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Heavy metals are important environmental pollutants and their toxicity is a problem of increasing significance for ecologi-
cal, evolutionary, nutritional, and environmental reasons. Plants posses homeostatic cellular mechanisms to regulate the con-
centration of metal ions inside the cell to minimize the potential damage that could result from the exposure to nonessential 
metal ions. This paper summarizes present knowledge in the field of higher plant responses to cadmium, an important envi-
ronmental pollutant. Knowledge concerning metal toxicity, including mechanisms of cadmium homeostasis, uptake, trans-
port and accumulation are evaluated. The role of the cell wall, the plasma membrane and the mycorrhizas, as the main barri-
ers against cadmium entrance to the cell, as well as some aspects related to phytochelatin-based sequestration and compart-
mentalization processes are also reviewed. Cadmium-induced oxidative stress was also considered as one of the most stud-
ied topics of cadmium toxicity. 
Key words: cadmium, heavy metals, metal toxicity, phytochelatins, oxidative stress.

Toxicidade de cádmio em plantas: Metais pesados são importantes poluentes ambientais a sua toxicidade é um problema de 
importância crescente por razões ecológicas, evolucionárias, nutricional e ambiental. Plantas possuem mecanismos celulares 
homeostáticos para regular a concentração de ions metálicos dentro das células, para minimizar o dano potencial que poderia 
resultar pela exposição a óns metálicos não essenciais. Este trabalho resume o presente conhecimento na area de respostas de 
plantas ao cádmio, um importante poluente ambiental. Conhecimento relativo a toxicidade pelo metal, incluindo mecanismos 
de homeostase de cádmio, absorção, transporte e acúmulo são avaliados. O papl da parede celular, membrana plasmática e mi-
corrizas, como barreiras principais contra a entrada de cádmio na célula, assim como aspectos relacionados ao seqüestro por fi-
toquelatinas e compartimentalização são revistos. Estresse oxidativo induzido por cádmio é também considerado como um dos 
tópicos mais estudados na toxicidade por este metal pesado. 
Palavras-chave: cádmio, estresse oxidativo, fitoquelatinas, metais pesados, toxicidade por metais.

INTRODUCTION
 Environmental pollution by metals became extensive as 
mining and industrial activities increased in the late 19th and 
early 20th century. The current worldwide mine production of 
Cu, Cd, Pb, and Hg is considerable (Pinto et al., 2004). These 
pollutants, ultimately derived from a growing number of di-
verse anthropogenic sources (industrial effluents and wastes, 
urban runoff, sewage treatment plants, boating activities, agri-
cultural fungicide runoff, domestic garbage dumps, and min-
ing operations), have progressively affected more and more 
different ecosystems (Macfarlane and Burchett, 2001).

 Metal toxicity and tolerance in plants is a subject that has 
been broadly reviewed on several occasions over the last 30 
years (Brown and Jones, 1975; Foy et al., 1978; Ernst et al., 
1992; Das et al., 1997; Sanitá di Toppi and Gabrielli, 1999; 
Hall, 2002; Clemens et al., 2002). Fifty-three of the ninety 
naturally occurring elements are heavy metals (Weast, 1984). 
Among these metals, Fe, Mo and Mn are important as micro-
nutrients, while Zn, Ni, Cu, Co, Va and Cr are toxic elements, 
with high or low importance as trace elements. Ag, As, Hg, 
Cd, Pb and Sb have no known function as nutrients and seem 
to be more or less toxic to plants and microorganisms (Niess, 
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1999). The presence of both essential and non essential heavy 
metals in the atmosphere, soil and water, in excessive amounts, 
can cause serious problems to all organisms. Knowledge of 
metal-plant interactions is important for the safety of the envi-
ronment, but also for reducing the risks associated with the in-
troduction of trace metals into the food chain.

Heavy metals toxicity
 The toxicity produced by transition metals general-
ly involves neurotoxicity, hepatotoxicity and nephrotoxic-
ity (Stohs and Bagchi, 1995). Differences in solubility, ab-
sorbability, transport and chemical reactivity in these metals 
will lead to specific differences in toxicity within the body 
(Stohs and Bagchi, 1995). The chemical form of heavy met-
als in soil solution is dependant of the metal concerned, pH 
and the presence of other ions (Das et al., 1997). The toxic-
ity symptoms observed in plants in the presence of exces-
sive amounts of heavy metals may be due to a range of inter-
actions at the cellular level (Hall, 2002). Toxicity may result 
from the binding of metals to sulphydryl groups in proteins, 
leading to an inhibition of activity or disruption of structure 
(Van Assche and Clijters, 1990). Enzymes are one of the 
main targets of heavy metal ions and prolonged exposure of 
soils to heavy metals results in marked decreases in soil en-
zymes activity (Tyler et al., 1989). Metal interaction with lig-
and groups of enzymes largely defines their toxicity, and the 
inhibition of enzymes may be due to masking of catalytical-
ly active groups or protein denaturation (Das et al., 1997). 
In addition, heavy metal excess may stimulate the forma-
tion of free radicals and reactive oxygen species (Dietz et al., 
1999; Gallego et al., 1996; Groppa et al., 2001; Sandalio et 
al., 2001; Fornazier et al., 2002). In order to cope with highly 
toxic metals, or to maintain the level of essential metals with-
in physiological ranges, plants have evolved complex mech-
anisms that serve to control the uptake, accumulation and de-
toxification of metals. 

Cadmium toxicity in higher plants
 Cadmium is a non-essential element that negatively af-
fects plant growth and development. It is released into the en-
vironment by power stations, heating systems, metal-work-
ing industries or urban traffic. It is widely used in electroplat-
ing, pigments, plastic stabilizers and nickel-cadmium batter-
ies (Sanitá di Toppi and Gabrielli, 1999). It is recognized as 
an extremely significant pollutant due to its high toxicity and 
large solubility in water (Pinto et al., 2004). Genotoxicity 
and ecotoxicity of cadmium in animals have been also re-

ported (Degreave, 1981; Bhattacharya and Chaudhuri, 1995). 
Important sources of cadmium input to the marine environ-
ment include atmospheric deposition, domestic waste water 
and industrial discharges. Baker et al. (1990) reported that 
Cd never occurs in isolation in natural environments, but 
mostly as a ‘guest’ metal in Pb:Zn mineralization. Wagner 
(1993) estimated that non-polluted soil solutions contain 
Cd concentrations ranging from 0.04 to 0.32 mM. Soil so-
lutions which have a Cd concentration varying from 0.32 to 
about 1 mM can be regarded as polluted to a moderate lev-
el (Sanitá di Toppi and Gabrielli, 1999). Regarding its po-
tential toxicity for soil organisms and soil microbial proc-
esses, Duxbury (1985) classified Cd as an element of “in-
termediate” toxicity. Although the toxic effects of cadmi-
um on biological systems have been reported by several au-
thors (Bingham et al., 1976; Mukherjee et al., 1984; Obata 
and Umebayashi, 1997; Das et al., 1997; Sanitá di Toppi and 
Gabrielli, 1999), the mechanisms of Cd toxicity are not com-
pletely understood yet. Cadmium can alter the uptake of min-
erals by plants through its effects on the availability of miner-
als from the soil, or through a reduction in the population of 
soil microbes (Moreno et al., 1999). Stomatal opening, tran-
spiration, and photosynthesis have been reported to be af-
fected by cadmium in nutrient solutions, but the metal is tak-
en up into plants more readily from nutrient solutions than 
from soil. (Sanitá di Toppi and Gabrielli, 1999). Chlorosis, 
leaf rolls and stunting are the main and easily visible symp-
toms of cadmium toxicity in plants. Chlorosis may appear 
to be Fe deficiency (Haghiri, 1973), phosphorous deficien-
cy or reduce Mn transport (Godbold and Hutterman, 1985). 
The inhibition of root Fe(III) reductase induced by Cd led 
to Fe(II) deficiency, and it seriously affected photosynthesis 
(Alcantara et al., 1994). In general, Cd has been shown to in-
terfere with the uptake, transport and use of several elements 
(Ca, Mg, P and K) and water by plants (Das et al., 1997). Cd 
also reduced the absorption of nitrate and its transport from 
roots to shoots, by inhibiting the nitrate reductase activity in 
the shoots (Hernandez et al., 1996). Appreciable inhibition 
of the nitrate reductase activity was also found in plants of 
Silene cucubalus (Mathys, 1975). Nitrogen fixation and pri-
mary ammonia assimilation decreased in nodules of soybean 
plants during Cd treatments (Balestrasse et al., 2003). Metal 
toxicity can affect the plasma membrane permeability, caus-
ing a reduction in water content; in particular Cd has been 
reported to interact with the water balance (Barceló et al., 
1986; Poschenrieder et al., 1989; Costa and Morel, 1994). 
Cadmium treatments have been shown to reduce ATPase ac-
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tivity of the plasma membrane fraction of wheat and sun-
flower roots (Fodor et al., 1995). Cadmium produces alter-
ations in the functionality of membranes by inducing lipid 
peroxidation (Fodor et al., 1995), and disturbances in chloro-
plast metabolism by inhibiting chlorophyll biosynthesis and 
reducing the activity of enzymes involved in CO2 fixation 
(Stobart et al., 1985; De Filippis and Ziegler, 1993). 
 Several studies have suggested that an oxidative stress 
could be involved in Cd toxicity, by either inducing oxygen 
free radical production, or by decreasing enzymatic and non-
enzymatic antioxidants (Somashekaraiah et al., 1992; Stohs 
and Bagchi, 1995; Shaw, 1995; Gallego et al., 1996; Sandalio 
et al., 2001; Balestrasse et al., 2001; Fornazier et al., 2002; 
Cho and Seo, 2004). The accelerated senescence observed in 
nodules of soybean plants treated with Cd has been attribut-
ed to the oxidative stress generated by the metal (Balestrasse 
et al., 2004). 

Cadmium homeostasis
 The sensitivity of plants to heavy metals depends on an 
interrelated network of physiological and molecular mech-
anisms that includes uptake and accumulation of metals 
through binding to extracellular exudates and cell wall, com-
plexation of ions inside the cell by various substances, for ex-
ample, organic acids, amino acids, ferritins, phytochelatins, 
and metallothioneins; general biochemical stress defense re-
sponses such as the induction of antioxidative enzymes and 
activation or modification of plant metabolism to allow ade-
quate functioning of metabolic pathways and rapid repair of 
damaged cell structures (Verkleij and Schat,  1990; Prasad, 
1999; Sanita di Toppi and Gabrielli, 1999; Hall, 2002; Cho et 
al., 2003).

Cadmium mobilization, uptake and transport
 The bioavailability of some metals is limited because of 
low solubility in oxygenated water and strong binding to soil 
particles. Both the acidification of the rhizosphere and the ex-
udation of carboxylates are considered potential targets for 
enhancing metal accumulation (Clemens et al., 2002). The 
degree to which higher plants are able to take up Cd depends 
on its concentration in the soil and its bioavailability, mod-
ulated by the presence of organic matter, pH, redox poten-
tial, temperature and concentrations of other elements. With 
the exception of Fe, which is solubilized by either reduction 
to Fe(II) or extrusion of Fe(III)-chelating phytosiderophores 
(Hirsch, 1998), little is known about active mobilization of 
trace elements by plant roots. In particular, the uptake of Cd 

ions seems to be in competition for the same transmembrane 
carrier with nutrients, such as K, Ca, Mg, Fe, Mn, Cu, Zn, Ni 
(Clarkson and Luttge, 1989; Rivetta et al., 1997). The cell 
membrane plays a role in metal homeostasis, preventing or 
reducing entry into the cell. However, examples of exclu-
sion or reduced uptake mechanisms in higher plants are lim-
ited. Cadmium is one of the most dangerous metals due to 
its high mobility and the small concentration at which its ef-
fects on plants begin to appear (Barceló and Poschenrieder, 
1990). The apoplast continuum of the root epidermis and cor-
tex is readily permeable for solutes. The cell walls of the en-
dodermal cell layer act as a barrier for apoplastic diffusion 
into the vascular system. In general, solutes have to be tak-
en up into the root symplasm before they can enter the xylem 
(Tester and Leigh, 2001). Subsequent to metal uptake into the 
root symplasm, three processes govern the movement of met-
als from the root into the xylem: sequestration of metals in-
side root cells, symplastic transport into the stele and release 
into the xylem (Clemens et al., 2002). The membrane poten-
tial, which is negative on the inside of the plasma membrane 
and might exceed -200mV in root epidermal cells, provides a 
strong driving force for the uptake of cations through second-
ary transporters (Hirsch et al., 1998). 
 Despite the different mobility of metal ions in plants, the 
metal content is generally greater in roots than in the above-
ground tissues (Ramos et al., 2002). In most environmental 
conditions, Cd enters first the roots, and consequently they 
are likely to experience Cd damage first (Sanitá di Toppi and 
Gabrielli, 1999). Cd easily penetrates the root through the 
cortical tissue and is translocated to the above-ground tis-
sues (Yang et al., 1998). As soon as Cd enters the roots, it can 
reach the xylem through an apoplastic and/or a symplastic 
pathway (Salt et al., 1995a), complexed by several ligands, 
such as organic acids and/or phytochelatins (Senden et al., 
1992, 1994; Salt et al., 1995b). Normally, Cd ions are main-
ly retained in the roots, and only small amounts are transport-
ed to the shoots (Cataldo et al., 1983). In general, the content 
of Cd in plants decreases in the order: roots>stems>leaves>
fruits>seeds (Blum, 1997). Moral et al. (1994) reported that 
Cd was easily transported to the aerial parts of tomato plants 
but was not detected in fruits. It has recently been hypothe-
sized that Cd accumulation in developing fruits could occur 
via phloem-mediated transport (Hart et al., 1998). Hinesly 
et al. (1984) reported that soil pH greatly influences Cd up-
take and transportation in corn while Street et al. (1977) re-
ported that uptake of Cd by corn was lower in acid soils 
with high organic matter content. Cadmium concentrations 
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in maize and ryegrass were negatively related to the product 
of cadmium in soil and pH (Tudoreanu and Phillips, 2004). 
A positive coefficient between soil pH and cadmium in rye-
grass may derive from ionic competition, for example, sodi-
um has been demonstrated to increase plant cadmium (Chiy 
and Phillips, 1999).
 With the exception of the recently described Cd-carbon-
ic anhydrase of marine diatoms (Lane and Morel, 2000), no 
biological function has been reported to date for the metals 
Pb and Cd. Thus, it is unlikely that metal transporters with 
specificities for the respective metal cations exist (Clemens, 
2001). However, these cations without specific metal trans-
porters are likely to enter cells through cation transporters 
with broad substrate specificity (Clemens, 2001). Cd and 
Zn have been found to be co-accumulated in aerial parts of 
Arabidopsis halleri (Bert et al., 2003) plants. This shows 
that Cd and Zn uptake are genetically correlated, suggest-
ing that the metals are taken up (partly, at least) by the same 
transporter(s) or that their transporters, when different, are 
controlled by common regulators. Arabidopsis halleri L., 
previously known as Cardaminopsis halleri L. Hayek, is one 
of the two species known to hyperaccumulate Cd (Brooks, 
1998; Küpper et al., 2000), is also a zinc (Zn) hyperaccumu-
lator and usually occurs on Zn, Cd and Pb contaminated sites 
(Bert et al., 2003). Differences in grain Cd accumulation be-
tween two wheat species (Triticum aestivum and Triticum 
turgidum var. durum) may not only result from differences in 
root Cd influx, but seem to be associated with differences in 
plant-internal Cd allocation (Hart et al., 1998).
 Several cation transporters have been identified in recent 
years with the use of molecular techniques, largely owing to 
the complementation of Saccharomyces cerevisiae mutants 
(Clemens, 2001). Most of the transporters thought to be in-
volved in the uptake of micronutrients are in the ZIP (ZRT, 
IRT-like protein) and the Nramp (natural resistance-associ-
ated macrophage protein) family (Guerinot, 2000; Williams 
et al., 2000). Recently, several plant transporters have been 
identified that show affinity for both Zn and Cd. By com-
plementation of a yeast Zn-transport defective mutant with a 
T. caerulescens cDNA library, Lasat et al. (2000) cloned the 
ZNT1 cDNA, which encodes a high affinity Zn transporter. 
However, ZNT1 can also mediate low affinity Cd transport 
(Lasat et al., 2000; Pence et al., 2000). Based on the study of 
two T. caerulescens ecotypes, Lombi et al. (2000) suggest-
ed that Cd may be transported in the low Cd accumulation 
ecotype via ZNT1 but, conversely, that Cd may be mediat-
ed in the high accumulation ecotype via a high affinity Cd 

transporter. Additional studies in yeast showed that IRT1, 
an iron transporter belonging to the ZIP family, has a broad 
substrate range and also transports Zn2+ and possibly Cd2+ 
(Korshunova et al., 1999; Clemens, 2001). Furthermore, 
AtNramp3, an Arabidopsis metal transporter involved in 
iron metal uptake, showed Cd2+ transport activity (Thomine 
et al., 2000). 

Cd accumulation and detoxification
 In general, plant accumulation of a given metal is a func-
tion of uptake capacity and intracellular binding sites. At eve-
ry level, concentration and affinities of chelating molecules, 
as well as the presence and selectivity of transport activities, 
affect metal accumulation rates (Clemens et al., 2002). The 
strategies for avoiding heavy metal toxicity are diverse. A 
first barrier against Cd stress, operating mainly at the root 
level, can be the immobilization of Cd by means of the cell 
wall (Nishizono et al., 1989) and extracellular carbohydrates 
(mucilage, callose) (Verkleij and Schat, 1990; Wagner, 1993). 
In roots and leaves of bush bean, Cd ions seem to be most-
ly bound by pectic sites and hystidyl groups of the cell wall 
(Leita et al., 1996). However, the importance of these mech-
anisms may vary in accordance with the concentration of Cd 
supplied, the species involved, the exposure time, etc. (Sanitá 
di Toppi and Gabrielli, 1999). Preventing Cd ions from enter-
ing the cytosol through the action of the plasma membrane, 
that means exclusion of ions from plant cell walls, could the-
oretically represent the best defense mechanism. As a matter 
of fact, in early phases of radish seed germination Cd seems 
to enter the cells through Ca channels in the plasma mem-
brane (Rivetta et al., 1997).

Mycorrizhas
 Mycorrhizas are among the extracellular strategies 
to avoid metal toxiciy (Marschner, 1995; Jentshcke and 
Godbold, 2000). However, only few studies have presented 
direct evidence of the alleviation of metal toxicity by micor-
rhizal fungus (Leyval et al., 1997; Jentshcke and Godbold, 
2000; Schutzendubel and Polle, 2002a), especially those re-
garding the toxic effects of Al (Schier and McQuattie, 1996), 
Ni (Jones and Hutchinson, 1986), Zn (Brown and Wilkins, 
1985) and Cd (Jentschke et al., 1999). The mechanisms in-
volved in conferring tolerance to heavy metal toxicity has 
been proved difficult to resolve since large differences in 
plant and fungal species in the response to metals has been 
observed (Hall, 2002). In Norway spruce seedlings treated 
with Cd, a fungus can only increase the tolerance of its host, 
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if fungal tolerance exceeds that of the host plant. In that ex-
periment with Cd, the fungus may have been affected by the 
high Cd treatment (5 µM), thus losing its ability to alleviate 
Cd toxicity. However, indirect evidence suggested that the 
fungus was still viable at 5 µM Cd, indicating that the mech-
anism of amelioration does operate up to a certain threshold 
of metal exposure only (Jentschke et al., 1999). The mecha-
nisms employed by the fungus at the cellular level are prob-
ably similar to those of higher plants. Detoxification of Cd 
in Paxillus involotus involved binding of Cd to the cell 
walls and accumulation of Cd in the vacuole (Blaudez et al., 
2000). 

Cell wall and plasma membranes
 The binding properties of the cell wall and its role in 
the mechanism of metal tolerance has been controversial 
(Thurman and Collins, 1983; Verkleij and Schat, 1990). The 
walls of roots cells are directly exposed to the metals in soil 
solution. The interaction of the metals with the cell wall has 
been reported in several articles reviewed by Ernst et al. 
(1992) but since then, only a few more papers appeared cov-
ering this topic. Most of the cell wall-associated heavy met-
als are bound to polygalacturonic acids, to which the affinity 
of metal ions vary according to the metal (Ernst et al., 1992). 
The plasma membrane is the first “living” structure that is 
target for heavy metal toxicity and, consequently, could also 
be involved in tolerance. Such toxicity could result from var-
ious mechanisms including the oxidation and cross-linking 
of protein thiols, inhibition of key membrane proteins such 
as H+-ATPase, or changes in the composition and fluidity of 
membrane lipids (Meharg, 1993). A direct effect of Cd and 
Cu has been reported on the lipid composition of membranes 
(Fodor et al., 1995; Hernández and Cooke, 1997; Quartacci 
et al., 2001). Moreover, Cd treatment has been shown to re-
duce ATPase activity of the plasma membrane fraction of 
wheat and sunflower roots (Fodor et al., 1995). 

Cadmium chelation
 One recurrent general mechanism for heavy metal de-
toxification in plants and other organisms is the chelation 
of the metal by a ligand and, in some cases, the subsequent 
compartmentalization of the ligand-metal complex. Vacuolar 
compartmentalization prevents the free circulation of Cd ions 
in the cytosol and forces them into a limited area (Sanitá di 
Toppi and Gabrielli, 1999). Several studies have shown that 
the vacuole is the site of accumulation of a number of heavy 
metals including Zn and Cd (Ernst et al., 1992). One example 

is the accumulation of Cd and PCs in the vacuole involving 
an ABC transporter (Hall, 2002). Several of metal-binding 
ligands have now been recognized in plants and include or-
ganic acids, amino acids, peptides, and polypeptides (Rauser, 
1999). Extracellular chelation by organic acids, such as cit-
rate and malate, is important in mechanisms of aluminum tol-
erance. For example, malate efflux from root apices is stim-
ulated by exposure to aluminum and is correlated with alu-
minum tolerance in wheat (Delhaize and Ryan, 1995). Some 
aluminum-resistant mutants of Arabidopsis also have in-
creased organic acid efflux from roots (Larsen et al., 1998). 
To our knowledge, there are no reports concerning organic 
acid chelation for Cd ions 

Metallothioneins and Phytochelatins
 The two best-characterized heavy metal-binding 
polypeptides involved in chelation and sequestration of 
heavy metals include the metallothioneins (MTs), small, 
gene-encoded, cysteine-rich polypeptides, and the phyto-
chelatins (PCs), which, in contrast, are enzymatically syn-
thesised, cysteine-rich peptides (Cobbett, 2000). MTs were 
first identified as Cd-binding proteins in mammalian tissues 
and are classified based on the arrangement of Cys residues 
(Robinson et al., 1993; Cobbett and Goldsbrough, 2002). 
Class I MTs contain 20 highly conserved Cys residues based 
on mammalian MTs and are widespread in vertebrates. MTs 
without this strict arrangement of cysteines are referred to 
as Class II MTs and include all those from plants and fun-
gi, as well as nonvertebrate animals. In this MT classifica-
tion system, PCs are, somewhat confusingly, described as 
Class III MTs. (Robinson et al., 1993). After the structures 
of PCs had been elucidated and it was found that these pep-
tides are distributed widely in the plant kingdom, it was pro-
posed that PCs were the functional equivalent of MTs (Grill 
et al., 1985). Subsequently, numerous examples of MT-like 
genes, and in some cases MT proteins, have been isolated 
from a variety of plant species and it is now apparent that 
plants express both of these Cys-containing metal-binding 
ligands. Furthermore, it is likely that the two play relatively 
independent functions in metal detoxification and/or metab-
olism (Cobbett and Goldsbrough, 2002). PCs have not been 
reported in animal species, supporting the notion that in ani-
mals, MTs may well perform some of the functions normal-
ly contributed by PCs in plants. However, the isolation of 
the PC synthase gene from plants and the consequent identi-
fication of similar genes in animal species, suggests that, at 
least in some animal species, both these mechanisms contrib-
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ute to metal detoxification and/or metabolism (Cobbett and 
Goldsbrough, 2002)
 Phytochelatins (PCs) are small metal-binding pep-
tides with the structure (g-glu-cys)n-gly, (g-glu-cys)n-b-
ala, (g-glu-cys)n-ser, (g-glu-cys)n-glu, (g-glu-cys)n-gln or 
(g-glu-cys)n, in which n varies from 2 to 11 (Grill et al., 
1985, 1986a,b). PCs were first identified in 1983 in the 
yeast Schizosaccharomyces pombe (where they were called 
cadystins) (Cobbett, 2000), and have subsequently been iden-
tified in a wide variety of plant species and in some other mi-
croorganisms (Grill et al., 1989; Cobbett and Goldsbrough, 
2002, and references therein). Numerous physiological, bio-
chemical, and genetic studies have confirmed that the tripep-
tide glutathione (GSH; γ-Glu-CysGly) is the substrate for PC 
biosynthesis. Although a number of structural variants of 
PCs, for example, (γ-GluCys)n-β-Ala, (γ-GluCys)n -Ser, and 
(γ-GluCys)n -Glu have been identified in some plant species, 
they are assumed to be functionally analogous and synthe-
sised via essentially similar biochemical pathways (Rauser, 
1999). PC synthesis from GSH is catalysed by a transpepti-
dase, named phytochelatin synthase (EC 2.3.2.15), which 
is a constitutive enzyme requiring post-translational activa-
tion by heavy metals (Grill et al., 1989; De Knecht et al., 
1995; Klapheck et al., 1995). Phytochelatin synthase (PCS) 
has been shown to be activated only in the presence of heavy 
metal ions, in particular Cd, Ag, Pb, Cu, Hg, Zn, Sn, Au, and 
As, both in vivo and in vitro (Cobbett, 2000 and references 
therein). The reaction involves the transpeptidation of the γ-
GluCys moiety of GSH onto a second GSH molecule to form 
PC(n =2) or onto a PC molecule to produce a PC(n+1) ol-
igomer (Cobbett, 2001). The capacity to synthesize PCs is 
supposed to be present in all higher plants (Gekeler et al., 
1989), the majority of algae (Ahner et al., 1995) and several 
fungi (Grill et al., 1986b; Miersch et al., 2001). In in vitro re-
actions, PC biosynthesis continued until the activating metal 
ions were chelated either by the PCs formed or by the addi-
tion of a metal chelator such as EDTA (Loeffler et al., 1989). 
PC synthase genes were isolated simultaneously by three re-
search groups using different approaches. Two groups used 
expression of Arabidopsis and wheat cDNA libraries in S. 
cerevisiae to identify genes [(AtPCS1 (Vatamaniuk et al., 
1999) and TaPCS1 (Clemens et al., 1999), respectively] con-
ferring increased Cd resistance. The third group identified 
AtPCS1 through the positional cloning of the CAD1 gene 
of Arabidopsis (Ha et al., 1999). There is a second PC syn-
thase gene, AtPCS2, in Arabidopsis with significant identity 
to CAD1/AtPCS1 (Ha et al., 1999). This was an unexpected 

finding because PCs were not detected in a cad1 mutant after 
prolonged exposure to Cd, suggesting the presence of only a 
single active PC synthase in wildtype (Howden et al., 1995). 
The physiological function of this gene remains to be deter-
mined. The significance of PC-Cd complex formation for the 
detoxification of Cd2+ in plants was supported by the isola-
tion of the Arabidopsis cad1 mutant, which contains wild-
type levels of GSH, yet is PC-deficient and is consequently 
sensitive to Cd2+ (Howden et al., 1995). Kinetic studies us-
ing plant cell cultures demonstrated that PC biosynthesis oc-
curs within minutes of exposure to Cd and is independent 
of de novo protein synthesis. The enzyme appears to be ex-
pressed independently of heavy metal exposure (Cobbett and 
Goldsbrough, 2002)
 Several reports have evidenced that PCs are essential for 
normal constitutive tolerance to several non-essential metals, 
particularly Cd. Disruption of the PCS gene in S. pombe re-
sulted in hypersensitivity to Cd (Clemens et al., 1999; Ha et 
al., 1999). Moreover, expression of PCS cDNAs from wheat, 
Arabidopsis, and S. pombe greatly increased Cd tolerance in 
Saccharomyces cerevisiae, even in mutants deficient in vacu-
ole formation or vacuolar acidification (Clemens et al., 1999). 
A number of Cd-hypersensitive Arabidopsis mutants ap-
peared to be impaired in PC synthesis (Howden et al., 1995; 
Cobbett et al., 1998). In addition, tomato cell lines select-
ed for hypertolerance to Cd exhibited enhanced PC synthe-
sis under Cd exposure, due to increased γ-glutamyl cysteine 
synthetase (γ-ECS) activity (Chen and Goldsbrough, 1994). 
Furthermore, overexpression of bacterial γ-ECS or glutath-
ione synthetase (GS) in Brassica juncea enhanced PC syn-
thesis and Cd tolerance (Zhu et al., 1999a,b). 

Heavy metal hyperaccumulator plants
 Although heavy metal hyperaccumulation in plants was 
first reported in 1865 for Thlaspi calaminare (now Thlaspi 
caerulescens ) (Sachs, 1865), the study of plant heavy metal 
hyperaccumulation is relatively recent. Brooks et al. (1977) 
first coined the term ‘hyperaccumulator’ to define plants with 
Ni concentrations higher than 1,000 µg.g-1 DW (0.1 %). This 
value was not chosen arbitrarily. Ni is a plant micronutrient 
and is found in the vegetative organs of most plants in the 
range of 1–10 µg.g-1 DW (Assunção et al., 2003). Toxicity 
occurs at concentrations higher than 10 – 50 µg.g-1 DW 
(Marschner, 1995). Although Cd is not an essential or ben-
eficial element for plants, they generally exhibit measurable 
Cd concentrations, particularly in roots, but also in leaves, 
most probably as a result of inadvertent uptake and translo-
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cation (Assunção et al., 2003). A foliar concentration above 
100 µg.g-1 DW (0.01 %) is considered exceptional and is 
used as a threshold value for Cd hyperaccumulation (Baker 
et al., 2000). The metal hyperaccumulation characteristic is 
not common in terrestrial higher plants and less than 0.2 % 
of all angiosperms have been identified as metal hyperaccu-
mulators (Baker et al., 2000). Hyperaccumulators of Ni, Zn, 
Cd, Pb, Cu, As, Co and Mn have been reported (Brooks et 
al., 1974; Brown et al., 1995; Baker et al., 2000; Ma et al., 
2001). The species belongs to the Brassicaceae or Cruciferae 
family, which is well represented among the reported hyper-
accumulators. T. caerulescens is best known as a Zn hyper-
accumulator, although it also hyperaccumulates Cd and Ni 
(Assunção et al., 2003). Brassica juncea is a heavy metal-ac-
cumulator plant with a high biomass, making it a good can-
didate for application in phytoremediation strategies (Salt et 
al., 1995b, 1998; Pilon-Smits and Pilon, 2002; Clemens et 
al., 2002). Recently, transgenic approaches have shown that, 
in this species, Cd accumulation may be further increased 
by ectopic expression of the rate-limiting enzyme for glu-
tathione biosynthesis, namely γ-glutamylcysteine synthetase 
(Zhu et al., 1999a,b). 

Oxidative stress and ROS generation by cadmium
 Plants are organisms exposed to different kinds of stress-
es, such as air pollution, drought, temperature, light, heavy 
metals, salinity, freezing, UV radiation and nutritional lim-
itation. The intoxication with pollutant metals induces ox-
idative stress because they are involved in several differ-
ent types of ROS-generating mechanisms (figure 1) (Stohs 
and Bagchi, 1995). ROS intermediates are partially reduced 
forms of atmospheric oxygen (O2) (Halliwell and Gutteridge, 
1999). They typically result from the excitation of O2 to form 
singlet (1O2), or from the transfer of one, two or three elec-
trons to O2 to form, respectively, a superoxide radical (O2

·-), 
hydrogen peroxide (H2O2) or a hydroxyl radical (HO·-) (Dat 
et al., 2000; Asada, 1999). These radicals occur transiently in 
aerobic organisms because they are also generated in plant 
cells during normal metabolic processes, such as respiration 
and photosynthesis (Asada and Takahashi, 1987). Although 
some of them may function as important signalling mole-
cules that alter gene expression and modulate the activity of 
specific defense proteins, all ROS can be extremely harmful 
to organisms at high concentrations. ROS can oxidize pro-
teins, lipids, and nucleic acids, often leading to alterations 
in cell structure and mutagenesis (Halliwell and Gutteridge, 
1999). 

 There are many others potential sources of ROS in 
plants, in addition to those that come from reactions involved 
in normal metabolism, such as photosynthesis and respira-
tion. The balance between the steady-state levels of differ-
ent ROS are determined by the interplay between different 
ROS-producing and ROS-scavenging mechanisms, and can 
change drastically depending upon the physiological con-
dition of the plant and the integration of different environ-
mental, developmental and biochemical stimuli (Asada and 
Takahashi, 1987; Asada, 1999; Polle, 2001). A variety of pro-
teins function as scavengers of superoxide and hydrogen per-
oxide. These include, among others, superoxide dismutase 
(SOD), catalase (CAT), ascorbate peroxidase (APOX), glut-
hathione reductase (GR), thioredoxin, and the peroxiredox-
in family of proteins (Asada, 1999; Mittler, 2002; Bowler et 
al., 1992). These protein antioxidants are supplemented with 
a host of nonprotein scavengers, including, but not limited 
to, intracellular ascorbate and glutathione (Noctor and Foyer, 
1998).
 The intoxication with pollutant metals induces oxidative 
stress because they are involved in several different types of 
ROS-generating mechanisms (Stohs and Bagchi, 1995). For 
example, transition metals (such as Fe3+and Cu2+) partici-
pate in the well-known Haber-Weiss cycle, producing HO·- 
from O2·- and H2O2 (Winterbourn, 1982). Metals without 
redox capacity (such as Cd2+, Pb2+, and Hg2+) can en-
hance the prooxidant status by reducing the antioxidant glu-
tathione (GSH) pool, activating calcium-dependent systems 
and affecting iron-mediated processes (Pinto et al., 2003). 

Figure 1. ROS generation by heavy metals. Adapted from Pinto et 
al. (2003).
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These heavy metals can also disrupt the photosynthetic elec-
tron chain, leading to O2·- and 1O2 production (Asada and 
Takahashi, 1987). 
 Cd was found to produce oxidative stress (Hendry et al., 
1992; Somashekaraiah et al., 1992), but, in contrast with oth-
er heavy metals such as Cu, it does not seem to act directly 
on the production of oxygen reactive species (via Fenton and:
or Haber Weiss reactions) (Salin, 1988). As it was previous-
ly observed for other stresses, activation or inhibition of anti-
oxidative enzymes depends not only on stress intensity and 
duration but also on the tissue type and the age of the plant 
(Sgherri et al., 2001). 
 Table 1 shows several examples of the oxidative re-
sponses to cadmium reported in higher plants. Treatment 
with Cd stimulated accumulation of lipid peroxides in Pisum 
sativum (Lozano-Rodríguez et al., 1997; Dixit et al., 2001; 
Metwally et al., 2004), different barley genotypes (Wua et 
al., 2003), sunflower seedlings and leaf discs (Groppa et 
al., 2001; Gallego et al., 1996), Arabidopsis thaliana seed-
lings (Cho and Seo, 2004) and soybean nodules (Balestrasse 
et al., 2004), although decreased the rate of lipid peroxida-
tion in peroxisomes of pea plants (Romero-Puertas et al., 
1999). No peroxidation was noticed in Cd-exposed plants 
and hairy roots of Daucus carota (Sanita di Toppi et al., 
1998). SOD, GR, APOX, POD and CAT showed variations 
in their activities that depend on the Cd concentration and 
plant species used (Wua et al., 2003, Sandalio et al., 2001, 
Metwally, 2003, 2004, Gallego et al; 1996; Balestrasse et 
al., 2003). In Helianthus annuus leaves, Cd decreased GSH 
content, and decreased or increased the activity of the anti-
oxidative enzymes SOD, CAT, APOX, GR and DHAR, de-

pending on Cd concentration, the organ used and the age 
of the plants (Gallego et al., 1996, 1999; Groppa et al., 
2001). In Phaseolus vulgaris roots and leaves, 5 mM Cd en-
hanced activities of the peroxidases GPOX and APOX, and 
raised lipid peroxidation (Chaoui et al., 1997). In two spe-
cies of Alyssum, GR activity increased at 0.02 mM Cd but 
decreased at 0.05 mM Cd (Schickler and Caspi, 1999).  
Cadmium treatment induced lipooxygenase, with the simul-
taneous inhibition of the antioxidative enzymes, SOD and 
CAT (Somashekaraiah et al., 1992). In particular, CAT activ-
ity often decreased following exposure to elevated Cd con-
centrations (Shim et al., 2003, Dalurzo et al., 1997; Sandalio 
et al., 2001; Fornazier et al., 2002). However, Vitoria et al. 
(2001) reported that the activities of CAT, GR and specif-
ic isoenzymes of SOD increased in the leaves and roots of a 
resistant variety of radish, following exposure to increasing 
(between 0.25 and 1 mM) concentrations of Cd. Although 
the concentrations of Cd used were high when compared to 
those found in contaminated soils, the same concentrations 
have also been used in assays with species of Thlaspi that are 
able to accumulate high concentrations of Cd (Lombi et al., 
2000). In soybean nodules and roots, low Cd concentrations 
(50 µM) induced the antioxidant defenses, which in turn pro-
tect nodules and roots against oxidative stress, whereas mod-
erate (100 µM) and high (200 µM) concentrations of the met-
al produced oxidative stress in roots, or roots and nodules, 
respectively (Balestrasse et al., 2001). In several reports, Cd 
concentrations studied are frequently not realistic when com-
pared with the levels of contamination in the natural environ-
ment (Sanitá di Toppi and Gabrielli, 1999). Taking this into 
account, Milone et al. (2003) presented Cd-induced antiox-

Cadmium
concentration (µM) Exposure time Plant species Antioxidant enzymes modified References

5 10d Pisum sativum CAT, APOX, GPOX Metwally et al., 2003

1 and 10 10d Triticum durum CAT, SOD, APOX, GPOX Milone et al., 2003

4 and 40 7d Pisum sativum CAT, SOD, APOX, GPOX Dixit et al., 2001

5 and 50 48h Populus canescens CAT, SOD, APOX, GR, MDAR Schützendübel and Polle, 2002

50 21d Phragmites australis CAT, SOD, APOX, GR Ianelli et al., 2002

50, 100 and 200 48h Glycine max CAT, SOD, APOX Balestrasse et al., 2001

500 12h Helianthus annuus CAT, SOD, APOX, GR, DHAR Gallego et al., 1996

100 and 500 20d Oryza sativa CAT, SOD, GPOX Shah et al., 2001

300 and 500 21d Arabidopsis thaliana CAT, SOD, APOX, GPOX, GR Cho and Seo, 2004

2000 and 5000 0-96h Saccharum officinarum CAT, SOD, GR Fornazier et al., 2002

5000 0-24h Oryza sativa CAT, SOD, APOX, GPOX, GR Hsu and Kao, 2004

Table 1. Antioxidant enzymes modified in different plant species exposed to variable cadmium concentrations
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idative responses in wheat treated with realistic concentra-
tions of Cd (up to 10 µM Cd). In this work, SOD, APOX and 
CAT were inhibited in the roots of the most sensitive cul-
tivar, Adamello, while SOD was scarcely affected in both 
roots and leaves of Adamello and the most tolerant culti-
var, Ofanto. Lipid peroxidation and H2O2 levels, SOD, CAT, 
APOX and GR activities increased in pea roots and leaves 
under Cd stress (Dixit et al., 2001), while APOX and CAT 
decreased at high Cd concentrations (Sandalio et al., 2001). 
A severe suppression of SOD and CAT, and almost complete 
loss of APOX activities after 48 h of exposure to 50 µM Cd 
was observed in pine roots (Schutzendubel and Polle, 2001). 
 Cd-induced inhibition of APX and CAT was also associat-
ed with H2O2 accumulation and growth retardation in the pop-
lar roots (Schutzendubel and Polle, 2002b). Cho and Seo (2004) 
reported that Cd-induced oxidative stress in Arabidopsis is due 
to H2O2 accumulation. Romero-Puertas et al. (2004) studied 
the involvement of H2O2 and O2

.- in the signalling events that 
lead to the variation of the transcript levels of CAT, GR and 
CuZn-SOD in pea plants under Cd stress.
 Thiols possess strong antioxidative properties, and 
they are consequently able to counteract oxidative stress 
(Pichorner et al., 1993). Groppa et al. (2001) and Gallego 
et al. (1996) reported a Cd-induced decay in GSH content 
in sunflower plants or leaf discs, respectively. There are 
numerous papers reporting Cd-induced depletion of GSH 
in several plant species (Rauser et al., 1995; Dixit et al., 
2001, Balestrasse et al., 2001). However, GSH increased in 
Phragmites australis roots and leaves, treated either with 50 
µM Cd (Ianelli et al., 2002), or 50 and 100 µM Cd (Pietrini 
et al., 2003). Cadmium-induced depletion of GSH has been 
mainly attributed to phytochelatin synthesis (Grill et al., 
1985). In tobacco leaves, PC-heavy metal complexes have 
been reported to be accumulated in the vacuole (Vogeli-
Lange and Wagner, 1990). Also in Avena sativa, PC-Cd com-
plexes have been shown to be transported across the tono-
plast (Salt and Rauser, 1995). In two varieties of two wheat 
species, a significant increase in total PC accumulation with 
increasing Cd exposure has been reported (Stolt et al., 2003). 
The decline in the levels of GSH might also be attributed to a 
decreased GR activity (Dixit et al., 2001), an increased utili-
zation for ascorbate synthesis or for a direct interaction with 
metals like Cd (Pietrini et al., 2003) or xenobiotics. The va-
riety of responses to Cd-induced oxidative stress is proba-
bly related not only to the levels of Cd supplied, but also to 
the plant species, the age of the plant and duration of treat-
ment. Table 1 shows antioxidant enzyme variations reported 

by several authors using different Cd concentrations, expo-
sure times and plant species.
 There is a growing interest in problems concerning 
heavy metal contamination of cultivated lands and little is 
known regarding metal homeostasis and tolerance at the or-
ganismic level. For that reason, it is essential to clarify those 
problems related to metal transport, accumulation, detoxifi-
cation and tolerance, and in this sense, it would be of enor-
mous interest to use of model systems other than plants, such 
as Saccharomyces pombe and Saccharomyces cereviciae, as 
well as the molecular analysis of hyperaccumulators like 
Arabidopsis halleri and some of the Thlaspi species. Very 
little is known about the biochemistry of metal homeosta-
sis factors. Physical interaction of transporters, chelators and 
chaperones is likely to play an important role. An improved 
knowledge in these crucial areas will help to further elucidate 
the molecular mechanism that lie beyond plant metal toler-
ance and homeostasis.
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