacement vector (see Eq. (68)) and Bm is the membrane strain matrix. An explicit

form of this matrix is given in the Appendix A.
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Differently from the original BST element the membrane strains within the EBST element are now a

function of the displacements of the six patch nodes.

5.2. Computation of curvatures

The constant curvature field assumed for the BST element is chosen again here. The numerical evalua-

tion of the line integral in Eq. (54) results in a sum over the integration points at the element boundary

which are, in fact, the same points used for evaluating the gradients when computing the membrane strains.

As one integration point is used over each side, it is not necessary to distinguish between sides (i) and inte-

gration points (Gi). In this way the curvatures can be computed by
j ¼ 2
X3
i¼1

LM
i;1 0

0 LM
i;2

LM
i;2 LM

i;1

2
64

3
75 t3 
 ui

01

t3 
 ui
02


 �
: ð81Þ
In the standard BST element [20,23] the gradient ui
0a is computed as the average of the linear approxi-

mations over the two adjacent elements (see Section 4.3). In the enhanced version, the gradient is evaluated

at each side Gi from the quadratic interpolation
ui
01

ui
02

" #
¼

Ni
1;1 Ni

2;1 Ni
3;1 Ni

iþ3;1

Ni
1;2 Ni

2;2 Ni
3;2 Ni

iþ3;2

" # u1

u2

u3

uiþ3

2
6664

3
7775: ð82Þ
Note again than at each side the gradients depend only on the positions of the three nodes of the central

triangle and of an extra node (i + 3), associated precisely to the side (Gi) where the gradient is computed.

Direction t3 in Eq. (82) can be seen as a reference direction. If a different direction than that given by Eq.

(56) is chosen at an angle h with the former, this has an influence of order h2 in the projection. This justifies

Eq. (56) for the definition of t3 as a function exclusively of the three nodes of the central triangle, instead of

using the 6-node isoparametric interpolation.
The variation of the curvatures can be obtained as
dj ¼ 2
X3
i¼1

LM
i;1 0

0 LM
i;2

LM
i;2 LM

i;1

2
64

3
75 X3

i¼1

Ni
j;1 t3 
 duj

� �
Ni

j;2 t3 
 duj

� �
" #

þ
Ni

iþ3;1 t3 
 duiþ3ð Þ
Ni

iþ3;2 t3 
 duiþ3ð Þ

" #( )

�
X3
i¼1

LM
i;1q

1
11 þ LM

i;2q
2
11

� �
LM

i;1q
1
22 þ LM

i;2q
2
22

� �
LM

i;1q
1
12 þ LM

i;2q
2
12

� �

2
66664

3
77775ðt3 
 duiÞ ¼ Bb dap; ð83Þ
where the definitions (61) and (63) still hold but with the new definition of hij given by [26]
hij ¼
X3
k¼1

LM
k;iu

k
0j þ LM

k;ju
k
0i

� �
: ð84Þ
In Eq. (83)
Bb ¼ ½Bb1 ;Bb2 ; . . . ;Bb6 �: ð85Þ
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The expression of the curvature matrix Bb is given in the Appendix A. Details of the derivation of Eq.

(83) can be found in [26].

5.3. The EBST1 element

A simplified and yet very effective version of the EBST element can be obtained by using one point quad-

rature for the computation of all the element integrals. This element is termed EBST1. Note that this only

affects the membrane stiffness matrices and it is equivalent to using a assumed constant membrane strain

field defined by an average of the metric tensors computed at each side.

Numerical experiments have shown that both the EBST and the EBST1 elements are free of spurious

energy modes.
6. Boundary conditions

Elements at the domain boundary, where an adjacent element does not exist, deserve a special attention.

The treatment of essential boundary conditions associated to translational constraints is straightforward, as

they are the natural degrees of freedom of the element. The conditions associated to the normal vector are

crucial in the bending formulation. For clamped sides or symmetry planes, the normal vector t3 must be

kept fixed (clamped case), or constrained to move in the plane of symmetry (symmetry case). The former

case can be seen as a special case of the latter, so we will consider symmetry planes only. This restriction can
be imposed through the definition of the tangent plane at the boundary, including the normal to the plane

of symmetry u0
0n that does not change during the process.

The tangent plane at the boundary (mid-side point) is expressed in terms of two orthogonal unit vectors

referred to a local-to-the-boundary Cartesian system (see Fig. 3) defined as
u0
0n; �u0s

� �
; ð86Þ
where vector u0
0n is fixed during the process while direction �u0s emerges from the intersection of the sym-

metry plane with the plane defined by the central element (M). The plane (gradient) defined by the central

element in the selected original convective Cartesian system (t1, t2) is
uM
01 ;u

M
02

� �
ð87Þ
the intersection line (side i) of this plane with the plane of symmetry can be written in terms of the position

of the nodes that define the side (j and k) and the original length of the side lM
i , i.e.
M

j

k

i

j

k
s=ϕ

0
’s

n=ϕ
0
’n

t1

t2

symmetry
plane

original

t3
0i

Y

Z

X

i

j

k

ϕ ’s

ϕ
ι =ϕ

0

’n

i ϕΜ

deformed

’1
ϕΜ

’2

t3
i

’n

Fig. 3. Local Cartesian system for the treatment of symmetry boundary conditions.
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ui
0s ¼

1

lM
i

ðuk � ujÞ: ð88Þ
That together with the outer normal to the side ni = [n1,n2]
T = [n Æ t1,n Æ t2]

T (resolved in the selected ori-

ginal convective Cartesian system) leads to
uiT
01

uiT
02


 �
¼

n1 �n2

n2 n1


 �
uiT

0n

uiT
0s

" #
; ð89Þ
where noting that k is the determinant of the gradient, the normal component of the gradient ui
0n can be

approximated by
ui
0n ¼

u0
0n

kjui
0sj
: ð90Þ
In this way the contribution of the gradient at side i to vectors hab (Eqs. (60) and (84)) results in
hT11

hT22

2hT12

2
664

3
775

i

¼ 2

LM
i;1 0

0 LM
i;2

LM
i;2 LM

i;1

2
664

3
775 uiT

01

uiT
02

" #
¼ 2

LM
i;1 0

0 LM
i;2

LM
i;2 LM

i;1

2
664

3
775 n1 �n2

n2 n1

" #
uiT

0n

uiT
0s

" #
: ð91Þ
For the computation of the curvature variations, the contribution from the gradient at side i is now (see

[26])
d

hT11

hT22

2hT12

2
64

3
75

i

¼ 2

LM
i;1 0

0 LM
i;2

LM
i;2 LM

i;1

2
64

3
75 n1 �n2

n2 n1


 � 0
1

Lo
½duk � duj�T

2
4

3
5; ð92aÞ

¼ 2

lM
i

�LM
i;1n2

LM
i;2n1

LM
i;1n1 � LM

i;2n2

2
64

3
75 duk � duj

� �T
; ð92bÞ
where the influence of variations in the length of vector u0n has been neglected.
For a simple supported (hinged) side, the problem is not completely defined. The simplest choice is to

neglect the contribution to the side rotations from the adjacent element missing in the patch in the evalu-

ation of the curvatures via Eq. (54) [20,23]. This is equivalent to assume that the gradient at the side is equal

to the gradient in the central element, i.e.
ui
01;u

i
02

� �
¼ uM

01 ;u
M
02

� �
: ð93Þ
More precise changes can be however introduced to account for the different natural boundary condi-

tions. One may assume that the curvature normal to the side is zero, and consider a contribution of the

missing side to introduce this constraint. As the change of curvature parallel to the side is also zero along

the hinged side, this obviously leads to zero curvatures in both directions. Denoting the contribution to the

curvatures of the interior sides (j and k) by
j11

j22

j12

2
64

3
75

j�k

:
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It can be easily shown that in order to set the normal curvature to zero the contribution of the simple

supported side (i) should be
j11

j22

j12

2
64

3
75

i

¼ �
ðn1Þ4 ðn1Þ2ðn2Þ2 ðn1Þ3n2

ðn1Þ2ðn2Þ2 ðn2Þ4 n1ðn2Þ3

2ðn1Þ3n2 2n1ðn2Þ3 2ðn1Þ2ðn2Þ2

2
64

3
75

j11

j22

j12

2
64

3
75

j�k

: ð94Þ
For the case of a triangle with two sides associated to hinged sides, the normal curvatures to both sides

must be zero. Denoting by ni and nj the normal to the sides, and by mi and mj the dual base (associated to
the base ni � nj), the contribution from the hinged sides (i and j) can be written as a function of the con-

tribution of the only interior side (k):
j11

j22

j12

2
64

3
75

i�j

¼ �
mi

1m
j
1

mi
2m

j
2

mi
1m

j
2 þ mi

2m
j
1

2
64

3
75 2ni

1n
j
1 2ni

2n
j
2 ni

1n
j
2 þ ni

2n
j
1

� � j11

j22

j12

2
64

3
75

k

: ð95Þ
For a free edge the same approximation can be used but due to Poisson�s effect this will lead to some

error. The curvature variations of these contributions can be easily computed.

For the membrane formulation of element EBST, the gradient at the mid-side point of the boundary is

assumed equal to the gradient of the main triangle.
7. Implicit solution scheme

For a step n the configuration un and the plastic strains en
p are known. The configuration un is obtained

by adding the total displacements to the original configuration un = u0 + un. The stresses are computed at

each triangle using a single sampling (integration) point at the center and NL integration points (layers)

through the thickness. The plane stress state condition of the classical thin shell theory is assumed, so that

for every layer three stress components are computed, (r11, r22, and r12) referred to the local Cartesian

system.

The computation of the incremental stresses is as follows:

1. Evaluate the incremental displacements: Dun ¼ Kn
T r

n where KT is the tangent stiffness matrix and r is the

residual force vector defined by for each element
rei ¼
Z Z

A
LitdA �

Z Z
A�

BT
mi

rm þ BT
bi
rb

� �
dA: ð96Þ
The expression of the tangent stiffness matrix for the element is given below. Details of the derivation

can be found in [23,26].
2. Generate the actual configuration un+1 = un + Dun.
3. Compute the metric tensor anþ1

ab and the curvatures jnþ1
ab . Then at each layer k compute the (approxi-

mate) right Cauchy-Green tensor (27)
Cnþ1
k ¼ anþ1 þ zkv

nþ1: ð97Þ

4. Compute the total (32) and elastic (33) deformations at each layer k
enþ1
k ¼ 1

2
lnCnþ1

k ;

½ee�nþ1

k ¼ enþ1
k � ½ep�nk :

ð98Þ
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5. Compute the trial elastic stresses (34) at each layer k
Tnþ1
k ¼ D½ee�nþ1

k : ð99Þ

6. Check the plasticity condition and return to the plasticity surface. If necessary correct the plastic strains

½ep�nþ1

k at each layer.

7. Compute the second Piola–Kirchhoff stress vector rnþ1
k and the generalized stresses
rnþ1
m ¼ h0

NL

XNL

k¼1

rnþ1
k W k;

rnþ1
b ¼ h0

NL

XNL

k¼1

rnþ1
k zkW k;

ð100Þ
where Wk is the weight of the through-the-thickness integration point. Recall that zk is the current dis-

tance of the layer to the mid-surface and not the original distance. However, for small strain plasticity

this distinction is not important.

This computation of stresses is adequate for an implicit scheme independent of the step size and it is

exact for an elastic problem.

8. Compute the residual force vector. The contribution for the Mth element is given by
 �

ðrMÞnþ1 ¼ �A0

M BT
m BT

b

� �nþ1 rm

rb

nþ1

: ð101Þ
7.1. Tangent stiffness matrix

As usual the tangent stiffness matrix is split into material and geometric components. The material tan-

gent stiffness matrix is computed by the integral
KM ¼
Z Z

A0
M

BTDepBdA; ð102Þ
where B = Bm + Bb includes:

• a membrane contribution Bm given by Eq. (51) or Eq. (80).

• a bending contribution Bb given by Eq. (69) or Eq. (85) which is constant over the element.

Matrix Dep is the elastic–plastic tangent constitutive matrix integrated through the thickness.

A three point quadrature is used for integrating the stiffness terms BT
mDepBm (recall that for the EBST

element the membrane strains vary linearly within the element) whereas one point quadrature is chosen
for the rest of the terms in KM.

7.2. Geometric tangent stiffness matrix

The geometric stiffness is written as
KG ¼ KG
m þ KG

b ; ð103Þ

where subscripts m and b denote as usual membrane and bending contributions. For the BST element the

membrane part is the same than for the standard constant strain triangle, leading to
duTKG
mDu ¼ A0

M

X3
i¼1

X3
j¼1

dui LM
i;1 LM

i;2

� � N 11 N 12

N 21 N 22


 � LM
j;1

LM
j;2

" #
Duj

( )
: ð104Þ



E. Oñate, F.G. Flores / Comput. Methods Appl. Mech. Engrg. 194 (2005) 2406–2443 2425
For the EBST element the membrane part is computed as the sum of the contributions of the three sides,

i.e.
duTKG
mDu ¼ AM

3

X3
k¼1

X6
i¼1

X6
j¼1

dui Nk
i;1 Nk

i;2

� � Nk
11 Nk

12

Nk
21 Nk

22

" #
Nk

j;1

Nk
j;2

" #
Duj

( )
; ð105Þ
where Nij = rmij are the axial forces defined in Eq. (29).

The geometric stiffness associated to bending moments is much more involved and can be found in [26].

Numerical experiments have shown that the bending part of the geometric stiffness is not so important and

can be disregarded in the iterative process.

Again three and one point quadratures are used for computing the membrane and bending contributions

to the geometric stiffness matrix. We note that for elastic–plastic problems a uniform one point quadrature

has been chosen for integrating both the membrane and bending stiffness matrices.
8. Explicit solution scheme

For simulations including large non-linearities, such as frictional contact conditions on complex geo-

metries or large instabilities in membranes, convergence is difficult to achieve with implicit schemes. In

those cases an explicit solution algorithm is typically most advantageous. This scheme provides the solution

for dynamic problems and also for static problems if an adequate damping is chosen.
The dynamic equations of motion to solve are of the form
rðuÞ þ C _uþM€u ¼ 0; ð106Þ

where M is the mass matrix, C is the damping matrix and the dot means the time derivative. The solution is

performed using the central difference method. To make the method competitive a diagonal (lumped)Mma-

trix is typically used and C is taken proportional to M. As usual, mass lumping is performed by assigning

one third of the triangular element mass to each node in the central element.
The explicit solution scheme can be summarized as follows. At each time step n where displacements

have been computed:

1. Compute the internal forces rn. This follows the same steps (2–8) described for the implicit scheme in the

previous section.

2. Compute the accelerations at time tn
€un ¼ M�1
d rn � C _un�1=2
� �

;

where Md is the diagonal (lumped) mass matrix.

3. Compute the velocities at time tn+1/2
_unþ1=2 ¼ _un�1=2€un dt:
4. Compute the displacements at time tn+1
unþ1 ¼ un þ _unþ1=2 dt:
5. Update the shell geometry.
6. Check frictional contact conditions.

Further details of the implementation of the standard BST element within an explicit solution scheme

can be found in [25].
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9. Examples

In this section several examples are presented to show the good performance of the rotation-free shell

elements BST, EBST and EBST1. The first five static examples are solved using an implicit code. The rest

of the examples are computed using the explicit dynamic scheme. For the explicit scheme the EBST element
is always integrated using one integration point per element (EBST1 version) although not indicated.

9.1. Patch tests

The three elements considered (BST, EBST and EBST1) satisfy the membrane patch test defined in Fig.

4. A uniform axial tensile stress is obtained in all cases.

The element bending formulation does not allow to apply external bending moments (there are not rota-

tional DOFs). Hence it is not possible to analyse a patch of elements under loads leading to a uniform
bending moment. A uniform torsion can be considered if a point load is applied at the corner of a rectan-

gular plate with two consecutive free sides and two simple supported sides. Fig. 5 shows three patches lead-

ing to correct results both in displacements and stresses. All three patches are structured meshes. When the

central node in the third patch is shifted from the center, the results obtained with the EBST and EBST1

elements are not correct. This however does not seems to preclude the excellent performance of these ele-

ments, as proved in the rest of the examples analyzed. On the other hand, the BST element gives correct

results in all torsion patch tests if natural boundary conditions are imposed in the formulation. If this is

not the case, incorrect results are obtained even with structured meshes.

9.2. Cook’s membrane problem

This example is used to assess the membrane performance of the EBST and EBST1 elements and to com-

pare it with the standard linear triangle (constant strain) and the quadratic triangle (linear strain). This

example involves important shear energy and was proposed to assess the distortion capability of elements.
ss

ss

Free Free

Fig. 5. Patch test for uniform torsion.
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Fig. 4. Patch test for uniform tensile stress.
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Fig. 6a shows the geometry and the applied load. Fig. 6b plots the vertical displacement of the upper vertex
as a function of the number of nodes in the mesh. Results obtained with other isoparametric elements have

also been plotted for comparison. They include the constant strain triangle (CST), the bilinear quadrilateral

(QUAD4) and the linear strain triangle (LST) [4].

From the plot shown it can be seen that the enhanced element with three integration points (EBST) gives

values slightly better that the constant strain triangle for the coarsest mesh (only two elements). However,

when the mesh is refined a performance similar to the linear strain triangle is obtained that is dramatically

superior than the former. On the other hand, if a one point quadrature is used (EBST1) the convergence in

the reported displacement is notably better than for the rest of the elements.

9.3. Cylindrical roof

In this example an effective membrane interpolation is of primary importance. The geometry is a cylin-

drical roof supported by a rigid diaphragm at both ends and it is loaded by a uniform dead weight (see

Fig. 7a). Only one quarter of the structure is modelled due to symmetry conditions. Unstructured and struc-

tured meshes are considered. In the latter case two orientations are possible (Fig. 7a shows orientation B).

Tables 3–5 present the normalized vertical displacements at the crown (point A) and at the midpoint of
the free side (point B) for the two orientations of the structured meshes and for the non-structured mesh.

Values used for normalization are uA = 0.5407 and uB = �3.610 that are quoted in reference [31].

Plots in Fig. 7b show the normalized displacement of point-B for structured meshes as a function of the

number of degrees of freedom for each case studied. An excellent convergence for the EBST element can be

seen. The version with only one integration point (EBST1) presents a behavior a little more flexible and

converges from above for structured meshes. Table 5 shows that both the EBST and the EBST1 elements

have an excellent behavior for non-structured meshes.

9.4. Open semi-spherical dome with point loads

The main problem of shell finite elements with initially curved geometry is the so called ‘‘membrane lock-

ing’’. The EBST element has a quadratic interpolation of the geometry, then it may suffer from this prob-

lem. To assess this we resort to an example of inextensional bending. This is an hemispherical shell of radius

r = 10 and thickness h = 0.04 with an 18� hole in the pole and free at all boundaries, subjected to two



Table 3

Cylindrical roof under dead weight

NDOFs Point-A Point-B

EBST EBST1 BST EBST EBST1 BST

16 0.65724 0.91855 0.74161 0.40950 0.70100 1.35230

56 0.53790 1.03331 0.74006 0.54859 1.00759 0.75590

208 0.89588 1.04374 0.88491 0.91612 1.02155 0.88269

800 0.99658 1.01391 0.96521 0.99263 1.00607 0.96393

3136 1.00142 1.00385 0.99105 0.99881 1.00102 0.98992

Normalized vertical displacements for mesh orientation A.

Table 5

Cylindrical roof under dead weight

NDOFs Point-A Point-B

EBST EBST1 BST EBST EBST1 BST

851 0.97546 0.8581 0.97598 0.97662 1.0027 0.97194

3311 0.98729 0.9682 0.98968 0.98476 1.0083 0.98598

13,536 0.99582 0.9992 1.00057 0.99316 0.9973 0.99596

Normalized vertical displacements for non-structured meshes.
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Table 4

Cylindrical roof under dead weight

NDOFs Point-A Point-B

EBST EBST1 BST EBST EBST1 BST

16 0.26029 0.83917 0.40416 0.52601 0.86133 0.89778

56 0.81274 1.10368 0.61642 0.67898 0.93931 0.68238

208 0.97651 1.04256 0.85010 0.93704 1.00255 0.86366

800 1.00085 1.01195 0.95626 0.99194 1.00211 0.95864

3136 1.00129 1.00337 0.98879 0.99828 1.00017 0.98848

Normalized vertical displacements for mesh orientation B.
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inward and two outward forces 90� apart. Material properties are E = 6.825 · 107 and m = 0.3. Fig. 8a

shows the discretized geometry (only one quarter of the geometry is considered due to symmetry).
In Fig. 8b the displacements of the points under the loads have been plotted versus the number of nodes

used in the discretization. Due to the orientation of the meshes chosen, the displacement of the point under

the inward load is not the same as the displacement under the outward load, so in the figure an average (the

absolute values) has been used. Results obtained with other elements have been included for comparison:

three membrane locking free elements, namely the original linear BST element, a transverse shear-deform-

able quadrilateral (QUAD) [32] and an assumed strain quadratic triangle (TRIC) [3]; a transverse shear

deformable quadratic triangle (TRIA) (standard displacement formulation for membrane part) [2] that is

vulnerable to locking.
From the plotted results it can be seen that the EBST element presents slight membrane locking in bending

dominated problems with initially curved geometries. This locking is much less severe than in a standard qua-

dratic triangle. Membrane locking disappears when only one integration point is used (EBST1 element).

9.5. Inflation of a sphere

The example is the inflation of a spherical shell under internal pressure. An incompressible Mooney–

Rivlin constitutive material has been considered. The Ogden parameters are N = 2, a1 = 2, l1 = 40,
a2 = �2, l2 = �20. Due to the simple geometry an analytical solution exists [33] (with c = R/R0):
p ¼ h0

R0c2
dW
dc

¼ 8h0

R0c2
c6 � 1
� �

l1 � l2c
2

� �
:

In this numerical simulation the same geometric and material parameters used in [22] have been adopted:

R0 = 1 and h0 = 0.02. The three meshes of EBST1 element considered to evaluate convergence are shown in

Fig. 9a. The value of the actual radius as a function of the internal pressure is plotted in Fig. 9b for the

different meshes and is also compared with the analytical solution. It can be seen that with a few degrees

of freedom it is possible to obtain an excellent agreement for the range of strains considered. The final value

corresponds to a ratio of h/R = 0.00024.

9.6. Clamped spherical dome under impulse pressure loading

The geometry of the dome and the material properties chosen are shown in Fig. 10. A uniform pressure

load of 600 psi is applied to the upper surface of the dome. The different meshes used in the analysis are
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shown in Fig. 11. One fourth of the dome is considered only due to symmetry. Two different analyses under

elastic and elastic–plastic conditions were carried out. The number of thickness layers in Eq. (100) is four.
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Fig. 11. Spherical dome under impulse pressure. Meshes used in the analysis. Mesh-1 with 338 elements, Mesh-2 with 1250 elements

and Mesh-3 with 2888 elements.
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Numerical experiments show that this suffices to provide an accurate solution for large elastic–plastic prob-

lems [25]. Results are obtained using the explicit scheme.

Fig. 12 shows results for the time history of the central deflection using different meshes and elastic mate-

rial properties for both BST and EBST1 elements. Results are almost identical for mesh-2 and mesh-3,
showing the excellent convergence properties. The coarsest mesh shows some differences between both ele-

ments, but for the finer meshes the results are almost identical. Fig. 13 shows similar results but now for an

elastic–plastic material. The excellent convergence of the BST and EBST1 elements is again noticeable.

Results obtained with the present elements compare very well with published results using fine meshes.

See for example ABAQUS Explicit example problems manual [34] and WHAMS-3D manual [35], showing

plots comparing results using different shell elements.

A summary of results for the central deflection at significant times is given in Tables 6 and 7. Further

details on the solution of this problem with the standard BST element can be found in [25].

9.7. Cylindrical panel under impulse loading

The geometry of the cylinder and the material properties are shown in Fig. 14. A prescribed initial

normal velocity of v0 = �5650 in./s is applied to the points in the region shown modelling the effect of

the detonation of an explosive layer. The panel is assumed clamped along all the boundary. One half of
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Table 6

Spherical dome: elastic material

Element/mesh t = 0.2 ms t = 0.4 ms t = 0.6 ms t = 0.8 ms

BST coarse �0.05155 �0.09130 0.04414 �0.08945

BST medium �0.04542 �0.09177 0.03863 �0.08052

BST fine �0.04460 �0.09022 0.03514 �0.08132

EBST1 coarse �0.05088 �0.08929 0.04348 �0.08708

EBST1 medium �0.04527 �0.09134 0.03865 �0.07979

EBST1 fine �0.04453 �0.09004 0.03510 �0.08099

Comparison of the central deflection values at the mid point obtained with the BST and EBST1 elements for different meshes.

Table 7

Spherical dome: elastic–plastic material

Element/mesh t = 0.2 ms t = 0.4 ms t = 0.6 ms t = 0.8 ms

BST Coarse �0.05888 �0.05869 �0.02938 �0.06521

BST Medium �0.05376 �0.06000 �0.02564 �0.06098

BST Fine �0.05312 �0.05993 �0.02464 �0.06105

EBST1 Coarse �0.05827 �0.05478 �0.02792 �0.06187

EBST1 Medium �0.05374 �0.05884 �0.02543 �0.06080

EBST1 Fine �0.05317 �0.05935 �0.02458 �0.06085

Comparison of the central deflection values at the mid point obtained with the BST and EBST1 elements for different meshes.
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the cylinder is discretized only due to symmetry conditions. Three different meshes of 6 · 12, 12 · 32 and

18 · 48 triangles were used for the analysis. The deformed configurations for time = 1 ms are shown for

the three meshes in Fig. 15.

The analysis was performed assuming an elastic–perfect plastic material behaviour (ry ¼ kyk
0
y ¼ 0). A

study of the convergence of the solution with the number of thickness layers showed again that four layers

suffice to capture accurately the non-linear material response [25].
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A comparison of the results obtained with the BST and EBST1 elements using the coarse mesh and

the finer mesh is shown in Fig. 16 where experimental results reported in [36] have also been plotted for
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Table 8

Cylindrical panel under impulse load

Element/mesh Vertical displacement (in.)

y = 6.28 in. y = 9.42 in.

BST (6 · 12 el.) �1.310 �0.679

BST (18 · 48 el.) �1.181 �0.587

EBST1 (6 · 12 el.) �1.147 �0.575

EBST1 (18 · 48 el.) �1.171 �0.584

Stolarski et al. [37] �1.183 �0.530

Experimental [36] �1.280 �0.700

Comparison of vertical displacement values of two central points for t = 0.4 ms.
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comparison purposes. Good agreement between the numerical and experimental results is obtained. Fig. 16

show the time evolution of the vertical displacement of two reference points along the center line located at

y = 6.28 in. and y = 9.42 in., respectively. For the finer mesh results between both elements are almost iden-

tical. For the coarse mesh it can been seen again that the element BST is more flexible than element EBST1.

The numerical values of the vertical displacement at the two reference points obtained with the BST and
EBST1 elements after a time of 0.4 ms using the 16 · 32 mesh are compared in Table 8 with a numerical

solution obtained by Stolarski et al. [37] using a curved triangular shell element and the 16 · 32 mesh.

Experimental results reported in [36] are also given for comparison. It is interesting to note the reasonable

agreement of the results for y = 6.28 in. and the discrepancy of present and other published numerical solu-

tions with the experimental value for y = 9.42 in.

The deformed shapes of the transverse section for y = 6.28 in. and the longitudinal section for x = 0

obtained with the both elements for the coarse and the fine meshes after 1ms. are compared with the

experimental results in Figs. 17 and 18. Excellent agreement is observed for the fine mesh for both
elements.
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9.8. Airbag membranes

9.8.1. Inflation/deflation of a circular airbag

This example has been taken from Ref. [22] where it is shown that the final configuration is mesh depen-

dent due to the strong instabilities leading to a non-uniqueness of the solution. In [22] it is also discussed the

important regularizing properties of the bending energy that, when disregarded, leads to massive (artificial)

numerical wrinkling in the compressed zones.
The airbag geometry is initially circular with an undeformed radius of 0.35. The material is a linear iso-

tropic elastic one with modulus of elasticity E = 6 · 107 Pa, Poisson�s ratio m = 0.3 and density q = 2000 kg/

m3. A symmetrical solution has been assumed and, hence, only one quarter of the geometry has been

modelled. Only the normal displacement to the original plane is constrained along the boundaries. The

thickness considered is h = 0.0004 m and the inflation pressure is 5000 Pa. Pressure is linearly increased

from 0 to the final value in t = 0.15 s.

Fig. 19 shows the final deformed configurations for a mesh with 10,201 nodes and 20,000 EBST1 ele-

ments. The figure on the left (a) corresponds to an analysis including full bending effects and the right figure
(b) is a pure membrane analysis.

We note that when the bending energy is included a more regular final pattern is obtained. Also the

final pattern is rather independent of the discretization (note that the solution is non-unique due to the

strong instabilities). On the other hand, the pure membrane solution shows in the center of

the modelled region a wrinkling pattern where the width of the wrinkle is the length of the element.
Fig. 19. Inflation of a circular airbag. Deformed configurations for final pressure: (a) bending formulation; (b) membrane formulation.
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Fig. 20 shows the results obtained for the de-inflation process. Note that the spherical membrane falls

down due to the self weight. The configurations are, of course, non-unique.
9.8.2. Inflation/deflation of a closed tube

The next problem is the study of the inflating and de-inflating of a tube with a semi-spherical end cap.
The tube diameter is D = 2 m, its total length is L = 5 m and the thickness h = 5 · 10�3 m. The material has

the following properties: E = 4 · 108 Pa, m = 0.35 and q = 3 · 103 kg/m3. The tube is inflated fast until a

pressure of 104 Pa and then is de-inflated under self weight. The analysis is performed with a mesh of

4176 EBST1 elements and 2163 nodes modelling a quarter of the geometry. The evolution of the tube walls

during the de-inflating process can be seen in Fig. 21. Note that the central part collapses as expected, while

the semi-spherical cap remains rather unaltered.

The same analysis is repeated for a longer and thinner tube (L = 6 m and h = 3 · 10�3 m). The same

material than in the previous case was chosen. The evolution of the tube walls is shown in Fig. 22. Note
that the central part collapses again but in a less smoother manner due to the smaller thickness.
9.8.3. Inflation of a square airbag

The last example of this kind is the inflation of a square airbag supporting a spherical object. This exam-

ple resembles a problem studied (numerically and experimentally) in [38], where fluid-structure interaction

is the main subject. Here the fluid is not modelled and a uniform pressure is applied over all the internal

surfaces. The lower surface part of the airbag is limited by a rigid plane and on the upper part a spherical

dummy object is set to study the interaction between the airbag and the object.
The airbag geometry is initially square with an undeformed side length of 0.643 m. The constitutive

material chosen is a linear isotropic elastic one with E = 5.88 · 108 Pa, m = 0.4 and a density of
Fig. 20. Inflation and deflation of a circular airbag.



Fig. 21. Inflation and deflation of a closed tube. L = 5, D = 2, h = 5 · 10�4.

Fig. 22. Inflation and deflation of a closed tube. L = 6, D = 2, h = 3 · 10�4.
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q = 1000 kg/m3. Only one quarter of the geometry has been modelled due to symmetry. The thickness

h = 0.00075 m and the inflation pressure is 250,000 Pa. Pressure is linearly incremented from 0 to the
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final value in t = 0.15 s. The spherical object has a radius r = 0.08 m and a mass of 4.8 kg (one quarter)

and is subjected to gravity load during all the process.

The mesh has 8192 EBST1 elements and 4225 nodes on each surface of the airbag. Fig. 23 shows the

deformed configurations for three different times. The sequence on the left of the figure corresponds to

an analysis including full bending effects and that on the right is the result of a pure membrane analysis.
A standard penalty formulation is used in order to treat the frictionless contact.

9.9. S-rail sheet stamping

The final problem corresponds to one of the sheet stamping benchmark tests proposed in NUMI-

SHEET�96 [39]. The analysis comprises two parts, namely, simulation of the stamping of a S-rail sheet com-
Fig. 23. Inflation of a square airbag against an spherical object. Deformed configurations for different times. Left figure: results

obtained with the full bending formulation. Right figure: results obtained with a pure membrane solution.



Fig. 24. Stamping of a S-rail. Final deformation of the sheet after springback obtained in the simulation. The triangular mesh of the

deformed sheet is also shown.
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ponent and springback computations once the stamping tools are removed. Fig. 24 shows the deformed

sheet after springback.

The detailed geometry and material data can be found in the proceedings of the conference [39] or in the

web [40]. The mesh used for the sheet has 6000 three node triangular elements and 3111 points (Fig. 24).

The tools are treated as rigid bodies. The meshes used for the sheet and the tools are those provided by the

benchmark organizers. The material considered here is a mild steel (IF) with Young modulus E = 2.06 GPa

and Poisson ratio m = 0.3. Mises yield criterion was used for plasticity behaviour with non-linear isotropic
hardening defined by ry(e

p) = 545(0.13 + ep)0.267 [MPa]. A uniform friction of 0.15 was used for all the

tools. A low (10kN) blank holder force was considered in this simulation.

Fig. 25 compares the punch force during the stamping stage obtained with both BST and EBST1 ele-

ments for the simulation and experimental values. Also for reference the average values of the simulations

presented in the conference are included. Explicit and implicit simulations are considered as different

curves. There is a remarkable coincidence between the experimental values and the results obtained with

BST and EBST1 elements.
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Fig. 26 plots the Z coordinate along line B’’–G’’ after springback. The top surface of the sheet does not

remain plane due to some instabilities due to the low blank holder force used. Results obtained with the

simulations compare very well with the experimental values.
10. Concluding remarks

We have presented in the paper two alternative formulations for the rotation-free basic shell triangle

(BST) using an assumed strain approach. The simplest element of the family is based on an assumed con-

stant curvature field expressed in terms of the nodal deflections of a patch of four elements and a constant

membrane field computed from the standard linear interpolation of the displacements within each triangle.
An enhanced version of the BST element is obtained by using a quadratic interpolation of the geometry in

terms of the six patch nodes. This allows to compute an assumed linear membrane strain field which im-

proves the in-plane behaviour of the original element. A simple and economic version of the new EBST

element using a single integration point has been presented. The efficiency of the different rotation-free shell

triangles has been demonstrated in many examples of application including linear and non-linear analysis

of shells under static and dynamic loads, the inflation and de-inflation of membranes and a sheet stamping

problem.

The enhanced rotation-free basic shell triangle element with a single integration point (the EBST1
element) has proven to be an excellent candidate for solving practical engineering shell and mem-

brane problems involving complex geometry, dynamics, material non-linearity and frictional contact

conditions.
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Appendix A

A.1. Curvature matrix for the BST element

p
dj ¼ Bb � t3 da ;
with
dap
18�1

¼ duT1 ; du
T
2 ; du

T
3 ; du

T
4 ; du

T
5 ; du

T
6

� �T

and
BT
b ¼

þLM
2;1L

2
2;1 þ LM

3;1L
3
3;1 þLM

2;2L
2
2;2 þ LM

3;2L
3
3;2 þLM

2;2L
2
2;1 þ LM

2;1L
2
2;2 þ LM

3;2L
3
3;1 þ LM

3;1L
3
3;2

LM
1;1L

1
3;1 þ LM

3;1L
3
2;1 LM

1;2L
1
3;2 þ LM

3;2L
3
2;2 LM

1;2L
1
3;1 þ LM

1;1L
1
3;2 þ LM

3;2L
3
2;1 þ LM

3;1L
3
2;2

LM
1;1L

1
2;1 þ LM

2;1L
2
3;1 LM

1;2L
1
2;2 þ LM

2;2L
2
3;2 LM

1;2L
1
2;1 þ LM

1;1L
1
j;3 þ LM

2;2L
2
3;1 þ LM

2;1L
2
3;2

LM
1;1L

1
1;1 LM

1;2L
1
1;2 LM

1;2L
1
1;1 þ LM

1;1L
1
1;3

LM
2;1L

2
1;1 LM

2;2L
2
1;2 LM

2;2L
2
1;1 þ LM

2;1L
2
1;3

LM
3;1L

3
1;1 LM

3;2L
3
1;2 LM

3;2L
3
1;1 þ LM

3;1L
3
1;3

2
6666666664

3
7777777775

�2

LM
1;1q

1
11 þ LM

1;2q
2
11 LM

1;1q
1
22 þ LM

i;2q
2
22 LM

1;1q
1
12 þ LM

1;2q
2
12

LM
2;1q

1
11 þ LM

2;2q
2
11 LM

2;1q
1
22 þ LM

2;2q
2
22 LM

2;1q
1
12 þ LM

2;2q
2
12

�LM
3;1q

1
11 þ LM

3;2q
2
11 LM

3;1q
1
22 þ LM

3;2q
2
22 LM

3;1q
1
12 þ LM

3;2q
2
12

0 0 0

0 0 0

0 0 0

2
666666664

3
777777775
:

A.2. Membrane strain matrix and curvature matrix for the EBST element

A.2.1. Membrane strain matrix

p
dem ¼ Bmda ;

BT
m ¼ 1

3

N 1
1;1u

1
01 þ N 2

1;1u
2
01 þ N 3

1;1u
3
01 N 1

1;2u
1
02 þ N 2

1;2u
2
02 þ N 3

1;2u
3
02

N 1
2;1u

1
01 þ N 2

2;1u
2
01 þ N 3

2;1u
3
01 N 1

2;2u
1
02 þ N 2

2;2u
2
02 þ N 3

2;2u
3
02

N 1
3;1u

1
01 þ N 2

3;1u
2
01 þ N 3

3;1u
3
01 N 1

3;2u
1
02 þ N 2

3;2u
2
02 þ N 3

3;2u
3
02

N 1
4;1u

1
01 N 1

4;2u
1
02

N 2
5;1u

2
01 N 2

5;2u
2
02

N 3
6;1u

3
01 N 3

6;2u
3
02

2
6666666664

3
7777777775

N 1
1;2u

1
01 þ N 1

1;1u
1
02 þ N 2

1;2u
2
01 þ N 2

1;1u
2
02 þ N 3

1;2u
3
01 þ N 3

1;1u
3
02

N 1
2;2u

1
01 þ N 1

2;1u
1
02 þ N 2

2;2u
2
01 þ N 2

2;1u
2
02 þ N 3

2;2u
3
01 þ N 3

2;1u
3
02

N 1
3;2u

1
01 þ N 1

3;1u
1
02 þ N 2

3;2u
2
01 þ N 2

3;1u
2
02 þ N 3

3;2u
3
01 þ N 3

3;1u
3
02

N 1
4;2u

1
01 þ N 1

4;1u
1
02

N 2
5;2u

2
01 þ N 2

5;1u
2
02

N 3
6;2u

3
01 þ N 3

6;1u
3
02

2
6666666664

3
7777777775
:
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A.2.2. Curvature matrix

p
dj ¼ Bb � t3da ;

BT
b ¼ 2

L1;1ðN 1;1ÞG1
þ L2;1ðN 1;1ÞG2

þ L3;1ðN 1;1ÞG3
L1;2ðN 1;2ÞG1

þ L2;2ðN 1;2ÞG2
þ L3;2ðN 1;2ÞG3

L1;1ðN 2;1ÞG1
þ L2;1ðN 2;1ÞG2

þ L3;1ðN 2;1ÞG3
L1;2ðN 2;2ÞG1

þ L2;2ðN 2;2ÞG2
þ L3;2ðN 2;2ÞG3

L1;1ðN 3;1ÞG1
þ L2;1ðN 3;1ÞG2

þ L3;1ðN 3;1ÞG3
L1;2ðN 3;2ÞG1

þ L2;2ðN 3;2ÞG2
þ L3;2ðN 3;2ÞG3

L1;1ðN 4;1ÞG1
L1;2ðN 4;2ÞG1

L2;1ðN 5;1ÞG2
L2;2ðN 5;2ÞG2

L3;1ðN 6;1ÞG3
L3;2ðN 6;2ÞG3

2
666666666664

3
777777777775

L1;2ðN 1;1ÞG1
þ L1;1ðN 1;2ÞG1

þ L2;2ðN 1;1ÞG2
þ L2;1ðN 1;2ÞG2

þ L3;2ðN 1;1ÞG3
þ L3;1ðN 1;2ÞG3

L1;2ðN 2;1ÞG1
þ L1;1ðN 2;2ÞG1

þ L2;2ðN 2;1ÞG2
þ L2;1ðN 2;2ÞG2

þ L3;2ðN 2;1ÞG3
þ L3;1ðN 2;2ÞG3

L1;2ðN 3;1ÞG1
þ L1;1ðNj;3ÞG1

þ L2;2ðN 3;1ÞG2
þ L2;1ðNj;3ÞG2

þ L3;2ðN 3;1ÞG3
þ L3;1ðNj;3ÞG3

L1;2ðN 4;1ÞG1
þ L1;1ðN 4;3ÞG1

L2;2ðN 5;1ÞG2
þ L2;1ðN 5;3ÞG2

L3;2ðN 6;1ÞG3
þ L3;1ðN 6;3ÞG6

2
666666666664

3
777777777775

�2

ðL1;1q1
11 þ L1;2q2

11Þ ðL1;1q1
22 þ Li;2q2

22Þ ðL1;1q1
12 þ L1;2q2

12Þ

ðL2;1q1
11 þ L2;2q2

11Þ ðL2;1q1
22 þ L2;2q2

22Þ ðL2;1q1
12 þ L2;2q2

12Þ

�2ðL3;1q1
11 þ L3;2q2

11Þ ðL3;1q1
22 þ L3;2q2

22Þ ðL3;1q1
12 þ L3;2q2

12Þ

0 0 0

0 0 0

0 0 0

2
666666666664

3
777777777775
:

In this last expression Li;j ¼ LM
i;j.
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[26] F.G. Flores, E. Oñate, Improvements in the membrane behaviour of the three node rotation-free BST shell triangle using an

assumed strain approach, Comput. Methods Appl. Mech. Engrg. 194 (2005) 907–932.
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