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1 Introduction

Since the pioneering papers [5] and [6], there has been a great deal of work towards
the understanding of the algebraic structure underlying the notion of the operator
product expansion (OPE) of chiral fields of a conformal field theory. The singular
part of the OPE encodes the commutation relations of fields, which leads to the
notion of a Lie conformal algebra introduced by V. Kac [14]. In the past few years
a structure theory [10], a representation theory [8, 9] and a cohomology theory [4]
of finite Lie conformal algebras have been developed.

In [1], Bakalov, D’Andrea and Kac developed a theory of “multi-dimensional”
Lie conformal algebras, called Lie H-pseudoalgebras, where H is a Hopf algebra.
They also solved classification problems and developed the cohomology theory. In
[2, 3], they continued with the representation theory, classifying the irreducible
modules over finite simple Lie H-pseudoalgebras.

In the present work, we study associative H-pseudoalgebras and the particular
case of associative conformal algebras, that is, when H = C[∂]. The associative
H-pseudoalgebra has not been studied to the extent it needs. Important result-
s for associative conformal algebras have been obtained by Kolesnikov (see [16]),
where an analog of the Wedderburn theorem for associative conformal algebras
was proved. In [12], Dolguntseva defined the cohomology groups of associative H-
pseudoalgebras, and proved an analog of Hochschild’s theorem for such algebras,
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establishing a relationship between extensions of the algebras and the second coho-
mology group. The explicit computations of the second cohomology group for the
main examples of associative conformal algebras, Cendn and Curn, were presented
in [13]. In [15], the classification of irreducible subalgebras of the associative confor-
mal algebra Cendn was presented. In [17, 18], all semisimple algebras of conformal
endomorphisms which have the trivial second Hochschild cohomology group with
coefficients in every conformal bimodule were described. As a consequence, a com-
plete solution of the radical splitting problem was stated in the class of associative
conformal algebras with a finite faithful representation. In [7], we described the fi-
nite irreducible modules over Cendn,p (a family of infinite subalgebras of Cendn); we
also classified certain extensions of irreducible modules over Cendn,p, and obtained
all the automorphisms of Cendn,p.

As we pointed out, the cohomology of associative H-pseudoalgebras was defined
in [12], but it was only used there to describe the extensions of algebras via the
second cohomology group. In the present work, we develop in full detail the zero,
first and second cohomologies of associative H-pseudoalgebras.

The zero cohomology deserves special attention. The zero differential map d0 is
not explicitly written in any paper, and the general formula for the differential maps
given in [12] does not apply. So this is the first time where the zero cohomology
group is described. The image of d0 is what we call the set of inner derivations, and
we prove that they are derivations; that is, we present a proof for the assertion that
the composition of differentials d1 ◦ d0 is zero. This is one of the new results of this
work.

For an associative H-pseudoalgebra A, and for any pair of left A-modules M and
N , we provide a new structure of A-bimodule on Chom(M,N), where Chom(M,N)
is the conformal analog of the Hom functor for associative algebras (see [1]). Then
one of our main results is Theorem 4.4, where we establish that the extensions of
modules, of M by N , are in one-to-one correspondence with the elements of the first
cohomology group of A with coefficient in Chom(M,N). Finally, we present another
main result, given by the classification of first-order deformations of an associative
H-pseudoalgebra in terms of the second cohomology group (see Theorem 5.4).

At the end of this work we apply these results to the particular example of
associative conformal algebras. In this case, the n-cochains are defined by using
only n − 1 variables, instead of the n variables used in the Lie conformal algebra
case in [4]. Our situation is similar to the corrected version presented in [11].

In Section 2, we present the basic definitions and notations. In Section 3, we
define the Hochschild cohomology for an associative H-pseudoalgebra A over an
A-bimodule. Then we study in more details the zero, first and second cohomolo-
gies. In Section 4, we describe the extensions of modules over an associative H-
pseudoalgebra. In Section 5, we describe the abelian extensions and the first-order
deformations in terms of the corresponding second cohomology group. In Section 6,
we apply these results to the particular example of associative conformal algebras.

Unless otherwise specified, all vector spaces, linear maps and tensor products
are considered over a field F of characteristic 0.
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2 Definitions and Notation

Let H be a Hopf algebra with comultiplication ∆ and counit ε. A more conceptual
approach to the theory of associative conformal algebras, their identities, modules,
cohomology, etc., is provided by the notion of an H-pseudoalgebra introduced in
[4]. Indeed, in ordinary algebras, all basic definitions may be stated in terms of
linear spaces, polylinear maps, and their compositions. For H-pseudoalgebras, the
base field is replaced with the Hopf algebra H, the class of linear spaces is replaced
with the class M(H) of left H-modules and the role of n-linear maps is played by
H⊗n-linear maps of the form

ϕ : V1 ⊗ · · · ⊗ Vn −→ H⊗n⊗H V, Vi, V ∈M(H),

where H⊗n = H ⊗ · · · ⊗H and we define the right action of H on H⊗n by setting
(h1 ⊗ · · · ⊗ hn) · h = (h1 ⊗ · · · ⊗ hn) ∆(n−1)(h), where

∆(n−1) := (∆⊗ id⊗ · · · ⊗ id) · · · (∆⊗ id)∆ : H −→ H⊗n

is the iterated comultiplication for n > 1, and ∆(0) := id. The map ϕ is called
H⊗n-linear if

ϕ(h1a1 ⊗ · · · ⊗ hn an) =
(
(h1 ⊗ · · · ⊗ hn)⊗H 1

)
ϕ(a1 ⊗ · · · ⊗ an)

for hi ∈ H and ai ∈ Vi.
Assume that V1, V2 and V3 are left H-modules on which some H⊗2-linear oper-

ation ∗ : V1 ⊗ V2 → H⊗2⊗H V3 is defined. Note that ∗ naturally extends to

∗ : (H⊗n⊗H V1)⊗ (H⊗m⊗H V2) −→ H⊗(n+m)⊗H V3

by taking(
(h1 ⊗ · · · ⊗ hn)⊗H v1

)
∗
(
(g1 ⊗ · · · ⊗ gm)⊗H v2

)
(2.1)

=
(
(h1 ⊗ · · · ⊗ hn ⊗ g1 ⊗ · · · ⊗ gm)⊗H 1

)(
(∆(n−1) ⊗∆(m−1))⊗H id

)
(v1 ∗ v2).

This formula reflects the composition rule of polylinear maps in M(H) (see [1] for
details).

An H-pseudoalgebra is a left H-module A together with an H⊗2-linear map

∗ : A⊗A −→ H⊗2⊗H A given by a⊗ b 7−→ a ∗ b,

called the pseudoproduct (similar to the definition of an ordinary algebra as a
linear space equipped with a bilinear product map). For the purpose of defining
the associativity of a pseudoproduct, we extend it from A ⊗ A → H⊗2⊗H A to
(H⊗2⊗H A) ⊗ A → H⊗3⊗H A, and to A ⊗ (H⊗2⊗H A) → H⊗3⊗H A, by using
the composition rules in (2.1) with A = V1 = V2 = V3 :

(f ⊗H a) ∗ b =
∑
i

(f ⊗ 1)(∆⊗ id)(gi)⊗H ci,

a ∗ (f ⊗H b) =
∑
i

(1⊗ f)(id⊗∆)(gi)⊗H ci,
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where a ∗ b =
∑
i gi⊗H ci.

An H-pseudoalgebra is called associative if it satisfies the usual equality (in
H⊗3⊗H A):

(a ∗ b) ∗ c = a ∗ (b ∗ c). (2.2)

In more detail, each term of (2.2) is explicitly given by the following formulas: if
a ∗ b =

∑
i(fi ⊗ gi)⊗H ei and ei ∗ c =

∑
j(fij ⊗ gij)⊗H eij , then

(a ∗ b) ∗ c =
∑
i,j

(fifij(1) ⊗ gifij(2) ⊗ gij)⊗H eij ∈ H⊗3⊗H A.

Similarly, if we write b∗c =
∑
i(hi⊗ li)⊗H di and a∗di =

∑
j(hij⊗ lij)⊗H dij , then

a ∗ (b ∗ c) =
∑
i,j

(hij ⊗ hilij(1) ⊗ lilij(2))⊗H dij ∈ H⊗3⊗H A.

Definition 2.1. Let A be an associative H-pseudoalgebra.
(a) A left A-module is a left H-module M together with an H⊗2-linear map

M∗ : A ⊗M → H⊗2⊗HM such that (a ∗ b) M∗ u = a
M∗ (b

M∗ u) for all a, b ∈ A
and u ∈M .

(b) A right A-module is a left H-module M together with an H⊗2-linear map
M∗ : M ⊗ A → H⊗2⊗HM such that (u

M∗ a)
M∗ b = u

M∗ (a ∗ b) for all a, b ∈ A
and u ∈M . In general, we will simply write ∗ instead of

M∗ .
(c) A bimodule over A is a left and right A-module M satisfying

(a ∗ u) ∗ b = a ∗ (u ∗ b).
If H = C, then all these definitions correspond to the usual associative algebras

and their modules.

3 Hochschild Cohomology for Associative H-Pseudoalgebras

Let us describe the Hochschild cohomology for an associative H-pseudoalgebra A
and a bimodule M over A (see [12]). The space of n-cochains Cn(A,M) consists of
all H⊗n-linear maps

ϕ : A⊗n −→ H⊗n⊗HM. (3.1)

The differential dn : Cn(A,M) → Cn+1(A,M) is defined similarly to the ordinary
one, and we assume the compositions of polylinear maps in M(H) :

(dn ϕ)(a1, . . . , an+1) = a1 ∗ ϕ(a2, . . . , an+1)

+

n∑
i=1

(−1)i ϕ(a1, . . . , ai ∗ ai+1, . . . , an+1)

+ (−1)n+1ϕ(a1, . . . , an) ∗ an+1.

(3.2)

In the first and the last summands in (3.2), we use the following conventions that
correspond to the composition defined in (2.1). If a∗u =

∑
i fi⊗H ui ∈ H⊗2⊗HM

for a ∈ A and u ∈M , then for any f ∈ H⊗n we set

a ∗ (f ⊗H u) =
∑
i

(1⊗ f)(id⊗∆(n−1))(fi)⊗H ui ∈ H⊗(n+1)⊗HM. (3.3)
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Similarly, if u ∗ a =
∑
i gi⊗H ui ∈ H⊗ 2⊗HM for a ∈ A and u ∈ M , then for any

g ∈ H⊗n we set

(g⊗H u) ∗ a =
∑
i

(g ⊗ 1)(∆(n−1) ⊗ id)(gi)⊗H ui ∈ H⊗(n+1)⊗HM. (3.4)

Finally, it remains to describe the composition used in the second summand in (3.2).
For g ∈ H⊗ 2 and ϕ ∈ C n(A,M), we set

ϕ(b1, . . . , b i−1, g⊗H bi, bi+1, . . . , bn)

=
[
(1⊗(i−1) ⊗ g ⊗ 1⊗(n−i))(id⊗(i−1) ⊗∆⊗ id⊗(n−i))⊗H idM

]
ϕ(b1, . . . , bn)

∈H⊗(n+1)⊗HM.

(3.5)

Direct computations show dn+1 ◦ dn = 0. If dn ϕ = 0, then ϕ is called an n-cocycle.
In addition, a cochain ϕ ∈ Cn(A,M) is called an n-coboundary if there exists
an (n − 1)-cochain ψ such that dn ψ = ϕ. Denote by Zn(A,M) and Bn(A,M)
the subspaces of n-cocycles and n-coboundaries, respectively. The quotient space
Hn(A,M) = Zn(A,M)/Bn(A,M) is called the n-th Hochschild cohomology group
of A with coefficients in M .

Let us view the zero, first and second cohomologies in more detail. The case
n = 0 deserves special attention. It is not explicitly written in any work. We will
assume that A⊗0 = F = H⊗0. Then the 0-cochain ϕ ∈ C0(A,M) is a map

ϕ : F→ F⊗HM.

Hence, this map ϕ is fully determined by ϕ(1) ∈ F⊗HM ' M/H+M , where
H+ = {h ∈ H | ε(h) = 0} is the augmentation ideal, and F · h := F ε(h). Therefore,

C 0(A,M) 'M/H+M.

Observe that C 1(A,M) = HomH(A,M) and now we can see that the differential
d0 : C0(A,M) → C1(A,M) is defined by the following formula: if ϕ ∈ C 0(A,M)
and uϕ := ϕ(1) ∈ M , then (d0 ϕ)(a) =

∑
i(id ⊗ ε)(hi)ui −

∑
j(ε ⊗ id)(lj)vj ∈ M ,

where a ∗ uϕ =
∑
i hi⊗H ui ∈ H⊗2⊗HM and uϕ ∗ a =

∑
j lj ⊗H vj ∈ H⊗2⊗HM

for a ∈ A, or in a simpler form, we have

(d0 ϕ)(a) = [(id⊗ ε)⊗H idM ](a
M∗ uϕ)− [(ε⊗ id)⊗H idM ](uϕ

M∗ a). (3.6)

It is clear that d0 is well-defined: If ϕ(1) = 1⊗H hu with ε(h) = 0, then we simply

have to use a
M∗ hu = ((1 ⊗ h)⊗H1)(a

M∗ u) and hu
M∗ a = ((h ⊗ 1)⊗H1)(u

M∗ a) in
(3.6) to get the result. Similarly, it is easy to see that d0 ϕ ∈ C1(A,M). Therefore,
we obtain

H0(A,M) =
{
u ∈M/H+M | [(id⊗ ε)⊗H idM ](a

M∗ u) = [(ε⊗ id)⊗H idM ](u
M∗ a)

for all a ∈ A
}
.

Now, recall that C1(A,M) = HomH(A,M) since we identified H ⊗HM ' M .
Observe that

C2(A,M) =
{
ϕ : A⊗A→ H⊗2⊗HM | ϕ(ha, gb) = ((h⊗ g)⊗H1)ϕ(a, b)

∀ a, b ∈ A ∀h, g ∈ H
}
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and the differential is given by (d1ϕ)(a, b) = a ∗ ϕ(b) − ϕ(a ∗ b) + ϕ(a) ∗ b. By the
conventions (3.3) and (3.4), it is clear that(

d1ϕ
)
(a, b) = a

M∗ ϕ(b)− ϕ(a ∗ b) + ϕ(a)
M∗ b.

It remains to prove that the composition (3.5) means ϕ(a∗ b) = (idH⊗2⊗Hϕ)(a∗ b);
that is, we have to consider the trivial extension of ϕ to a map from H⊗2⊗H A to
M . In fact, if a ∗ b =

∑
j gj ⊗H cj with gj ∈ H⊗2 and cj ∈ A, then using (3.5), we

have

ϕ(a ∗ b) =
∑
j

ϕ(gj ⊗H cj) =
∑
j

(gj∆⊗H idM )ϕ(cj)

=
∑
j

gj ⊗H ϕ(cj) = (idH⊗2 ⊗H ϕ)(a ∗ b),
(3.7)

and in the middle of (3.7) we have used ϕ(cj) ∈ M since we identified H⊗HM
with M .

A map f ∈ HomH(A,M) is called a derivation from A to M if

f(a ∗ b) = a
M∗ f(b) + f(a)

M∗ b

for all a, b ∈ A and f extends trivially to a map from H⊗2⊗H A to M . We denote
by Der(A,M) the set of all derivations from A to M . Then Ker d1 = Der(A,M).

Proposition 3.1. For u ∈M , we define fu : A→M by

fu(a) = [(id⊗ ε)⊗H idM ](a ∗ u)− [(ε⊗ id)⊗H idM ](u ∗ a).

Then fu is H-linear and it is a derivation. Hence, d1 ◦ d 0 = 0.

Proof. First, we prove that fu is H-linear:

fu(ha) = [(id⊗ ε)⊗H idM ]((h⊗ 1)⊗H1)(a ∗ u)

− [(ε⊗ id)⊗H idM ]((1⊗ h)⊗H1)(u ∗ a)

= (h⊗H idM )
(
[(id⊗ ε)⊗H idM ](a ∗ u)− [(ε⊗ id)⊗H idM ](u ∗ a)

)
= h fu(a).

In order to prove that fu is a derivation, observe that

a ∗ fu(b) = a ∗
(
[(id⊗ ε)⊗H idM ](b ∗ u)

)
− a ∗

(
[(ε⊗ id)⊗H idM ](u ∗ b)

)
, (3.8)

fu(a) ∗ b =
(
[(id⊗ ε)⊗H idM ](a ∗ u)

)
∗ b−

(
[(ε⊗ id)⊗H idM ](u ∗ a)

)
∗ b, (3.9)

fu(a ∗ b) =
∑
i

(fi ⊗ gi)⊗H
(
[(id⊗ ε)⊗H idM ](ei ∗ u)− [(ε⊗ id)⊗H idM ](u ∗ ei)

)
,

(3.10)

where a ∗ b =
∑
i(fi ⊗ gi)⊗H ei, and in (3.10) we used (3.7). Now, we see that the

first term of (3.8) is equal to the first term of (3.10). If b ∗ u =
∑
i(hi ⊗ li)⊗H ui,

then
[(id⊗ ε)⊗H idM ](b ∗ u) =

∑
i

hi ε(li)ui ∈M.
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Hence, using a ∗ ui =
∑
j(hij ⊗ lij)⊗H uij , we see that the first term of (3.8) is

equal to∑
i

a ∗ (hi ε(li)ui) =
∑
i,j

(hij ⊗ hi ε(li) lij)⊗H uij

=
∑
i,j

(hij ⊗ hi lij(1) ε(lij(2)) ε(li))⊗H uij

=
∑
i,j

(id⊗ id⊗ ε)(hij ⊗ hi lij(1) ⊗ lij(2) li)⊗H uij

= [(id⊗ id⊗ ε)⊗H idM ](a ∗ (b ∗ u)).

(3.11)

If ei ∗u=
∑
j(fij ⊗ gij)⊗H vij , then [(id⊗ ε)⊗H idM ](ei ∗u)=

∑
j fij ε(gij) vij ∈M .

Hence, we observe that the first term of (3.10) is equal to∑
i,j

(fi ⊗ gi) ∆(fij ε(gij))⊗H vij =
∑
i,j

(fifij(1) ⊗ gifij(2) ε(gij))⊗H vij

= [(id⊗ id⊗ ε)⊗H idM ]((a ∗ b) ∗ u),

which is equal to (3.11), proving that the first term of (3.8) is equal to the first term
of (3.10).

With the same ideas, one can prove that the second term of (3.8) is equal to
the first term of (3.9), and the second term of (3.9) is equal to the second term of
(3.10). More precisely, it is possible to prove

a ∗ fu(b) = [(id⊗ id⊗ ε)⊗H idM ](a ∗ (b ∗ u))− [(id⊗ ε⊗ id)⊗H idM ](a ∗ (u ∗ b)),
fu(a) ∗ b = [(id⊗ ε⊗ id)⊗H idM ]((a ∗ u) ∗ b)− [(ε⊗ id⊗ id)⊗H idM ]((u ∗ a) ∗ b),
fu(a ∗ b) = [(id⊗ id⊗ ε)⊗H idM ]((a ∗ b) ∗ u)− [(ε⊗ id⊗ id)⊗H idM ](u ∗ (a ∗ b)),

and hence we see that fu is a derivation. �

The derivations in Proposition 3.1 are called inner derivations, and we denote by
IDer(A,M) the corresponding set. Therefore, H1(A,M) = Der(A,M)/ IDer(A,M).
If ϕ ∈ C2(A,M), then the definition of d2 is clear:(

d2 ϕ
)
(a, b, c) = a ∗ ϕ(b, c)− ϕ(a ∗ b, c) + ϕ(a, b ∗ c)− ϕ(a, b) ∗ c,

as well as the cohomology group H2(A,M).

4 H-Pseudolinear Maps and Extensions of Modules over Associative
H-Pseudoalgebras

In this section, we introduce the H-pseudoalgebra analog of the “Hom” functor,
defined in [1, Section 10], and then we describe the extensions of modules over
associative H-pseudoalgebras. The contents of this section are completely new.

Definition 4.1. Let M and N be two left H-modules. An H-pseudolinear map
from M to N is an F-linear map φ : M → (H ⊗H)⊗H N such that

φ(hu) = ((1⊗ h)⊗H 1)φ(u), h ∈ H, u ∈M.
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We denote the space of all such φ by Chom(M,N). We define a left action of
H on Chom(M,N) by

(hφ)(u) = ((h⊗ 1)⊗H 1)φ(u).

Consider the map ρ : Chom(M,N) ⊗M → H⊗2⊗H N given by ρ(φ ⊗ u) := φ(u).
By definition, it is H⊗2-linear, hence a polylinear map inM(H); see [1] for details.
We will also use the notation φ ∗ u = φ(u) and consider this as a pseudoproduct or
an action.

Proposition 4.2. Let A be an associative H-pseudoalgebra, and let M and N be
two finite left A-modules. Then we have the following statements:

(a) Chom(M,N) is a left A-module with the action (a ∗ φ)(u) := a ∗ (φ ∗ u) for
a ∈ A, φ ∈ Chom(M,N) and u ∈ M , where the composition rules are those
defined in (2.1).

(b) Chom(M,N) is a right A-module with the action (φ ∗ a)(u) := φ ∗ (a ∗ u).

(c) Chom(M,N) is a bimodule over A.

The proof of this proposition follows immediately by the definitions of left and
right modules over A, and the composition rules of polylinear maps.

Definition 4.3. Let M and N be two left A-modules. An extension E of N by
M is an H-split exact sequence of left A-modules 0 → M → E → N → 0. Two
extensions E1 and E2 are equivalent if there exists an isomorphism h : E1 → E2 of
A-modules such that the diagram

0 −−−−→ M −−−−→ E1 −−−−→ N −−−−→ 0

1M

y h

y y1N

0 −−−−→ M −−−−→ E2 −−−−→ N −−−−→ 0

is commutative.

The following theorem is one of the main results of this work.

Theorem 4.4. Given two finite left A-modules M and N , the equivalence classes
of H-split extensions 0 → M → E → N → 0 of N by M are in one-to-one
correspondence with the elements of H1(A,Chom(N,M)).

Proof. Let 0 → M
i→ E

p→ N → 0 be an extension of A-modules, which is split
over H. Choose a splitting E = M ⊕N = {(u, v) | u ∈ M, v ∈ N} as H-modules.
The fact that i and p are homomorphisms of left A-modules implies

a
E∗ u = a

M∗ u and a
E∗ v − a N∗ v := γ(a)(v) ∈ H⊗2⊗HM (4.1)

for a ∈ A, u ∈ M and v ∈ N . Using the H⊗2-linearity of the action in the module
E, we can easily see that γ(a) ∈ Chom(A,M) and γ : A→ Chom(N,M) is H-linear.
In other words, we have γ ∈ C1(A,Chom(N,M)) = HomH(A,Chom(N,M)).

Using the associativity of E, we have
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(a ∗ b) ∗ (u, v) = ((a ∗ b) ∗ u+ γ(a ∗ b)(v), (a ∗ b) ∗ v),

a ∗ (b ∗ (u, v)) = a ∗ (b ∗ u+ γ(b)(v), b ∗ v)

=
(
(a ∗ (b ∗ u)) + a ∗ (γ(b)(v)) + γ(a)(b ∗ v), a ∗ (b ∗ v)

)
for a, b ∈ A, u ∈ M and v ∈ N . Subtracting these two equations and using (4.1),
we have

γ(a ∗ b)(v) = a ∗ (γ(b)(v)) + γ(a)(b ∗ v),

and using the definition of the A-bimodule structure in Chom(N,M), we obtain
γ(a∗ b)(v) = (a∗γ(b))(v)+((γ(a))∗ b)(v) for all v ∈ N . Therefore, the associativity
in E is equivalent to (d1γ)(a, b) = a ∗ γ(b)− γ(a ∗ b) + (γ(a)) ∗ b = 0.

If we have two isomorphic extensions E and E′ associated to the closed ele-
ments γ and γ′, respectively, and we choose a compatible splitting over H, then the
isomorphism h : E → E′ is determined by an element β ∈ HomH(N,M), that is,
h : M ⊕N →M ⊕N ′ with h(u, v) = (u+ β(v), v)′. Using

h(a ∗ (u, v)) = (a ∗ u+ γ(a)(v) + β(a ∗ v), a ∗ v),

a ∗ (h(u, v)) = a ∗ (u+ β(v), v)′ = (a ∗ u+ a ∗ (β(v)) + γ′(a)(v), a ∗ v),

we have

γ(a)(v) = γ′(a)(v) + a ∗ (β(v))− β(a ∗ v). (4.2)

Now, using

HomH(N,M) ' F ⊗H Chom(N,M) ' C0(A, Chom(N,M)) (4.3)

(see [1, Remark 10.1] for details), we need to prove that (4.2) is equivalent to
γ = γ ′ + (d0β). In order to simplify the notation, recall that any element in
H⊗2⊗HW can be written uniquely in the form

∑
i(hi ⊗ 1)⊗H wi, where {hi} is

a fixed F-basis of H. In more detail, given φ ∈ Chom(N,M), we define the map
φ1 : N →M as follows: if φ(v) =

∑
i(hi ⊗ 1)⊗H ui, then φ1(v) =

∑
i ε(hi)ui. The

map φ1 is H-linear and establishes the isomorphism in (4.3). Let φ ∈ Chom(N,M)
such that φ1 = β. Observe that

(d0 φ)(a) = [(id⊗ ε)⊗H idChom](a ∗ φ)− [(ε⊗ id)⊗H idChom](φ ∗ a).

Hence, we need to prove(
[(id⊗ ε)⊗H idChom](a ∗ φ)

)
(v) = a ∗ (β(v)), (4.4)(

[(ε⊗ id)⊗H idChom](φ ∗ a)
)
(v) = β(a ∗ v) (4.5)

for v ∈ N . Now, we will prove (4.4), and the proof of (4.5) is similar. First of all,
we need to check that(

[(id⊗ ε)⊗H idChom](a ∗ φ)
)
(v) = [(id⊗ ε⊗ id)⊗H idM ]((a ∗ φ)(v)). (4.6)
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Observe that [(id⊗ε)⊗H idChom](a∗φ) =
∑
i ε(gi) fiϕi if a∗φ =

∑
i(fi⊗gi)⊗H ϕi.

Hence, we have (
[(id⊗ ε)⊗H idChom](a ∗ φ)

)
(v)

=
∑
i

ε(gi) (fiϕi)(v) =
∑
i

ε(gi) [(fi ⊗ 1)⊗H 1M ](ϕi(v))

=
∑
i,j

ε(gi) (fifij ⊗ gij)⊗H uij ,

(4.7)

where ϕi(v) =
∑
j(fij⊗gij)⊗H uij . On the other hand, using the previous notation,

we have (a ∗ φ)(v) =
∑
i,j(fifij(1) ⊗ gifij(2) ⊗ gij)⊗H uij , thus obtaining

[(id⊗ ε⊗ id)⊗H idM ]((a ∗ φ)(v)) =
∑
i,j

ε(gi) (fifij ⊗ gij)⊗H uij . (4.8)

Therefore, combining (4.7) and (4.8), we have proved (4.6).
If φ(v) =

∑
i (hi⊗1)⊗H ui and a∗ui =

∑
j (hj⊗1)⊗H uij , then we observe that

a∗(φ(v)) =
∑
i,j(hj⊗hi⊗1)⊗H uij , and by definition we get (a∗φ)(v) = a∗(φ(v)),

so we have [(id ⊗ ε ⊗ id)⊗H idM ]((a ∗ φ)(v)) =
∑
i,j ε(hi)(hj ⊗ 1)⊗H uij . On the

other hand, we see that a∗(β(v)) =
∑
i ε(hi)(a∗ui) =

∑
i ε(hi)(hj⊗1)⊗H uij since

β(v) = φ1(v) =
∑
i ε(hi)ui, which finishes the proof of (4.4).

Conversely, given an element of H1(A, Chom(A,M)), we can choose a represen-
tative γ ∈ C1(A, Chom(A,M)) and define an action of A on E = M ⊕N by (4.1),
which will depend only on the cohomology class of γ, finishing the proof. �

5 Second Cohomology, Abelian Extensions and First-Order
Deformations

In the first part of this section we describe the abelian extensions; see [12] for details.

Definition 5.1. An abelian extension of an associative H-pseudoalgebra A by
an A-bimodule M is an associative H-pseudoalgebra E in a short exact sequence
0→M → E → A→ 0, where M ∗M = 0 in E. Two abelian extensions E1 and E2

are equivalent if there exists an isomorphism f : E1 → E2 such that the diagram

0 −−−−→ M −−−−→ E1 −−−−→ A −−−−→ 0

1M

y f

y y1A

0 −−−−→ M −−−−→ E2 −−−−→ A −−−−→ 0

is commutative.

Theorem 5.2. (proved in [12]) The equivalence classes of H-split abelian exten-
sions of A by an A-bimodule M correspond bijectively to H2(A,M).

The next part of this section is a new contribution.

Definition 5.3. (a) Let t be a formal variable and let (A, ∗) be an associative
H-pseudoalgebra. A first-order deformation of A is a family of H-pseudoproducts
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of the form a ∗̂ b = a ∗ b + t f(a, b) with a, b ∈ A, where f : A ⊗ A → H⊗2⊗H A is
an H⊗2-linear map (independent of t), such that (A, ∗̂) is a family of associative
H-pseudoalgebras up to the first-order in t (i.e., modulo t2). More precisely, the
H-pseudoproduct ∗̂ is an H⊗2-linear map and it satisfies

(a ∗̂ b) ∗̂ c = a ∗̂ (b ∗̂ c) mod t2, (5.1)

where H acts trivially on t.

(b) Two first-order deformations
(1)

∗ and
(2)

∗ of A are equivalent if there exists a
family of H-linear maps φt : A→ A[t] of the form φt = idA + t g, where g : A→ A
is an H-linear map such that

φt(a
(1)

∗ b) = φt(a)
(2)

∗ φt(b) mod t2 for a, b ∈ A. (5.2)

The following theorem is the second main result of this work.

Theorem 5.4. The equivalence classes of first-order deformations of an asso-
ciative H-pseudoalgebra A (leaving the H-action intact) correspond bijectively to
H2(A,A).

Proof. Let (A, ∗) be an associative H-pseudoalgebra and let ∗̂ be given by

a ∗̂ b = a ∗ b+ t f(a, b) with a, b ∈ A, (5.3)

where f : A⊗A→ H⊗2⊗H A is an H⊗2-linear map. Then, using (5.3), we take the
expansions in (5.1) mod t2. By a direct computation, we see that the coefficient of
t0 corresponds exactly to the associativity property of ∗, and the coefficient of t1

corresponds exactly to f(a ∗ b, c) + f(a, b) ∗ c = f(a, b ∗ c) +a ∗ f(b, c). Therefore, we
have seen that (5.3) is a first-order deformation of A if and only if f ∈ Z2(A,A).

Now, consider two first-order deformations of A given by a
(1)

∗ b = a ∗ b+ t f1(a, b)

and a
(2)

∗ b = a ∗ b + t f2(a, b). They are equivalent if and only if there exists g in
HomH(A,A) such that φt := idA + t g satisfies (5.2). A direct computation shows
that (5.2) is equivalent to f1(a, b) − f2(a, b) = a ∗ g(b) − g(a ∗ b) + g(a) ∗ b for all
a, b ∈ A. Therefore, it is equivalent to f1 − f2 = d1g, finishing the proof. �

6 Cohomology of Associative Conformal Algebras

In this final section, we restrict the definitions and results of the previous sections
to associative conformal algebras.

Conformal algebras are exactly H-pseudoalgebras over the polynomial Hopf al-
gebra H = C[∂], with coproduct (∆f)(∂) = f(∂⊗1+1⊗∂), counit ε(f) = f(0), and
antipode (Sf)(∂) = f(−∂). The structure of a conformal algebra on a C[∂]-module
A is given by a C-linear map A⊗A→ A[λ], a⊗ b 7→ aλb, called the λ-product. The
relation between pseudoproduct and λ-product is given by

a ∗ b = (aλb)|λ=−∂⊗1
.

The H⊗2-linearity on ∗ corresponds to the sesquilinearity:

(∂a)λb = −λ(aλb) and aλ(∂b) = (λ+ ∂)(aλb). (6.1)
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The conformal algebra is called associative if (aλb)λ+µ c = aλ(bµc), which is the
restriction of the associative axiom of a pseudoproduct.

Definition 6.1. Let A be an associative conformal algebra.

(a) A left conformal module over A is a C[∂]-module M with a C-linear map
A⊗M → C[λ]⊗M given by a⊗ u 7→ aλu, called the λ-action, satisfying the
following properties for a, b ∈ A and u ∈M :

(∂a)λu = −λ aλu, aλ(∂u) = (λ+ ∂) (aλu), aλ(bµu) = (aλb)λ+µu.

(b) A right conformal module over A is a C[∂]-module M with a C-linear map
M ⊗A→ C[λ]⊗M given by u⊗ a 7→ uλa, called the λ-action, satisfying the
corresponding sesquilinearity and uλ(aµb) = (uλa)λ+µb.

(c) A conformal bimodule M over A is a left and right conformal module that
satisfies aλ(uµb) = (aλu)λ+µb.

The notion of conformal bimodule was introduced after Definition 1.4 in [4]. A
conformal module is called finite if it is finitely generated over C[∂].

Now, we describe Chom(M,N) in the conformal case, that is, H = C[∂]. Let
M and N be two C[∂]-modules. A conformal linear map from M to N is a C-linear
map fλ : M → N [λ] such that fλ(∂u) = (λ + ∂) fλ(u) for u ∈ M . We denote the
vector space of all such maps by Chom(M,N). It has an structure of a C[∂]-module
given by (∂f)λ(u) := −λ fλ(u). If M and N are finite left conformal A-modules,
then Chom(M,N) is a left conformal A-module with the action

(aλf)µu := aλ(fµ−λu)

for a ∈ A and u ∈M , and it is a right conformal A-module with the action

(fλa)µu := fλ(aµ−λu)

for a ∈ A and u ∈M . With these structures, it is a conformal bimodule over A.
In [4], the Hochschild cohomology group was defined, for which the space of

n-cochains has n variables, and it was necessary to take certain quotient. In [10],
for the case of Lie conformal algebras, the definition was improved by taking n− 1
variables. Following this idea, we define the Hochschild cohomology for an asso-
ciative conformal algebra A and a bimodule M over A. The space of n-cochains
Cn(A,M) consists of all maps

ϕλ1,...,λn−1
: A⊗n −→M [λ1, . . . , λn−1]

such that (here we use H⊗n⊗HM ' H⊗(n−1) ⊗M and the H⊗n-linearity in (3.1)
translates into the following sesquilinearity properties)

ϕλ1,...,λn−1(a1, . . . , ∂ai, . . . , an) = −λi ϕλ1,...,λn−1(a1, . . . , an), i = 1, . . . , n− 1,

ϕλ1,...,λn−1(a1, . . . , ∂an) = (∂ + λ1 + · · ·+ λn−1)ϕλ1,...,λn−1(a1, . . . , an).

The differential turns into
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(dn ϕ)λ1,...,λn(a1, . . . , an+1)

= (a1)λ1ϕλ2,...,λn(a2, . . . , an+1)

+

n∑
i=1

(−1)i ϕλ1, ..., λi+λi+1, ..., λn(a1, . . . , (ai)λi(ai+1), . . . , an+1)

+ (−1)n+1ϕλ1,...,λn−1
(a1, . . . , an)(λ1+···+λn)an+1.

Now, we write the details of the lowest degree cohomologies. First of all, we
have C0(A,M) ' M/∂M and C1(A,M) = HomC[∂](A,M). In order to define the
differential d0, we need the following ideas. Choosing a set of generators {uj} of
the C[∂]-module M , we can write aλu =

∑
kQk(λ, ∂)uk for a ∈ A and u ∈ M ,

where Qk are some polynomials in λ and ∂. Take Pk(x, y) := Qk(−x, x + y), and
the corresponding left pseudoaction of A on M is given by the C[∂]⊗2-linear map
∗ : A⊗M → (H ⊗H)⊗HM defined by

a ∗ u =
∑
k

Pk(∂ ⊗ 1, 1⊗ ∂)⊗H uk.

We consider similar formulas for the right conformal pseudoactions. That is, if
uλa =

∑
i Si(λ, ∂)ui, then we have u ∗ a =

∑
iRi(∂ ⊗ 1, 1 ⊗ ∂)⊗H ui, where

Ri(x, y) := Si(−x, x + y). Now, we apply the formula (3.6). If ϕ(1) = u, then we
have (d0 ϕ)(a) =

∑
k Pk(∂, 0)uk −

∑
iRi(0, ∂)ui. Thus, in the conformal case we

obtain
(d0 ϕ)(a) =

∑
k

Qk(−∂, ∂)uk −
∑
i

Si(0, ∂)ui = a−∂u− u 0
a.

Therefore, H0(A,M) = {u ∈M/∂M | a−∂u = u
0
a for all a ∈ A}.

A map f ∈ HomC[∂](A,M) is called a derivation from A to M if for all a, b ∈ A,
f(aλb) = aλf(b) + f(a)λb. Observe that

C2(A,M) = {ϕλ : A⊗A→M [λ] | ϕλ(∂a, b) = −λϕλ(a, b)

and ϕλ(a, ∂b) = (λ+ ∂)ϕλ(a, b)}

and the differential d1 : C1(A,M)→ C2(A,M) is given by

(d1 ϕ)λ(a, b) = aλϕ(b)− ϕ(aλb) + ϕ(a)λb.

It is clear that Ker d1 = Der(A,M). In addition, the maps gu : A→M (for u ∈M)
defined by

gu(a) = a−∂u− u 0
a

correspond to the inner derivations or the image of d0. By definition, we have

(d2 ϕ)λ,µ(a, b, c) = aλϕµ(b, c)− ϕλ+µ(aλb, c) + ϕλ(a, bµc)− ϕλ(a, b)λ+µ c.

Finally, Theorems 4.4, 5.2 and 5.4 hold for associative conformal algebras.
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