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A numerical model using an axisymmetric approximation is developed to study particle pushing during

solidification. The model is applied to determine the effect of different parameters on the predicted

critical velocity for engulfment of the particle by the solidifying interface. The main parameters

considered are particle radius, interface velocity and interface shape as obtained for different thermal

pushing/capture process in increasing or decreasing the critical velocity for pushing one order of

magnitude, with respect to the critical velocity for a flat interface, depending on whether the interface

is concave or convex. Moreover, the predicted critical velocities cover the span of measured values in

agreement with the tendency given by the thermal conductivities and particle radius.

& 2012 Elsevier B.V. All rights reserved.
1. Introduction

The presence of particles in a material can enhance its proper-
ties as in the case of composites and alloy hardening with fine
precipitates, or could be detrimental as in the case of large
inclusions in steel and optic and electronic crystals. When the
production process includes a solid–liquid interface as in the
cases of precipitation from solution, electrolytic deposition and
solidification, an interaction with the particles in the melt or
solution may take place. During solidification the particles tend to
segregate from the solid remaining in the last solidifying melt.
This segregation is generally attributed to an interaction between
the particles and the interface in which the interface pushes the
particles. Nevertheless, the segregation could be the result of
other processes such as fluid flow and particle flotation [1]. The
conditions for pushing have been analyzed using basic thermo-
dynamics considering the change in free energy [2–6]. However, a
steady state of pushing is achieved after a transient where the
interacting forces equilibrate. It is therefore important to know,
describe and incorporate in the analysis the acting physical forces
resulting from the interaction.

The pushing phenomenon has been investigated experimen-
tally by using analytical and numerical modeling [1–45]. The
physics of pushing has been extensively studied by Chernov and
Temkin [12] and reviewed by Stefanescu [57]. The experiments
made with transparent materials [1–7,11,40–45] such as water,
ll rights reserved.
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naphthalene, salol and others containing different particle mate-
rials show that when the moving interface is able to push a
particle, there is a critical velocity at which the particle can no
longer be pushed and is trapped and engulfed by the interface.
The critical velocity is inversely related to the particle size; the
larger the particle the slower the critical velocity. Theories have
been developed to relate the critical velocity with particle size,
using different physical forces. The studies have shown that the
pushing process is complex due to the variety of phenomena
involved during pushing, its association to the fluid and thermal
fields and the nature of the pushing force. In all cases, the physical
problem depends on the properties, nature, and morphology of
the interacting media, the particle, melt and solid, and external
fields such as gravity, thermal and electromagnetic fields [14–28].
As a result, the scatter in the measurements as well as the
amplitude of the range of velocities predicted from the models
is large [32,37,39]. In view of this it becomes important to address
the effect of each parameter independently in order to establish
the importance in the phenomenon. One of the aspects which
could be relevant is the effect of interface shape as determined by
the difference in thermal conductivities among the particle, the
melt and the solid. This effect has been considered qualitatively
[10,46,47]; however the simple criteria of either relative thermal
conductivities [46] or diffusivities [47] of particle and melt larger
than one for trapping, failed when compared to experiments.
More recent analytical and numerical modeling which include the
effect of interface shape and thermal conductivity has been
considered [21,25,29,30,47–52]. The numerical models were
developed using a 2-D symmetry approximation. In the present
report the results of a numerical model using axisymmetry is
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presented. With the model, the effect of different thermal con-
ductivities between particle and matrix is considered which
results in nonplanar interface shapes: convex and concave. The
critical velocities for pushing as function of particle size is
determined by employing the Lifshitz–van der Waals force as
repulsive force, and the results are compared with the critical
velocities for the case of a planar interface.
2. Model description

The particular physical situation which is analyzed basically
consists of a spherical particle of radius R immersed in a melt and
a solidifying interface moving towards the particle (Fig. 1). Also
nonspherical particles are considered. The pushing and capture of
a particle by a solid–liquid front are very complex and involve
forces and conditions which strongly depend on the specific
process as described in the literature [12]. In order to simplify
the problem and focalize the effect of interface shape on capture,
only two forces are considered, and these are the drag, which
pushes the particle towards the interface, and the pushing force
equilibrating the drag, which in the present case is the Lifshitz–
Van der Waals force [1,8,9,12]. For the calculation of both forces,
numerical methods based on the finite element method are
developed assuming that the problem is axisymmetric.

The competition of the pushing or repulsion force (Fr) and drag
force (Fd) determines whether a particle is pushed or captured.
The equilibrium point occurs when both forces Fd and Fr are
equal; the corresponding distance is the separation distance for
steady state of pushing. The trapping condition applies when the
separation distance between particle and interface reaches a
minimum value of hmin¼1�10�8 m, which is assumed to be
the minimum thickness for a film to be considered as fluid
[9,53,54]. This value was used in previous modeling [36] and is
not considered as an adjusting parameter.

The equilibrium between drag and pushing forces is achieved
at a specific separation distance; if this distance is larger than
hmin, a steady state of pushing is possible, and if it is smaller than
hmin, the particle is assumed to be trapped since the necessary
flow for solidification is not possible.

To calculate the values of the drag and pushing forces it is
necessary to know the interface shape as a function of the
separation distance between particle and interface (h). Moreover,
the pushing force is a function of h and R, and the drag force is a
function of h, R and vinterface.

Since the interface shape below the particle is strongly and
mainly dependent on the relative thermal conductivities of
Fig. 1. Schematic description of particle pushing of a spherical particle.
particle and matrix [10,46,47], the calculation of the temperature
field is uncoupled in both the fluid flow field and pushing force
calculations. First, the temperature field is calculated as a function
of time and the interface shape is obtained for at least six
different separation distances between particle and interface,
and each shape is saved for later use. Second, the drag force onto
the particle is calculated using the fluid flow field obtained with
the model. Third, the repulsion force is calculated using the
Casimir–Lifshitz–van der Waals model at each position.

Then the values of both forces Fr(R,h) and Fd(R,h,vinterface) are
compared using vinterface as a parameter and the values of R and h

are maintained constant, until both are equal. In such a case a set
of R, h and vinterface values for steady state of pushing is known.
This method of calculation has been improved with respect to
previous reports [31], adjusting both forces by logarithmic func-
tions and finding vinterface for steady state as the root of the
resulting equation.
3. Results and discussion

The model was applied to conditions which produce planar,
concave and convex interface shapes obtained by introducing in
the model melt particles with three different relative conductiv-
ities kp/km of 1, 10 and 0.1. These relative values simulate the
cases of koxides/kmetals with ratios ranging between 1.5 and 0.4
(e.g., kAl2O3

=kZn ¼ 0:15 and kTiO2
=kAl ¼ 0:40); kceramics/kwater of

around 10 (e.g., kcarbon fiber/kwater¼10.2 or kTiO2
=kwater ¼ 12:3);

and around 1 for systems like mica/water, kmica/kwater¼0.92 and
glass/water, kglass/ kwater¼1.25 [55].The particle shapes consid-
ered were spherical and semi-spherical. In the first case the
particle radii were 1, 10 and 50 mm, and in the second the radii
were 10 and 50 mm. The growth velocities considered were in the
range of 1�10�10–1�10�4 m/s which covers the range of
velocities normally present in many solidification processes
where there may be a steady state of pushing.

3.1. Results of the temperature fields

The solidification domain including the particle is discretized
assuming axisymmetric conditions around the particle axis which
is parallel to the growth direction. A typical mesh consists of
50,000 quadrilateral elements with first order interpolation func-
tions for the temperature field. To simulate the solidification
process a constant heat flow is imposed in one side, equivalent to
the heat flow generated by the solidification rate. The mesh is
highly refined around the particle and particularly in the film
between the particle and the boundary subjected to heat extrac-
tion. This procedure is applied in order to obtain a good resolution
of the interface shape in the melt channel. The numerical solu-
tions were obtained using a Newton–Raphson method with a
tolerance of 0.01%. The dynamic time dependent part was solved
by employing the Crank–Nicholson method with a variable time
step adjusted by the Adams–Bashforth method [56]. The model is
time dependent and permits to obtain the interface shape as it
approaches the particle.

Comparing the results of the axisymmetric calculations with
the results obtained with a 2D model where the particle is
assumed to be an infinite cylinder, shown in Fig. 2, significant
differences can be observed between the results of both
approximations.

The figure shows the interface position at different times for
the solidification of a melt in front of an infinite cylinder and a
spherical particle in each case. The closest isotherms at a distance
of 0.029 mm from the particle show the largest difference where it
is observed that for the cylinder it is much closer to the surface



Fig. 2. Interface shapes obtained with the 2-D and the axisymmetric models at

two particle–interface separation distances: (a) 7.3�10�6 m and (b) 2.9�0�6 m.

Fig. 3. Interface shapes at different separation distances from a spherical particle

R¼50 mm: (a) kP/kL¼10, concave interface and (b) kP/kL¼0.1, convex interface.
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than the isotherm corresponding to the sphere for the same
particle–interface separation. The separation h is measured at
the closest approximation point between particle and interface
which in the present case is in the symmetry plane or axis. The
resulting drag force will be much larger for the cylindrical particle
than for the spherical particle predicting the capture of the
particle at much slower interface velocities for a given radius.
Both the particle and cylinder radii are 50 mm, and the isotherms
start to depart from each other at a distance of 222 mm or
approximately 4 times the particle radius. On the other hand,
the results also show that for distances between any particle and
interface larger than 2R there is no effect of the particle on shape
of the interface. In addition, the dimensional calculations show
that the suitable non-dimensional or scaling parameter for the
thermal field is h/2R since the interfaces at equivalent positions
given by the same value of h/2R coincide exactly as expected.

The effect of the different thermal conductivities between
particle and matrix in the interface shape is determined using
three ratios of kp/km of 10, 1 and 0.1. The resulting interface
shapes are shown in Fig. 3a and b, noting that for the case of same
conductivities the interface remains plane during the whole
solidification process since the effect of fluid flow is not consid-
ered. In Fig. 3 it is observed that the shape is concave and convex
for kp/km of 10 and 0.1, respectively with a large curvature in both
cases. In addition it is observed that the interface is not affected
by the presence of the particle for distances larger than 2R.

3.2. Results of the fluid flow fields

The fluid flow field is used to calculate the drag force onto the
particle. The solidification process is simulated assuming there is
a sink with the shape of the interface calculated with the
temperature field model; the sink uniformly absorbs an amount
of fluid equal to the amount of melt necessary to maintain a
constant solidification velocity. Different meshes and approxima-
tions were previously employed to select the optimum between
computing time and precision of the results. The domain was
discretized using 30,000 and 50,000 quadrilateral elements, with
second order interpolation functions for the velocity and first
order for the pressure. The resulting system of equations was
solved by employing the Picard method. The mesh in the fluid
channel between particle and interface is highly refined as
required. The viscosity of the melt was assumed to be constant
and uniform with a value of 1.5�10�3 Pa s; the densities of the
melt and particle were the same and equal to 2700 kg/m3. The
boundary condition on the particle surface was of no-slip and the
range of interface velocity was from 1�10�10 m/s to 1�10�4 m/
s; three particle radii, 50 mm, 10 mm and 1 mm; and six different
values of h. The results show that the fluid flow is continuous
around the particle with no separation lines, regular with a
velocity that increases in the narrow gap between particle and
interface.

It is noted that, for a given particle radius and interface
velocity, fluid flow velocities are higher in the particle–interface
channel for the case of the concave interface than for a flat
interface, which in turn produce higher velocities than for the
case of a convex interface. The higher velocities in the channel
produce stronger drag forces as shown below.

3.3. Results of the drag force

The drag force on the particle due to fluid flow is calculated by
integration of the following equation:

Fi ¼

Z
S
js!dS¼

Z
S
jsijnj dS ð1Þ

where, Fi is the component of the force in the i-th direction, nj is
the versor in the j-th direction, sij is the stress component, j is
the column vector of interpolation functions, dS is the differential
surface; the integration is performed on the whole surface S of the
particle.

The stress tensor s is obtained from the velocity field using the
following equation

ti ¼ sijnj,sij ¼�pdijþmðui,jþuj,iÞ ð2Þ

where p is the pressure term, m is the viscosity and ui,j and uj,i are
the velocity gradients of the i and j components in the j and i

directions, respectively.
The drag forces as function of separation distance calculated

for concave, flat and convex interfaces are shown in Fig. 4 for a
particle 50 mm in radius, a solidification velocity of 3.3�10�8 m/s
and thermal conductivities that produce concave, flat and convex
interfaces. In the figure it is observed that the drag force in the



Fig. 4. Drag force as a function of separation distance for concave, flat and convex

interface shapes onto a particle 50 mm in radius and a growth velocity of

3.3�10�8 m/s.

Fig. 5. Drag force versus solidification velocity for convex, flat and concave

interface shapes, for a ratio h/2R of 0.01.

Table 1
Values of a in the fitting of F¼a.V for three separation distances and different

interface shapes.

Interface shape a�105 (kg/s)

h�106 (m)

2.5 1 0.147

Concave 30.012 162.10 312.1

Flat 3.0633 7.2310 48.887

Convex 0.8972 1.1366 4.086

Table 2
Values of f(R/h) as a function of R/h.

R/h Concave Flat Convex

0 1 1 1

20 212.3 21.67 3.34

50 1146.6 51.15 8.04

340.13 2207.68 341.85 28.9
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case of a concave interface is two orders of magnitude larger than
the corresponding force for the case of a flat interface at the same
and small separation distance. In addition, as the separation
distance increases, the force corresponding to the concave inter-
face approaches the magnitude of the force corresponding to a flat
interface; at a separation of two radii both forces are equal. On the
other hand, in Fig. 4, the drag force for the case of a convex
interface is two orders of magnitude smaller than the drag force
for the case of a flat interface. As in the case of a concave interface
the force is larger at small separation distances and the difference
decreases and they become equal at a distance of two radii. In all
cases, for a given solidification velocity and particle radius, the
drag force for a concave interface is larger than the drag force for a
flat interface and this, in turn, is larger than for a convex interface;
in all cases the difference of drag force among the three decreases
with increasing separation distance.

The effect of solidification velocity or fluid flow around the
particle for the three cases, convex, flat and concave interface
shapes produced by the different thermal conductivities between
particle and matrix is shown in Fig. 5. It is observed that in the
three cases or in other words, independent of the shape of the
interface, the log (Fd) versus log (h) relation is linear and the lines
are parallel to each other maintaining the relation of magnitude
of the forces for the three interface shapes as described above.
Moreover, the slopes of the linear functions are the same with a
value of one, indicating in all the cases a linear relation in a
logarithmic scale between drag force and fluid velocity. The log–
log relations are of the type log(Fd)¼ log(V)�b; in such a case the
direct relation between Fd and V is of the type Fd¼10�b

�

V¼a�V. This relation holds for all the ranges of separation
distances of interest for pushing and also for all particle radii
considered in the present investigation. The value of a depends on
separation distance, particle radius and particle–interface shape.
The parameter a is the value of the drag force at a velocity of 1 m/
s; see values in Table 1. It is noted that the drag force increases
relatively more for the case of the concave interface than for the
flat and the convex interfaces in that order, as the separation
distance decreases.

In a previous report [31], the results of the calculated drag
force for a planar interface were compared with the values given
by two analytical equations which were the Stokes equation for a
spherical particle and the modified Stokes equation, both shown
in Eqs. 3 and 4. The results of the comparison showed that there is
a large interval in which none of the approximations could be
applied and that the transition point which separates the best fit
of each analytical approximation is h/R¼1.0. [31].

FdStokes ¼ 6pmvintR ð3Þ

FdS�M ¼ 6pmvint
R2

h
ð4Þ

In view of this more general equations for the calculation of
the drag force for the three cases are proposed as follows. In each
case of combining and expanding the Stokes equation the follow-
ing relation is proposed:

Fd ¼ 6pmvR 1þc1
R

h
þc2

R

h

� �2
" #

¼ 6pmvRf
R

h

� �
ð5Þ

where c1 and c2 are constants to be determined. From Fig. 5 it is
possible to obtain the values shown in Table 2.

It is observed in Fig. 6a that for short distances compared to
the particle radius the function f is linear with R/h and the
transition starts for a value of 50, or h¼R/50, which is a short
distance between the particle and the concave interface. The two
regimes can be fitted by a quadratic polynomial equation for long
separation distances (Eq. (6a)), and a linear equation for the short



Fig. 6. f(R/h) as a function of R/h showing the transition from large to small values of h (a) for a concave interface, (b) for a flat interface and (c) for a convex interface.

Table 3
Values of the parameters B and n for three interface shapes and different particle

radii.

Interface R (lm) B (N lmn) n

Concave 50 8.58�10�28 2.477

1 2.70�10�30 2.482

Flat 50 3.14�10�27 2.0

1

Convex 50 9.44�10�25 1.761

1 6.78�10�25 1.606

Fig. 7. Pushing or repulsive force calculated numerically for a particle 50 mm in

radius and for the three shapes of interface considered: concave, flat and convex.
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distances (Eq. (6b))

Fd ¼ 6pmvR 1þ2:3337
R

h
þ0:4116

R

h

� �2
" #

for
R

h

� �
o50 ð6aÞ

Fd ¼ 6pmvR 254:98þ1:703
R

h

� �
f or

R

h

� �
450 ð6bÞ

For the case of a flat interface the relation of f with R/h is
perfectly linear as observed in Fig. 6b; the fitting relation is

f
R

h

� �
¼ 1:0022

R

h

� �
þ1 ð6cÞ

which shows that the equation

Fd ¼ 6pmvR 1þ
R

h

� �
forall

R

h

� �
ð6dÞ

is a general equation for the pushing force for a flat interface
covering the whole range of values of R and h and includes the
transition from short to long separation distances.

In the case of a convex interface the relation of f versus R/h is
shown in Fig. 6c where it is possible to distinguish the two
regions for long and short distances. The equations for each region
are shown in Eqs. (6d and 6e).

Fd ¼ 6pmvR 1þ0:1011
R

h
þ0:0008

R

h

� �2
" #

f or
R

h

� �
o50 ð6eÞ

Fd ¼ 6pmvR 4:4451þ0:0719
R

h

� �
f or

R

h

� �
450 ð6fÞ

Analyzing the five above equations it is observed that for the
three cases at a short distance there is a linear relation with R/h;
however the slope or multiplying constant changes from one case
to the other. In first place the coefficient is one for a flat interface,
larger than one for a concave interface of 1.703, and much smaller
for a convex interface of 0.0719.

3.4. Results of the pushing force

The pushing force is calculated using an equation which
corresponds to the Lifshitz–van der Waals equation for short
distances, where B3 is the Lifshitz–van der Waals constant and
h(r) is the separation distance between the particle and interface
as indicated in Fig. 1.

Fr ¼ 2pB3

Z R

0

r

h3
ðrÞ

dr ð7Þ

The values of pushing or repulsive force calculated using the
above equation are shown in Fig. 7 for a particle 50 mm in radius
and for the three shapes of interface considered: concave, flat and
convex. It is observed that in a logarithmic scale the force, for the
three interface shapes, depends linearly onseparation distance in
an inverse way. Similar results are obtained for smaller particle
radius. Potential regression fitting performed for the cases
considered reproduced the analytical expresion obtained for a
planar interface and a spherical particle as

Fr ¼ pB3
R

h2
ð8Þ

The above equation could be genealized for the case of concave
and convex interfaces proposing potential functions of the type

Fr ¼
B

hn ð9Þ

The values of the parameters B and n which fit the numerical
calculations in such a case are shown in Table 3 for particle sizes
of 50 and 1 mm. In all cases the fitting is very good with a
Pearsons Coefficient (R2) greater than 0.99. In the case of a planar
interface the value of 2 is perfectly reconstructed showing a good
numerical integration procedure.

In the table it can also be seen that in the case of a convave
interface the n exponent has the largest value, and also the value
of B which is related to the particle radius; however it is not
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possible to determine the analytical relation due to the small
number of particle radii considered.
3.5. Equilibrium conditions and critical velocities

The equilibrium conditions for pushing are obtained equili-
brating the two opposite forces: the drag and the repulsive forces.
This can be done by equating the equations for drag and repulsive
forces which were fitted with potential functions. Alternatively,
the equilibrium position can be obtained numerically for each
particle radius and each separation distance between particle and
interface and searching numerically the fluid or solidification
velocity which produces a drag force which equilibrate the
repulsive force. The convenience of this procedure is that the
pushing force is independent of solidification velocity and
remains constant during the search of the equilibrium conditions.

The procedure is repeated for different separation distances,
particle radii and interface geometries. For a flat interface and
several particle radii the equilibrium separation distances versus
velocity are shown in Fig. 8 for particle radii ranging from 1 to
50 mm. It is noted that at small equilibrium distances all the lines
are parallel and linear and as the solidification velocity decreases
the lines start to curve towards the abscissa, in particular for the
case of the particle with the smallest radius of 1 mm. This larger
separation is due to the larger separation between particle and
interface for which case the drag force calculated numerically
Fig. 8. Equilibrium separation distance for steady pushing as function of solidi-

fication velocity for a flat interface.

Fig. 9. Equilibrium separation distance for steady pushing as function of solidi-

fication velocity for concave interface shapes.
deviates from the approximation given by the modified Stokes
equation which predicts smaller drag forces than those calculated
numerically. Using the approximation of the modified Stokes
equation will result in linear relations in a logarithmic scale
representation of heq versus Veq [34,36,38].

The critical velocity for pushing is obtained as the point at
which each line intercepts the abcisa which corresponds to a
value of separation distance equal to the minimum of 10�8 m as
previously described. The critical velocity is observable or experi-
mentally measured and may be compared with those predicted
by the model; this is done below.

In the case of a concave interface the equilibrium distance versus
solidification velocity for three particle radii are shown in Fig. 9.

For comparison purposes the corresponding equilibrium dis-
tances for a flat interface are also shown. First, it is observed that
at small velocities the corresponding larger equilibrium distances
converges to those of a flat interface for all particle radii. This is
the result of the larger curvature for longer separation distances
where the drag and repulsive forces converge to those corre-
sponding to a flat interface. For all particle radii at larger
velocities the equilibrium distances are smaller which results in
a critical velocity slower than for the case of a flat interface.

On the contrary, for the case of a convex solidification interface
the equilibrium separation distance for pushing for a given
velocity is larger than for either a flat or concave interface, as
observed in Fig. 10.
3.6. Critical velocities por pushing

The critical velocities for pushing are obtained from Figs. 8–10
and correspond to the velocity at which the line intercepts the
abscise for an equilibrium distance hmin¼10�8 m. The results for
a water matrix and a flat interface are shown in Fig. 11; in the
same figure the critical velocities obtained using the analytical
equation (Eq. 10) are represented as a dashed line.

vc ¼
B3

6phminR
ð10Þ

The conversion of critical velocities from one melt to another is
straightforward and can be done using the simple following
conversion equation

vcðwaterÞ ¼ vcðsimÞ

mðsimÞ

mðwaterÞ

 !
ð11Þ

Where msim is the viscosity used in the model and vc(sim) is the
critical velocity obtained with the model for that viscosity.
Fig. 10. Equilibrium separation distance for steady pushing as function of

solidification velocity for convex interface shapes.



Fig. 11. Comparison between measured critical velocities and model predictions

for flat, concave and convex interface shapes as function of particle radius.
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In Fig. 11 the analytical and numerical results for a flat interface
are practically coincident. In addition, the large scatter of experi-
mental values is observed. When the effect of a curved interface is
considered, the model results show the upper and lower limits
enveloping the experimental values indicating that the experimental
scatter can be partially explained by this fact. Another variable which
can affect the critical velocity is the shape of the particle. To estimate
the degree of importance of a non-spherical particle, the model was
applied to a semi-spherical particle with the flat face parallel to the
interface and in the upper part, that is, the spherical part facing the
interface. The particle is insulating with respect to the matrix with a
thermal conductivity a tenth of that of the matrix. In such a case the
shape of the interface is convex. The results for two radii of 10 and
50 mm are included in Fig. 11, and show that the critical velocities for
these cases are larger than the critical velocities for a flat interface and
approximately 5 times smaller than the corresponding critical velo-
city for a spherical particle with the same radius and relation between
thermal conductivities. In such a case it may be concluded that the
upper and lower lines represent the limiting bounds for the critical
velocities for pushing. If the model results are compared with some of
the specific experimental cases, it may be noted that the metallic
particles like tungsten and copper, with large thermal conductivities
than water, have critical velocities smaller than those corresponding
to a flat interface following the tendency of the model predictions.
Moreover, in the case of copper particles in water solidified with a
very low gradient where the effect of different thermal conductivities
is smaller, the critical velocities are in some cases larger and in other
cases smaller than the corresponding critical velocity for a flat
interface. One significant observation is with respect to the case of
air laden copper particles which show critical velocities correspond-
ing to particles with smaller thermal conductivity than the matrix. An
air laden particle will result in a mean thermal conductivity that
could be smaller than those of copper and water.
4. Summary and conclusions

In the present report a simple model for pushing is presented
in which two acting forces are considered: the drag force and the
pushing force. The parameters and physical conditions analyzed
are particle radius, growth velocity and different thermal con-
ductivities of particle and matrix. Both forces are calculated using
numerical methods and the results are analyzed for each physical
condition producing flat, concave and convex interfaces. In
addition the drag force is compared with analytical approxima-
tions and a more general equation is obtained which is valid for
all cases of spherical particles and a flat interface. Also for all the
cases, the drag and pushing forces are fitted to potential functions
which permit to obtain the equilibrium position of a particle
moving ahead of a solidifying interface. The trapping condition
applied is that when the separation distance between particle and
interface reaches a minimum value of 10�8 m. The results
obtained with the model are compared to published experimental
critical velocities measured for water and a considerable number
of particle sizes and nature with smaller and larger thermal
conductivities than the matrix. The analysis and discussion of
the results permit to obtain the following conclusions.
(1)
 The axisymmetric approximation results are much more
adequate than the 2-D approximation for the prediction of
the interface shape for studying pushing, when the thermal
conductivities between the foreign particle and the solidifying
matrix are different.
(2)
 For foreign particles with larger or smaller thermal conduc-
tivities than that of the matrix, concave or convex interface
shapes are obtained, respectively, as a function of distance
between particle and interface. For separations larger than a
particle diameter there is no effect on interface shape,
remaining essentially planar.
(3)
 An analytical equation for the drag force is reconstructed from
the numerical values of drag force valid for the whole range of
separation distances between a spherical particle and a flat
interface or sink, replacing in a continuous way both, the
Stokes and the modified Stokes equations.
(4)
 The Lifshitz–van der Waals pushing force is integrated numeri-
cally for each interface particle separation and the analytical
equation for a flat interface is perfectly reconstructed.
(5)
 The drag and the pushing forces are strongly dependent on
interface shape and their magnitude could be as high as one
order of magnitude larger following the inverse relation
between thermal conductivities of particle and matrix.
(6)
 The drag and the pushing forces calculated numerically as
function of particle radius, solidification velocity and thermal
conductivities are fitted to polynomial functions permitting
an easy calculation of the equilibrium distance between
particle and interface for steady pushing.
(7)
 The equilibrium distance predicted numerically as function of
particle radius and a flat interface fitted a linear inverse
relation to the radius and velocity coinciding with published
analytical relations.
(8)
 From the equilibrium position obtained as function of particle
radius, solidifcation velocity and thermal conductivities, the
critical velocity for pushing predicted with the model shows a
range of up to one order of magnitude higher and lower than
the corresponding critical velocity for a flat interface, depend-
ing on whether the thermal conductivity of the particle is
lower or higher than that of the matrix, respectively.
(9)
 The critical velocities predicted with the model when com-
pared with critical velocities measured experimentally in a
wide range of conditions show that the predicitons cover
almost all the measured values and are in agreement with
the tendency given by the thermal conductivities and the
particle radius.
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