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Abstract

We study the motion of self-deforming bodies with non-zero angular momentum when the changing shape is known as a
function of time. The conserved angular momentum with respect to the center of mass, when seen from a rotating frame, describes
a curve on a sphere as happens for the rigid body motion, though obeying a more complicated non-autonomous equation. We
observe that if, after time 1T , this curve is simple and closed, the deforming body’s orientation in space is fully characterized
by an angle or phase θM . We also give a reconstruction formula for this angle which generalizes R, Montgomery’s well known
formula for the rigid body phase. Finally, we apply these techniques to obtain analytical results on the motion of deforming bodies
in some concrete examples.
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1. Introduction

1.1. Background

We are going to study the problem of describing the motion of a rotating body whose shape is changing with time
in a known controlled fashion. A particular case of this problem is the one in which the body’s shape is constant in
time, i.e. a rigid body.

As is well known, a free rigid body rotates about its center of mass in a rather complicated way, depending on how
its mass is distributed in space. This distribution is represented by the corresponding inertia tensor and the motion is
such that the (spatial) angular momentum with respect to the center of mass is a conserved quantity.

Analytically, the orientation of the body with respect to an inertial reference frame can be obtained by, first, solving
Euler equations for the (body) angular momentum and, finally, reconstructing the desired curve in the space of
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rotations from the momentum one. When the momentum curve completes a period, the orientation of the body in
space is the initial one up to a rotation in a certain angle about the (conserved) angular momentum direction. A
beautiful result of Montgomery [4] states that this angle, usually called the rigid body phase, can be obtained using
a reconstruction formula (see [1]) which involves a geometrical (an holonomy) and a dynamical (energy and period
values) contribution.

Now, when a rotating body is free but not rigid because its shape changes with time in a prescribed fashion, the
way in which the mass is distributed in space is thus also changing with time. How does such a body move? Or,
since we know how its shape is changing: which is the rotation about the center of mass induced by this changing
mass distribution? For self-deforming bodies with zero angular momentum, this question was answered by Shapere
and Wilczek in [8]. In that case, the induced reorientation has a pure geometric nature because it is described by a
horizontal curve with respect to the mechanical connection in a SO(3)-principal fiber bundle over shape space (see [8,
5] and references therein).

Another related problem is that of finding the optimal sequence of deformations which induces a given reorientation
of the deforming body. This is an optimal control problem which generalizes the well known falling cat problem
(see [5]). The problem we want to analyze here is, in a sense, the problem orthogonal to the above control problem:
we know the sequence of deformations and we want to find the induced reorientation.

1.2. Main results

In the present paper we shall focus on a case not covered in [8], i.e. the case in which a self-deforming body rotates
with non-zero (conserved) angular momentum.

Our main result is an expression for an angle or phase that determines, at specific times, the exact orientation of a
spinning self-deforming body with non-zero angular momentum, generalizing Montgomery’s formula [4].

The examples that we shall be keeping in mind are the ones in which someone reaccommodates the furniture in a
spacecraft or a satellite in orbit from which an antenna is coming out.

Notice that in the above concrete examples, the body is acted on by external forces (e.g. gravity). Nevertheless,
also note that for small objects like satellites in orbit the angular momentum with respect to the center of mass
is approximately conserved. Within this approximation, the full motion can be described by two sets of decoupled
equations: the ones for the center of mass (a central force problem) and the ones we shall give below for the rotation
about the center of mass (a self-deforming body problem).

The total reorientation of a self-deforming body has two contributions: the one induced from the change in its shape
(of geometric nature [8]) and the one we shall study, that follows from having non-vanishing angular momentum (of
dynamical nature as for a rigid body).

In Section 2.2, we define the class of deforming bodies we shall consider, i.e., the one that we shall refer to as
self-deforming bodies. These are defined by a pure kinematical constraint and a dynamical hypothesis. In Section 2.3,
we shall derive the corresponding set of (second-order) non-autonomous equations of motion for the unknown rotation
about the center of mass. These follow from the conservation of the angular momentum measured from a reference
system having its origin at the center of mass and axes parallel to those of an inertial one for all time. We will refer to
it as the spatial angular momentum.

Also in 2.3, we shall observe that, as in the rigid body problem, the desired induced rotation can be reconstructed
from a solution of the associated body angular momentum (first-order, non-autonomous) equations. This is the angular
momentum as seen from a reference frame which is rotating with the deforming body (see [8]). At this point, we can
re-state our main result: when, after time 1T , the body angular momentum solution returns to its initial value, the
reconstructed rotation curve returns to its initial value up to a rotation about the (conserved) spatial angular momentum
direction; moreover, in Section 3 we show that the angle of this rotation or self-deforming body phase can be expressed
(mod 2π ) by the reconstruction formula (13) involving a geometric and a dynamical term. This result can be seen as
a straightforward generalization of Montgomery’s formula from the rigid body to the self-deforming body motion.

This formula relates the body’s orientation to the (non-conserved) energy integral over 1T and the geometry of
the (non-zero) body angular momentum solution curve. In the zero-angular-momentum case of [8], as the motion is
of a pure geometrical nature, the above phase becomes trivial.

As in the rigid body case, our formula can be applied when we have a geometric description of an underlying
simple closed body angular momentum solution curve. Explicit time dependence of the corresponding equations
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implies that, in general, energy is not conserved during the motion of such a body. Also, as the equations for the body
angular momentum are non-linear and have generic time dependent coefficients, solutions are hard to describe in the
general case.

In view of this last observation, in Section 4 we complete this work by studying some particular classes of
deformations. In each case, we shall be able to derive analytical results on the motion of the underlying deforming
body by making simple dynamical estimates on the geometry of the body angular momentum solutions and by thus
applying the generalized Montgomery formula.

2. Physical setting

2.1. Deformable bodies

Now, we review the setting presented in [5] (see also [8,7]) for deformable bodies.
Let us call Q the configurations space of a system of N particles or an extended body from the center of mass

reference system CM. Thus, Q = R3N−3 or Q is a submanifold of the set of embeddings q : B ⊂ R3
−→ R3 s.t. the

center of mass is at the origin, i.e., MrCM =
∫

B dm(x) q(x) = 0 for B being a reference shape of the extended body,
dm(x), x ∈ B denoting the corresponding mass density and M =

∫
B dm(x) the total mass. In both cases, the usual

action of SO(3) on R3 gives rise to a natural action of SO(3) on Q. This action turns out to be free on

Q0 = Q − Q1D

where Q1D is the set of points in Q representing configurations in which all the particles or the entire body is contained
in a straight line. Hence,

Q0
π
→ Q0/SO(3)

defines a principal fiber bundle, whose base B = Q0/SO(3) is usually called the shape space.
In both particle system and extended body cases, the manifold Q0 (and also Q) has a Riemannian structure induced

by the usual scalar product of R3. So there is a natural principal connection on the bundle Q0
π
→ Q0/SO(3) defined

by choosing as the horizontal subspaces the orthogonal complement to the vertical subspaces with respect to this
metric. This is usually called the mechanical connection on the bundle Q0

π
→ Q0/SO(3).

Notation. From now on,

• S will denote a given inertial reference frame,
• CM(t) will denote the reference frame with origin at the center of mass of the body rCM(t) for each t and axes

parallel to those of S,
• C̃M(t) will denote any reference frame with origin at the center of mass of the body, with (possibly) rotating axes

with respect to those of CM(t).

Remark 2.1 (Reference Systems). We can think of a point q0 ∈ Q0 over a shape π(q0) = b0 ∈ Q0/SO(3) as giving
the configuration of a body with shape represented by b0 as seen from a reference system CM. Another point q̃0 s.t.
π(q̃0) = π(q0) then represents the configuration, as seen from CM, of a body with the same shape but, now, rotated
with respect to the one represented by q0. In addition, we can also interpret q̃0 as describing the same body but as seen
from a rotated reference system C̃M. This last interpretation of the different points of a fiber π−1(b0) is the one that
we shall keep in mind for the rest of the paper. See also the discussion in Ref. [8].

2.2. Self-deforming body hypothesis

Let us denote as r̃io(t) the position at time t of the i-th particle with respect to a (possibly moving) reference frame
S̃(t). Then, for each time t , there exist a global rotation R(t) ∈ SO(3) and a translation T (t) ∈ R3 such that the
position with respect to the inertial reference frame S is

ri = R(t)r̃io(t)+ T (t). (1)

A self-deforming body is defined to be a system of particles or an extended object satisfying:
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(i) Kinematics: There exists a reference frame S̃(t), not necessarily inertial, from which we know r̃io(t) or,
equivalently, a reference curve d0(t) in Q0 representing the changing shape as seen from S̃(t). Consequently,
we also have the corresponding shape space curve c̃(t) = π(d0(t)).

(ii) Dynamics: The constraint forces which act on the particles in order to give this prescribed motions r̃io(t) are
internal forces satisfying the strong action–reaction principle. This means that all forces acting on the particle i
are caused by other particles j and F int

i j = −F int
j i with F int

i j parallel to the vector ri j = ri − r j .

Condition (i) can be seen as a set of time dependent kinematical constraints generalizing the usual ones for rigidity:
from S̃(t) we know how the body’s shape is changing (see also [8]).

Example 2.2 (Spacecraft). For the system being a spacecraft, S̃(t) could be chosen as a frame fixed to some part of
the ship or an astronaut.

Remark 2.3 (Mechanical Forces). Notice that, although some forces do not satisfy the strong action–reaction
principle (for instance, electromagnetic forces), most of mechanical forces do.

Remark 2.4 (Center of Mass Reference). We can always take S̃(t) = C̃M(t) (recall our notation before Remark 2.1)
having its origin at the center of mass at all time. This is, thus, the situation that we shall consider in the rest of this
paper. See also the discussion at the end of this section.

Remark 2.5 (Non-Conservation of Energy). Note that with such time dependent constraints, the energy is not
conserved in general because the deformation is implemented by time dependent constraint forces.

The self-deforming body problem is that of finding a curve R(t) in SO(3) such that for

c(t) = R(t) · d0(t) (2)

in Q0 the spatial angular momentum with respect to the c.m. is conserved (see below). This can also be seen as a
reconstruction problem (see [1]) for the rotation R(t) from the given c̃(t).

We end this section with some remarks on the meaning and the measurement of d0(t). First, we would like to stress
that the reference curve d0(t) is a natural physical input for the problem. To illustrate this fact, let us suppose that
we want to describe the motion of a spacecraft or satellite when someone is reordering the furniture inside of it, or
when an antenna is coming out from this satellite. Before launching, in the lab, an engineer can attach the satellite
to the floor and perform exactly the same deformation as will occur in space. The body does not rotate because it is
attached, but the position of all its parts can be measured as a function of time t from a lab reference frame. Then,
the position of the center of mass can be established for all t and, consequently, the position of every part of the body
from a reference system C̃M(t) fixed to the center of mass can be known for each t .

This provides us with a curve d0(t) as desired: when the satellite is in orbit, the same deformation will occur
yielding that d0(t) projects onto the same curve in shape space as the physical curve c(t). Notice that, as the body can
freely rotate about its center of mass, the position with respect to CM(t), represented by c(t), will differ, in general, by
a rotation from the one described by d0(t) for each t . This rotation is precisely the solution R(t) of the self-deforming
body problem.

Example 2.6 (Rigid Body). Note that the rigid body is a special case of the self-deforming body: take r̃io(t) constant
for all time. More generally, d0(t) must be contained in the fiber over the point representing the constant shape of the
rigid body for all t .

2.3. Equations of motion

The equations for R(t), according to our definition of the self-deforming body, can be derived from the conservation
of the angular momentum relative to the center of mass

•

LCM= 0.

This means that the rotation must be such that, from a frame CM(t) this quantity is conserved even though things are
moving internally in the system.

Let us recall the well known quantities: for any R(t) ∈ SO(3) and d(t) ≡ {ri (t)} ∈ Q0,
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• body angular velocity ω
R(t)
B ' R−1 Ṙ is defined, as usual, by ω

R(t)
B × v = R−1 Ṙv for all v ∈ R3; we shall denote

as Ψ : (so(3), [, ]) −→ (R3,×) the usual Lie algebra isomorphism (see e.g. [2]);
• (locked) inertia tensor: I : Q0 → S3×3

>0 := {3 × 3 real symmetric positive definite matrices }, v · I ({ri })w =∑
i mi (v × ri ) · (w × ri );

• angular momentum (with respect to a rotated frame with origin at the center of mass): L : T Q0 →

R3, L({ri , ṙi }) =
∑

i mi ri × ṙi , satisfying

L

(
d
dt

(R(t)d(t))

)
= R(t) I (d(t))ωR(t)

B + R(t) L

(
d
dt

(d(t))

)
, (3)

which gives the momentum map for the SO(3) action on T Q0 (see the details in [1,5]);
• kinetic energy: T : T Q0 → R, T ({ri , ṙi }) =

∑
i mi ṙ2

i , for which

T

(
d
dt

(R(t)d(t))

)
=

1
2
ω

R(t)
B · I (d(t))ωR(t)

B + L

(
d
dt

(d(t))

)
· ω

R(t)
B + T

(
d
dt

(d(t))

)
. (4)

For the physical curve c(t) in Q0, the following quantity must be conserved:

LCM = L

(
d
dt

c(t)

)
= L

(
d
dt

(R(t)d(t))

)
= R(t) I (d0(t))ω

R(t)
B + R(t) L

(
d
dt

(d0(t))

)
.

Here I (d0(t)) is interpreted as the inertia tensor measured from the reference frame S̃(t) = C̃M(t) and we shall call

Lo(t) := L

(
d
dt

(d0(t))

)
=

∑
i

mi r̃io(t)×
•

r̃io (t)

the internal (or apparent [8]) angular momentum with respect to C̃M(t).
The (time dependent, second-order) equations of motion for R(t) thus read

d
dt

L(R(t)d0(t)) = 0 (5)

I (d0(t))
•

ωB = I (d0(t))ωB × ωB + Lo(t)× ωB −
d
dt

(I (d0(t))) ωB −
d
dt

Lo(t)

when we express them in terms of the body angular velocity ωB .
The reconstruction equations for R(t), once we solved the previous one for ωB , are

Ṙ = R ω̂B (6)

where ω̂B = Ψ−1(ωB) with Ψ : (so(3), [, ]) −→ (R3,×) the usual Lie algebra isomorphism (see [2]). The initial
value R(t1) must be such that R(t1)d0(t1) = c(t1) coincides with the initial value of the problem.

Example 2.7 (Rigid Body). For the rigid body, recall that d0(t) must be contained on the fiber over a point in shape
space. We can then choose the d0(t) (equivalently r̃io(t)) to be constant for all t , so I (d0(t)) = I is constant in time
and Lo = 0. In this case, we recover the Euler equations:

I
•

ωB = IωB × ωB

as expected.

Also in analogy with the rigid body problem, as L( d
dt c(t)) ∈ R3 is conserved during the time evolution, if we

define

Π (t) = I (d0(t))ω
R(t)
B + L

(
d
dt

d0

)
(7)

we then have that L( d
dt c(t)) = R(t)Π (t) and, hence, its R3-norm ‖L( d

dt c(t))‖ = ‖Π (t)‖ is constant for all t . The
quantity Π (t) represents the angular momentum measured from the reference frame S̃(t) or body angular momentum.
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Remark 2.8 (Recovering the Angular Velocity). Since I (d0(t)) is invertible for all t , we can recover at every time t
the angular velocity ω

R(t)
B from Π (t) ∈ R3:

ω
R(t)
B = I−1(d0(t))

(
Π (t)− L

(
d
dt

d0

))
, ∀t. (8)

The corresponding non-autonomous differential equation for Π (t) ∈ R3 is

Π̇ = Π ×
(

I−1(d0(t))

(
Π − L

(
d
dt

d0(t)

)))
(9)

Π (t1) = R−1(t1)LCM

whose solutions lie entirely on the sphere S2
‖Π ‖ ⊆ R3 of radius ‖L( d

dt c(t))‖ = ‖Π (t)‖.
Using (8), the reconstruction equations for R(t) become

Ṙ = R Ψ−1
(

I−1(d0(t))

(
Π (t)− L

(
d
dt

d0

)))
(10)

or, equivalently, if we set R(t1) = id for simplicity

R(t) = T exp
∫ t2

t1
ds Ψ−1

(
I−1(d0(s))

(
Π (s)− L

(
d
dt

d0(s)

)))
where T stands for the time ordered integral (see also [8]).

Remark 2.9 (Non-Integrability). In general, as noted before, the explicit time dependence of the self-deforming body
tells us that energy is not conserved and consequently, we cannot reduce the dimension of the problem any further.

2.3.1. Gauge freedom
By definition, we are given a curve d0(t) in the configuration space Q0, but we might want to work with another

curve d̃0(t) defining an equivalent self-deforming body problem, i.e. π(d̃0(t)) = π(d0(t)) = c̃(t) ∈ Q0/SO(3).

This is the same as describing this self-deforming body from a new reference frame ˜̃S(t) having the same origin and
rotating, in a certain known way, with respect to the initial one S̃(t) from which the motion, represented by d0(t), was
originally described.

Remark 2.10 (Gauge Transformations). This freedom in choosing the initial orientation curve d0(t) can be seen as
gauge freedom. Correspondingly, the change d0(t)  d̃0(t) can be thought of as a gauge transformation. For more
details on this analogy, we refer the interested reader to [5,8] and references therein.

Among all possible lifts d0(t) of c̃(t) we consider two:

(a) the horizontal lift with respect to the mechanical connection in the bundle Q0 −→ Q0/SO(3); this is equivalent
to the problem of finding a lift d̃0(t) such that L( d

dt d̃0(t)) = 0 ∀t (see also Remark 2.11);

(b) a lift d̃0(t) for which the inertia tensor I (d̃0(t)) is diagonal for all t ; this is equivalent to solving the problem of
finding a lift of the base curve I (d0(t)) along the map

A× SO(3)→ S3×3
>0

(a, R) 7−→ Ra R−1

where A := {3× 3 diagonal positive definite matrices}.

Remark 2.11 (Deformable Bodies with Zero Angular Momentum). In Ref. [8], it is shown that, given a shape space
curve, the motion of a self-deforming body with zero angular momentum is described by the corresponding horizontal
lift as in (a) above. These computations also arise in the falling cat problem (see [5,7]) and other interesting problems
(see references in [8]).
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Remark 2.12 (Simplifying the Equations). Choosing a different d0(t) changes the time dependence of the coefficients
of Eq. (9). Thus, an appropriate choice could turn this equation into a simpler equivalent one. For example, choosing
the horizontal lift implies that the equation has vanishing L(d0(t)) term because this is zero by construction. We also
see that there is an obvious simplification when choosing the lift keeping the inertia tensor I (d0(t)) diagonal. But
observe that these two simplifications cannot always be carried out at the same time since, in general, the horizontal
lift does not necessarily diagonalize the inertia tensor.

3. Phases in the self-deforming body motion

3.1. Reconstruction

For completeness, we now describe two kinds of reconstruction phases [1] appearing in the configuration space
during the motion of the deforming body. In the rest of the paper, we shall focus only on the second (abelian) one.

3.1.1. Reconstruction of c(t) from c̃(t) in the bundle Q0
π
→ Q0/SO(3)

Recall that, for each t , both d0(t) and c(t) belong to the fiber over c̃(t) in shape space Q0/SO(3) (see Section 2.2).
When the shape space curve is closed in [t1, t2], we can then follow the standard procedure for reconstruction [1]:
choose d0(t) to be the horizontal lift with respect to the mechanical connection having d0(t1) = c(t1) as initial value.
Then, d0(t2) = RG c(t1) with RG being the holonomy of the base path c̃(t) measured from c(t1) with respect to this
connection (see Remark 2.11 and Section 2.1). This is often called the (non-abelian) geometric phase. Finally, under
these assumptions, the reconstruction formula reads

c(t2) = RD(t2) RG(t1) c(t1)

where RD(t2) is usually called the (non-abelian) dynamical phase. This dynamical phase can be obtained by solving
Eq. (5) with the initial value RD(t1) = I d and with the above horizontal choice of d0(t), i.e. with L(ḋ0) = 0. For
details on general reconstruction see [1]. The interested reader can find further details about this reconstruction for a
deforming body motion with zero angular momentum in [8]. For a study of phases in the N = 3-body problem, we
refer the interested reader to [6].

3.1.2. Reconstruction of R(t) from Π (t) in the bundle SO(3) −→ S2
‖Π ‖

Recall that, in general, the unknown rotation R(t) in Eq. (2) can be reconstructed via (10) once we have solved the
Eq. (9) on the sphere. An interesting special case is when this solution Π (t) is closed in the interval [t1, t2], that is
when

Π (t1) = Π (t2).

In this case, there is a unique angle θM naturally associated with this solution and with the initial condition R(t1) such
that

R(t2) = exp

(
θM

L̂

‖L‖

)
R(t1),

yielding

c(t2) =

[
exp

(
θM

L̂

‖L‖

)
R(t1)

]
d0(t2)

where L̂ = Ψ−1(L) ∈ so(3). We see that θM defines an abelian reconstruction phase associated with the initial
data R(t1) (coming from c(t1)). This phase appears when reconstructing R(t) from Π (t) in a U (1)-principal bundle
SO(3) −→ S2

‖Π ‖ that we shall describe in the next section.

Remark 3.1 (Interpretation of θM ). Recall that R(t) takes the reference frame C̃M(t) to CM(t). This implies that,
at time t2 as above, the orientation of the body, as seen from CM(t), is precisely obtained by rotating the known
configuration d0(t2) about the conserved angular momentum direction (LCM) in the angle θM . So this phase fully
characterizes the position of the deforming body in space at specific times (i.e. t2).
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In the rest of the paper, we shall focus on the latter reconstruction procedure. Note that, as the second phase is
abelian, it is more likely to have simpler closed expressions for its reconstruction.

Finally, we note that the most geometrically interesting situation is that in which both the solution Π (t) to (9) and
the shape space base curve c̃(t) in Q0/SO(3) are closed in the same interval [t1, t2], i.e.,

Π (t1) = Π (t2)

c̃(t1) = c̃(t2).

When these conditions hold, there is a geometrically defined phase in the bundle Q0
π
→ Q0/SO(3)

c(t2) = 1R · c(t1)

independent of the choice of d0(t) (it only depends on the initial value c(t1)) and having the following expression:

1R = exp

(
θM

L̂

‖L‖

)
R(t1)1R0 R−1(t1),

where 1R0 = R0(t2)R−1
0 (t1) and R(t1) are fixed by the initial condition c(t1) and the angle θM is again given by the

generalized Montgomery formula presented in the next section.

3.2. Generalized Montgomery formula

In this subsection, we give a phase formula for the reconstruction of the rotation R(t) from a closed solution curve
Π (t) of Eq. (9). This formula generalizes the well known one given by Montgomery in [4] for the rigid body phase.
For the proofs, we shall use some differential geometric results that we review below.

3.2.1. Preliminaries
Recall the diagram (see, for instance, [2], p. 438)

so∗−(3)
π
←− T ∗SO(3)

Left
' SO(3)× so∗(3)

J
−→ so∗−(3)

ξ ←− (R, ξ) −→ Ad∗R−1ξ

where: so∗−(3) denotes the Poisson manifold so∗(3) with its (minus) standard Poisson bracket; π and J are Poisson
and anti-Poisson maps respectively and Ad∗

R−1 denotes the (right) coadjoint action of SO(3) on so∗(3) defined by
〈Ad∗Rξ, X〉 = 〈ξ, AdR X〉 for ξ ∈ so∗(3), X ∈ so(3). Recall (see e.g. [2]) that J is the momentum map associated with

the left symplectic action of SO(3) on T ∗SO(3). The trivialization T ∗SO(3)
Left
' SO(3)× so∗(3) by left translations is

known as passing to body coordinates.
If we fix an element L ∈ so∗−(3) ' so(3) ' R3 (the isomorphisms are compatible with the corresponding Poisson

brackets), then we have that

Ψ(Ad∗R−1ξ) = R Ψ(ξ)

and thus

π(J−1(L)) = S2
‖Π ‖.

The sphere S2
‖Π ‖ of radius ‖L‖ defines a symplectic leaf in so∗−(3) ' so(3) ' R3 (see [2]). Moreover, in this case we

have that

J−1(L) = {(R,Π ); R ·Π = L} ' SO(3)
π
−→ S2

‖Π ‖

(R, R−1L) 7−→ R−1L

is a U (1)-principal fiber bundle (see [1]).
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Now, consider the inclusion J−1(L)
i

↪→ SO(3)× so∗(3)
Left
' T ∗SO(3) and the u(1)-valued 1-form on J−1(L)

A :=
1
‖L‖

i∗Θ L (11)

where Θ L is the canonical left invariant 1-form on T ∗SO(3) in body coordinates. It can be seen that A gives a principal
connection in the principal U (1)-bundle J−1(L)

π
−→ S2

‖Π ‖ ([1]). This connection 1-form satisfies

dA = −
1
‖L‖

i∗ωL

where ωL
= −dΘ L denotes the canonical symplectic 2-form on T ∗SO(3) in body coordinates. By the reduction

theorem ([3], see also [2]),

i∗ωL
= π∗ωµ

with ωµ the reduced symplectic form on S2
‖Π ‖. Finally, if dS denotes the standard area 2-form on the sphere

S2
‖Π ‖ ⊆ R3, then (see [2])

ωµ = −
1
‖L‖

dS.

3.2.2. The formula
With this geometrical background, the following can be easily proved:

Proposition 3.2. R(t) is a solution of the (second-order) equation of motion (5) iff (R(t),Π (t)) ∈ J−1(L) ⊂

T ∗SO(3) is an integral curve of the time dependent vector field

X (R,Π , t) = (R Ψ−1(I−1(d0(t))(Π − L(ḋ0))), Π × (I−1(d0(t))(Π − L(ḋ0)))).

Remark 3.3 (Hamiltonization). This result can be viewed as a time dependent Hamiltonization from T Q0 to T ∗SO(3)

using the momentum map L and, also, a further reduction to J−1(L) of the equations of motion problem (5). See also
similar comments about reduction for the three-body problem phases in [6].

Thus, reconstructing R(t) from Π (t) is the same as finding a curve (R(t),Π (t)) ∈ J−1(L) in the U (1)-bundle
J−1(L) ' SO(3)

π
−→ S2

‖Π ‖ as above such that the projection to the base Π (t) ∈ S2
‖Π ‖ is a solution of (9). Given

Π (t), we can apply the usual procedure of reconstruction [1]: choose R0(t) ∈ J−1(L) in a natural geometric way as
the horizontal lift of Π (t) ∈ S2

‖Π ‖ from the initial value R0(t1) = R(t1) with respect to the connection A. Now, let
θ(t) ∈ U (1) be an angle to be determined by requiring the curve

exp

(
θ(t)

L̂

‖L‖

)
· (R0(t), R−1

0 (t)L) =

(
exp

(
θ(t)

L̂

‖L‖

)
R0(t), R−1

0 (t)L

)
∈ J−1(L) ' SO(3)

to be the desired integral curve of X (R,Π , t). In the above formula, L̂ denotes Ψ−1(L) ∈ so(3).
It follows that θ(t) must satisfy the following equation:

‖L‖
•

θ (t) = I−1(d0(t))Π (t) ·Π (t)− I−1(d0(t))L0(t) ·Π (t) (12)

θ(t1) = 0.

Now, note that if [t1, t2] ⊆ R is a closed interval, and Π : [t1, t2] → S2
‖Π ‖ is (any) continuous curve, then its image

Im(Π ) is a compact, and hence closed, subset of the sphere S2
‖Π ‖. So its complement Im(Π )C is open and there exists

a closed disc d̄ ⊆ Im(Π )C . We then have Im(Π ) ⊆ d̄C and we have thus shown:
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Lemma 3.4. The image Im(Π ) of a continuous map Π : [t1, t2] → S2
‖Π ‖ is entirely contained in an open disc

D ⊆ S2
‖Π ‖.

We can now state our main result:

Proposition 3.5 (Generalized Montgomery Formula). Let Π (t) be a solution of (9) satisfying that Π (t1) = Π (t2) for
some interval [t1, t2] and that the image of Π : [t1, t2] → S2

‖Π ‖ is a simple closed curve (i.e. Im(Π ) homeomorphic

to the circle S1); then R(t2) = exp(θM
L̂
‖L‖ ) R(t1) and the angle θM is given (mod 2π ) by the formula

θM = (∓)
area(D̃)

‖L‖2
+

1
‖L‖

∫ t2

t1
dt (I−1(d0(t))Π (t)− I−1(d0(t))L(ḋ0)) ·Π (t) (13)

where D̃ is a surface in S2
‖Π ‖ bounded by the image of Π . The − (resp. +) sign corresponds to the case in which

the solid angle defined by D̃ on the sphere, with its time-oriented boundary Π (t), is a positive (resp. negative) signed
solid angle.

Remark 3.6 (Signed Solid Angles). As usual, we are considering a solid angle in the sphere to be positive or negative
by applying the right hand rule to its oriented boundary (see [4]). Also notice that, mod 2π , the above formula keeps

the same form (i.e., with the − sign) if we replace area(D̃)

‖L‖2
by the corresponding signed solid angle.

Remark 3.7 (Relation to the Energy). The integrand in the right hand side of this formula can be expressed in terms
of the total kinetic energy (see Eq. (4)):

(I−1(d0)Π (t)− I−1(d0)L(ḋ0)) ·Π (t)

= 2T

(
d
dt

(Rd0)

)
− 2T

(
d
dt

d0

)
+ I−1(d0)L(ḋ0) · L(ḋ0)− I−1(d0)L(ḋ0) ·Π (t).

Proof. By the above mentioned reconstruction procedure and since U (1) is abelian,

R(t2) = exp

(
θD

L̂

‖L‖

)
· exp

(
θG

L̂

‖L‖

)
· R(t1)

= exp

(

θM︷ ︸︸ ︷
θD + θG)

L̂

‖L‖

 · R(t1),

where θD is the dynamical phase, the solution of Eq. (12), and θG the geometric phase, given by the holonomy of the
base path Π (t) with respect to the connection A and measured from R(t1). Thus the dynamical contribution θD to θM
is precisely the second term in the r.h.s. of Eq. (13).

Let us then show that the remaining term coincides with the geometric contribution θG .
By the hypothesis and Lemma 3.4, Im(Π ) is entirely contained in a smooth disc D in S2

‖Π ‖. Since D is contractible,

the restricted principal U (1)-bundle J−1(L) |D −→ D is trivial and, then, we have a smooth section s : D→ J−1(L).
Once we have chosen the disk D containing the curve Im(Π ), the existence of a surface D̃ ⊆ S2

‖Π ‖ whose boundary

is Π (t) is obvious because D is diffeomorphic to an open disk in R2 and Im(Π ) is homeomorphic to S1. Thus, mod
2π , we can write (see [1])

θG = −

∫ ∫
D̃

s∗(d A)

= −
1

‖L‖2

∫ ∫
D̃

dS = −
area(D̃)

‖L‖2

when the solid angle defined by D̃ is positively oriented with respect to the (time-oriented) boundary curve Π (t). The
last two equalities follow from the results reviewed in the previous section. Formula (13) is then completed. �
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Example 3.8 (Rigid Body). For the rigid body, the kinetic energy T is conserved and, as we observed previously,
d0(t) can be taken as a point for all t . So L( d

dt d0) = 0 and the inertia tensor I (d0) = I is constant. In this case, the
periodic solutions of Euler equations bound disks on the sphere, and thus D̃ defines the usual signed solid angle and
the above formula becomes the well known reconstruction formula derived by Montgomery [4].

4. Some applications

4.1. Solutions on the sphere

We shall now describe some tools which can be used to study the geometry of solutions of Eq. (9) on the sphere
S2
‖Π ‖. Focusing on some particular cases we will be able to use this characterization of the solutions to yield analytical

results on the motion of self-deforming bodies by calculating the associated generalized Montgomery phase θM .

• Reconstruction of R(t): When the solution Π (t) for some time interval [tA,tB] is an open path, we noted before

that the rotation R(t) can be expressed as exp(θ(t) L̂
‖L‖ ) · (R0(t), R−1

0 (t)L), with (R0(t), R−1
0 (t)L) the horizontal

lift of the base path Π (t) with respect to the connection (11) and θ(t) a solution of Eq. (12). When the solution
Π (t) is a simple closed curve for a time interval [tA,tB], we have a well defined phase θM given by formula (13).
So, given a solution Π (t) in [t1,t2], we can find a total phase by adding phases corresponding to sub-time intervals
[ti,ti+1] for which the solution is a simple open arc in S2

‖Π ‖ or a simple closed curve in S2
‖Π ‖. In the first case, we

have a phase defined by

R(ti+1) = exp

(
θ(ti+1)

L̂

‖L‖

)
Par(R(ti ))

with Par : π−1(Π (ti )) −→ π−1(Π (ti+1)) the parallel transport (see [1]) in the U (1)-principal bundle
J−1(L)

π
−→ S2

‖Π ‖ of the initial condition R(ti ), and θ(t) the solution of (12) with θ(ti ) = 0. In the second

case, fixing the initial value R(ti ), the phase is defined by R(ti+1) = exp(θM L̂) R(ti ) with θM given by formula
(13).
• The energy: As we noted before, in general, the energy is not a conserved quantity during the self-deforming body

motion. Nevertheless, if we know the evolution of the kinetic energy T ( d
dt (Rd0)) with time, we will be able to

determine a specific subset of S2
‖Π ‖ in which the corresponding solution Π (t) lies. This fact can be shown as

follows: let us define for each time t

Et : S2
‖Π ‖ −→ R

: Π 7−→
1
2
Π · I−1(d0(t)) Π .

Note that

Et (Π (t)) = T

(
d
dt

(Rd0)(t)

)
− T

(
d
dt

d0(t)

)
+

1
2

L(ḋ0(t)) · I
−1(d0(t))L(ḋ0(t))

for Π (t) a solution of (9). Hence, as d0(t) is given, Et (Π (t)) is uniquely determined by the kinetic energy
T ( d

dt (Rd0)(t)). In this case, the corresponding solution Π (t) on the sphere at time t must lie in the set

E−1
t (k(t)) ∩ S2

‖Π ‖

where

k(t) = T

(
d
dt

(Rd0)(t)

)
− T

(
d
dt

d0(t)

)
+

1
2

L(d0(t)) · I
−1(d0(t))L(d0(t)).

The level sets E−1
t (k(t)) are (generally rotated) ellipsoids for each k > 0 and each t . Also notice that, for a fixed

time ti , the intersection E−1
ti (k(ti )) ∩ S2

‖Π ‖ gives the set where the body angular momentum of a rigid body with
constant inertia tensor equal to I (d0(ti )) and energy k(ti ) would lie. Finally, the equation for the evolution of
Et (Π (t)) is

d
dt

Et (Π (t)) = [Π (t)× I−1(d0(t))Π (t)] · I−1(d0(t))L(d0(t))+
1
2
Π (t) ·

d
dt
[I−1(d0(t))]Π (t)

which is coupled to the Eq. (9) for Π (t).
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• The arc length: for a given closed time interval [t1, t2] we are going to find a bound for the length of Π ([t1, t2]). To
that end, we note that∥∥∥∥ d

dt
Π (t)

∥∥∥∥ = ‖Π × (I−1(d0(t))(Π − L(ḋ0(t))))‖

≤ ‖Π ‖(‖I−1(d0(t))Π ‖ + ‖I−1(d0(t))L(ḋ0(t))‖)

and, if ‖I−1(d0(t))v‖ ≤ a−1(t)‖v‖ for all v ∈ R3, t ∈ [t1, t2], then∥∥∥∥ d
dt

Π (t)

∥∥∥∥ ≤ ‖Π ‖2a−1(t)+ ‖Π ‖a−1(t)‖L(ḋ0(t))‖.

Since ‖Π ‖ = ‖L‖ = l is constant, we then have that

length(Π ([t1, t2])) ≤ l
∫ t2

t1
a−1(t)(l + ‖L(ḋ0(t))‖)dt.

When a−1(t) is a very small function (compared to 1
l(t1−t2)

), we can deduce that Π ([t1, t2]) is contained in a small

patch in S2
‖Π ‖.

For general time dependent parameters I−1(d0(t)) and L(ḋ0(t)) we cannot give a characterization of the solution
Π (t) of Eq. (9). So we shall focus on some specific cases to illustrate how to handle concrete problems.

4.1.1. Cases with I (t) = diag(I1(t), I2(t), I3(t)) and L(ḋ0(t)) = 0 for all t
Let us denote by (1, 2, 3) the cartesian axes of so∗(3) ' R3 and, hence, Π = (Π1,Π2,Π3) ∈ R3. In these cases,

the intersections of each axis with the sphere S2
‖Π ‖ give a constant solution of (9), because at that points Π is parallel

to I−1(t)Π and the r.h.s. of Eq. (9) vanishes.
The equation for the evolution of the energy becomes

d
dt

Et (Π (t)) =
1
2
Π (t) ·

d
dt
[I−1(d0(t))]Π (t)

and the arc length is bounded by

length(Π ([t1, t2])) ≤ l2
∫ t2

t1
a−1(t)dt.

Now, we shall analyze further the special case

I1(t) < I2(t) < I3(t)

for all t ∈ [t1, t2]. Notice that this is the case (up to renumbering the Ii ’s) for small enough time intervals [t1, t2].
Under these conditions, the axes of the ellipsoids E−1

t (k(t)) coincide with the cartesian axes in R3 and the arc length
is thus bounded by

length(Π ([t1, t2])) ≤ l2
∫ t2

t1
I−1
1 (t)dt.

Fixing the time t , we have that through each point of S2
‖Π ‖ passes a solution of Euler equations (rigid body)

with inertia tensor diag(I1(t), I2(t), I3(t)). For each time we then have the corresponding homoclinic solutions (see
e.g. [1]), given by the intersection of S2

‖Π ‖ with the ellipsoid of energy k(t) = l2

I2(t)
.

Given a solution Π (t) = (Π1(t),Π2(t),Π3(t)) of (9) for the interval [t1, t2] with initial value Π (t1), the function
f (t) = Et (Π (t)) reaches a maximum and a minimum on [t1, t2], denoted as Emax and Emin respectively. The same
happens with the value of the principal moments of inertia Ii (t). The solution Π (t) is then contained in a connected
‘crown like’ region R which is the connected component of tt∈[t1,t2] E−1

t ([Emin, Emax]) ∩ S2
‖Π ‖ which contains the

initial value Π (t1).



A. Cabrera / Journal of Geometry and Physics 57 (2007) 1405–1420 1417

We can now show the following results on the qualitative behavior of Π (t):

1. If Emin > l2

I2min
then R is contained in either the semi-space Π1 > 0 or in Π1 < 0. In this case, Π (t) evolves in

S2
‖Π ‖ describing a trajectory that orbits surrounding the cartesian axis 1. More precisely, if the initial point lies in

the component with (say) Π1 > 0, then the solution will lie in this component for all t in [t1, t2]. So if we consider
spherical coordinates (θ, ϕ),

Π1 = l cos θ

Π2 = l sin θ cos ϕ

Π3 = l sin θ sin ϕ

with θ ∈ [0, π], ϕ ∈ [0, 2π ], it follows that θ(t) < π
2 for all t in [t1, t2]. From Eq. (9) we can deduce that

d
dt

ϕ = cos θ [I−1
2 (t)− I−1

1 (t)+ (I−1
3 (t)− I−1

2 (t)) sin2 ϕ] (14)

and thus, since I1(t) < I2(t) < I3(t), ϕ(t) is a monotonically decreasing function of time, showing that the
solution Π (t) tends to describe revolutions about the 1 axis.

2. If Emax < l2

I2max
then R is contained in either the semi-space Π3 > 0 or in Π3 < 0. In this case, Π (t) evolves in

S2
‖Π ‖ describing a trajectory that orbits around the cartesian axis 3, as in the previous case.

3. In other cases, the solution can pass from orbiting around one axis to orbiting around another one. To show this,
let us suppose that Et1(Π (t1)) > l2

I2min
and that I1 is constant. Then length(Π ([t1, t2])) ≤ l2 I−1

1 (t2− t1) and so we

can choose I1 such that Π ([t1, t2]) is contained in some small patch in S2
‖Π ‖. In the case where I2 is also constant

in time and I3(t) grows (note that the order is maintained in time), then d
dt Et (Π (t)) = Π 2

3 (t) d
dt I−1

3 (t) < 0. So the
energy decreases as fast as we want if we make I3(t) grow sufficiently fast. Note that Π 2

3 (t) is bounded from below

because Π ([t1, t2]) is in a small patch. In this situation, Et2(Π (t2)) can be made smaller than l2

I2min
, so the solution

is able to pass from the regime (1) to the regime (2) described above when the energy Et “crosses” the homoclinic
energy boundary l2

I2 min
.

Remark 4.1 (Return Time). In either of the previous cases (1) or (2) we can give a lower bound for the (shortest)
return time 1T = t2 − t1 s.t. Π (t1) = Π (t2). If we suppose that the solution starting at Π (t1) satisfies the conditions
of (1) above and that it returns to this value for the first time at t2, then

1T = t2 − t1 ≥
2π‖Π (t1)× (1, 0, 0)‖

l2 I−1
1max

.

The case corresponding to (2) is analogous.

Now, suppose that we are in the case considered in (1) ((2) is analogous) above and that, in some interval
[ti , ti+1] ⊆ [t1, t2], the solution Π (t) describes a simple closed curve in S2

‖Π ‖. Then, we can apply formula (13)
to find the corresponding phase. Taking into account the time orientation of the closed solution Π (t) (fixed by (14)),

if area(D̃)

l2 < 2π (resp. > 2π ) we must then take the + (resp. −) sign in (13) and we have that

±
area(D̃)

l2 +
2
l

Emin (ti+1 − ti ) ≤ θM ≤ ±
area(D̃)

l2 +
2
l

Emax (ti+1 − ti ). (15)

Remark 4.2 (Bounding θM mod 2π ). Note that, since θM is defined mod 2π , the above bounds yield non-trivial
information when 2

l (Emax − Emin) (ti+1 − ti ) < 2π .

4.2. Examples

We now apply the previous techniques to obtain estimates for the motion of simple classes of deforming bodies.
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Example 4.3 (Global Expansion/Contraction Deformation). In this case, we suppose that the body is globally
shrinking or expanding, that is, the position of a particle from the given reference frame S̃ is

ri0(t) = a(t)ri0

where ri0 is a constant vector and a(t) is a never vanishing positive scale factor. This means that we can choose the
curve d0(t) in Q0 such that

I (d0(t)) = a2(t)I0

with I0 the constant inertia tensor corresponding to the constant configuration {ri0}. By a constant rotation, we can
choose the reference system S̃ (equivalently, another curve d0(t)) from which I0 is diagonal. Then, Eq. (9) on the
sphere becomes

d
dt

Π = a−2(t)(Π × I−1
0 Π ).

Given an initial value Π (t1 = 0), Eq. (9) can be exactly solved yielding

Π (t) = ΠRB

(∫ t

0
a−2(s) ds

)
,

with ΠRB denoting the rigid body solution of Euler equations Π̇ = Π × I−1
0 Π with initial value Π (t1 = 0). Now, the

function

f (Π ) =
1
2
Π · I−1

0 Π

is constant along the solutions. Note that Π (t) describes a simple closed curve on the sphere for t ∈ [0, T ] when∫ T
0 a−2(t) dt = TRB equals the period of the rigid body solution ΠRB. In that case, the corresponding phase is

θM = −ΛRB +
2
‖L‖

f (Π )

∫ T

0
a−2(t) dt

= −ΛRB +
2
‖L‖

f (Π )TRB

where ΛRB is the (signed) solid angle enclosed by the rigid body periodic solution ΠRB with energy f (Π ).
Notice that this phase coincides with the rigid body phase for ΠRB ([4]). The motion of this kind of uniformly
shrinking/expanding or vibrating body is similar to rigid body motion up to a time reparameterization which is induced
by the expansion/contraction.

Example 4.4 (Expansion/Contraction of an Axially Symmetric Body). Let us consider the case of an axially symmetric
body which expands/contracts in the direction of its symmetry axis, i.e., the case in which there exists a curve d0(t)
such that

I (d0(t)) = diag(I1(t), I2, I3),

with I2 = I3. As in the previous case, Eq. (9) can be exactly solved:

Π (t) = ΠRB

(∫ t

0

(I−1
1 (s)− I−1

3 )

I−1
1 (0)− I−1

2

ds

)
,

with ΠRB the rigid body solution to the Euler equations Π̇ = Π × I−1(d0(t1 = 0))Π and initial value Π (t1 = 0).
The function f (Π ) = 1

2Π · I−1(0)Π is again constant along the solution Π (t), which is a simple closed curve for

t ∈ [0, T ]when
∫ T

0
(I−1

1 (s)−I−1
3 )

I−1
1 (0)−I−1

2
ds equals the rigid body period TRB corresponding to ΠRB. In that case, the associated

phase is

θM = −ΛRB +
1
‖L‖

∫ T

0
Π (t) · I−1(d0(t)) Π (t)dt,
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where ΛRB is the (signed) solid angle enclosed by the rigid body periodic solution ΠRB with constant energy f (Π ).
Notice that, in general, this phase is different from the rigid body phase associated with ΠRB.

Example 4.5 (An Antenna Coming out from a Satellite along a Principal Axis). We now consider the cases in which

I (d0(t)) = diag(I1(t), I20 , I30)

or

I (d0(t)) = diag(I10 , I20 , I3(t))

with I1(t) (or I3(t)) an increasing function of time. These cases give simplified models for the situation in which
an antenna comes out from an orbiting satellite along one of the principal axes of inertia 1 or 3. Note that the
satellite is free to rotate around its center of mass and so its motion can be described by Eq. (8). Suppose that initially
I1 < I2 < I3. Then, in the first case, as I1(t) grows this order relation might stop holding after some time, so the
solution could pass from orbiting one axis to orbiting another one. Consequently, we have no control on this kind of
solution. More precisely,

d
dt

Et (Π (t)) =
1
2
Π 2

1 (t)
d
dt
[I−1

1 (t)]

is negative, implying that the energy decreases and the solution can pass from the case (1) to (2) of the previous
section, describing an open curve on the sphere which we cannot characterize in general. In turn, in the second case
the ordering prevails and

d
dt

Et (Π (t)) =
1
2
Π 2

3 (t)
d
dt
[I−1

3 (t)]

is also negative. Since the energy decreases, if the initial value Π (t1) corresponds to case (2) of the previous
section, the solution also evolves according to (2) and we have a good characterization of its behavior. In particular,
if Π ([ti , ti+1]) is a simple closed curve, we then know that the corresponding reconstructed rotation R(ti+1) is

exp(θM
L̂
‖L‖ ) R(ti ) where from (15),

±
area(D̃)

‖L‖2
+

2
‖L‖

Emin (ti+1 − ti ) ≤ θM ≤ ±
area(D̃)

‖L‖2
+

2
‖L‖

Einitial (ti+1 − ti ),

with Einitial is the initial (and hence the maximum) value of the energy Et in [ti , ti+1] and Emin = Eti+1 . We thus
note that we can have a better description of the motion of the satellite when the antenna comes out along the largest
principal axis of inertia.

Remark 4.6 (Slow Deformations). Intuitively, when the antenna comes out very slowly, the motion of the satellite
will be close to a rigid body motion. This is reflected in the fact that when d

dt [I
−1
3 (t)] is very small (compared to

l2 Einitial
(ti+1−ti )

), then Emin ∼ Einitial and area(D̃)

‖L‖2
∼ ΛRB. So the phase θM is approximately the same as the rigid body phase

associated with a rigid body with I = I (d0(ti )) and initial Π (ti ).

Remark 4.7 (Small Bodies in the Gravitational Field). For a body, v.g. a satellite orbiting the Earth, which is small
with respect to the distance of interaction with another body (e.g., the Earth), it is a very good approximation to
suppose that the gravitational force acting on a particle of mass mi of this body is

Fi = mi
−G M

(rCM − P)3 (rCM − P)

where rCM denotes the position of the center of mass of the body. P and M denote the position of the center of mass
and the total mass of the second body (e.g., the Earth), respectively. It can be thus easily seen that the equations of
motion for the position of the center of mass (a central force problem) are totally decoupled from the equations of
motion giving the rotation about the center of mass (a self-deforming body problem as in Example 4.5).
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