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Abstract

A physical conceptual model for water retention in self-similar fractured hard rocks is presented. The geometric pattern of the

fracture network is described using a classical fractal object known as the Sierpinski carpet. Assuming this type of geometry, a

relatively simple closed-form expression for the water content is obtained. All model parameters can be calculated from the

density of the main fractures, the maximum and minimum values of the fracture aperture, and the residual water content. The

resulting water content expression is then used to estimate the unsaturated hydraulic conductivity of the fractured medium based

upon the well-known model of Burdine. It is found that for large enough ranges of fracture apertures the new constitutive model

converges to the empirical Brooks–Corey model.

q 2006 Elsevier B.V. All rights reserved.
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1. Introduction

Modeling groundwater flow in unsaturated frac-

tured rocks has received considerable attention in the

last two decades. One of the main reasons for

focussing on the study of water flow in this type of

media is the search for potential safe permanent

storage facilities for geological disposal of high-level

nuclear wastes. Deep disposal in crystalline rocks is

considered to be an effective mean of isolating

radioactive wastes from the biosphere. However,
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groundwater migration could contribute to the return

of radionuclides to the surface of the Earth. Thus,

simulation of groundwater flow in fractured hard

rocks provides a useful tool to establish long-term

safety of potential disposal sites.

Most numerical simulations of unsaturated flow in

fractured rocks are based on the continuum approach

(e.g. Finsterle, 2000). In its simplest form, the

fractured network and the rock matrix are treated as

an equivalent continuum medium while water flow is

assumed to obey Richards’ equation (Richards, 1931).

This equivalent medium is characterized by constitu-

tive models which largely determine the accuracy of

the numerical results. However, such models are

virtually nonexistent for fractured hard rocks which
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explains why classical models originally developed

for sedimentary rocks are often used (Liu and

Bodvarsson, 2001).

The proposed conceptual constitutive model is

based on the assumption that the fracture pattern is

self-similar. Self-similar scaling is a typical property

of fractal objects and it has been observed in fracture

networks by several authors. Berkowitz and Hadad

(1997) have analyzed natural fractured trace maps

representing a wide variety of scales, geological

settings and lithologies, and they found that fracture

networks display fractal and multifractal properties.

Obuko and Aki (1987) reported that the density of

different sized fault segments within the San Andreas

fault zone is fractal. Barton and Zoback (1992) found

that the distributions of fracture aperture and fracture

spacing are self-similar over a well-defined range of

apertures in the Cajon Pass scientific drill hole. It has

also been observed that microfracturing in rocks and

fragmentation produced by weathering, explosions,

and impacts often satisfy a fractal distribution

condition over a wide range of scales (Tchalenko,

1970; Turcotte, 1986).

The mentioned empirical evidence motivates the

use of fractal geometry concepts to describe self-

similar fracture networks in hard rock formations. The

paradigm used for the fracture pattern is the Sierpinski

carpet, which is a fractal object that contains a self-

similar geometric pattern of pores. There is not

empirical evidence that support the use of this specific

fractal to describe a fractured rock. However, the

Sierpinski carpet was employed by Tyler and Wheat-

craft (1990) to simulate porous media and to relate its

fractal dimension to the empirical parameters of the

Brooks–Corey constitutive model (1964). A Sier-

pinski space, an extension of Sierpinski carpet, was

also employed to characterize the spatial distribution

of a drainage network in the Gardon basin, France

(Moussa, 1997).

In this study the water content relation of the

fractured media is directly derived from the porosity

of the Sierpinski carpet using appropriate cut-off

values for the self-similar pattern. The relative

hydraulic conductivity is obtained from the water

content relation using the Burdine model (Burdine,

1953). It is important to remark that for small enough

fracture apertures the proposed relations converge to

Brooks–Corey expressions. Similar results were
reported by Tyler and Wheatcraft but in their work

the water retention distribution is obtained using an

approximation of the pore number distribution of the

Sierpinski carpet.

The expressions of the proposed constitutive model

are closed-form and easy to evaluate. Another

important feature is that all model parameters are

completely determined from the density of the main

fractures, the maximum and minimum fracture

apertures, and the residual water content.
2. Construction of a self-similar fracture network

In this section the basic concepts to describe a two-

dimensional network of fractures using the Sierpinski

carpet are introduced. The Sierpinski carpet is a planar

figure in which successively smaller pieces are cut out

of the plane to produce a pattern of ‘holes’ which is

self-similar at all scales. In our case, the ‘holes’ of the

carpet will be associated with the fractures.

The Sierpinski carpet can easily be generated using

a recursion algorithm. To construct a fracture network

we consider a square of size a. The first recursion

level consists of subdividing the original square into

b2
1 squares of size d1Za/b1. In order to simplify the

analysis, only vertical and horizontal fractures will be

generated by removing l1 squares of size d1 according

to a desired geometric pattern. Thus the fracture

aperture is determined by d1. The selected pattern of

fractures must be repeated in each recursion level in

order to obtain a self-similar pattern at scales lower

than the initial size of the carpet a. In the second

recursion level the remaining b2
1Kl1 squares are

newly subdivided in b1 squares of size d2Za=b2
1. In

each square of size d1, l1 subsquares of size d2 are

removed according to the initial pattern of fractures.

This procedure can be carried out as many times as

desired and if the recursion is repeated to infinity the

resulting self-similar pattern is filled everywhere with

‘holes’.

For an arbitrary value of b the number of squares of

size d needed to cover the fractures of apertures equal

to or larger than d is given by l. Thus the number of

squares to cover the solid phase is b2-l. The last

number has a power-law scaling with the scale of

measurement b of the form (Mandelbrot, 1983)



Fig. 1. Three levels of recursion of the Sierpinski carpet for parallel

fractures.

Fig. 2. Three levels of recursion of the Sierpinski carpet for

orthogonal fractures.
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bD Z b2Kl (1)

where D2(1,2) is the fractal dimension of the

Sierpinski carpet.

Fig. 1 shows the first 3 levels of recursion for a

network of parallel fractures using the following

parameters: aZ1, b1Z5 and l1Z5. Fig. 2 illustrates

the case of an orthogonal fracture network obtained

assuming aZ1, b1Z5 and l1Z9. The fractal

dimension D of both carpets are 1.86 and 1.72,

respectively.
3. Water content relation

To derive the water content relation we consider as

representative elementary volume (REV) a cube of

volume a3 (see Fig. 3). The pores of the REV are

vertical fractures of aperture d. The horizontal

distribution of the fracture network is assumed to be

self-similar and to be described by a Sierpinski carpet

as explained in the previous section.

The porosity f of the REV is given by

fZ
volume of porous

volume of REV
Z

a3l=b2

a3
Z

l

b2
: (2)

According to (1) and using dZa/b, porosity can be

expressed in terms of the fracture aperture d as:

fðdÞZ 1K
a

d

� �DK2

: (3)

Expression (3) represents the porosity of a medium

with self-similar fractures of apertures greater than d.
Sierpinski carpet

d

a

Fig. 3. Representative elementary volume (REV) of the fractured

medium.
It is important to remark that due to D!2 the porosity

approximates to unity as d goes to zero. This porosity

value is physically meaningless for representing a

‘true’ fractured rock and a lower cut-off value for d

must be considered. This lower cut-off will be

associated with the smallest aperture dmin detected

on the REV and thus the porosity of the fractured

medium will be f(dmin).

Suppose now that the REV is initially fully

saturated and is dewatered by a tension force. If all

fractures of apertures greater than d are drained by a

tension hd then the water content q is given by

qðhdÞZfðdminÞKfðdÞCqr (4)

where qr represents the water held as films on the

fracture walls which can not be drained by the tension

hd. If we assume that the fractures drain at capillary

pressure then

hd Z
2s cosðbÞ

rgd
(5)

where s is the surface tension of the water, b the

contact angle, r water density, and g gravity

acceleration. It is important to remark that capillary

pressure is not uniform in the fracture network

(Kwicklis and Healey, 1993) and then hd is considered

to be the ‘effective’ tension within the REV (Liu and

Bodvarsson, 2001).

Finally, substituting (3) and (5) in (4) the desired

expression for water content is

qðhÞZ

qs h!hmin

ðqsKqrÞ
hDK2KhDK2

max

hDK2
min KhDK2

max

Cqr hmin%h%hmax

qr hOhmax

8>>>>><
>>>>>:

(6)

where

hminZ
2s cosðbÞ

rgdmax

hmaxZ
2s cosðbÞ

rgdmin

;

qs Z
arg

2s cosðbÞ

� �DK2

ðhDK2
min KhDK2

max ÞCqr

(7)

with dmax the maximum fracture aperture and qs the

saturated water content.
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Fig. 5. Dependence of the fractal dimension with fracture density.
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4. Fractal dimension D

The expression of the fractal dimension D of a

Sierpinski carpet can be computed rearranging (1)

D Z
logðb2KlÞ

logðbÞ
: (8)

Using formula (8) it is possible to compute the

fractal dimension of the carpets shown in Figs. 1 and

2. However, it is more useful to express D in terms of

the physical parameters of the fracture network.

Assuming that the fracture network is formed by

two families of parallel fractures which mutually

cross each other at an angle of 90 degrees, we can

compute the number of squares of size dmax necessary

to cover the area of the main network as

l Z a2 1

dmax

ðnx CnyÞKnxny

� �
(9)

where nx and ny are the fracture densities (number of

fractures per unit length) in x and y directions,

respectively. Hence, substituting (9) in (8) yields the

following expression for the fractal dimension:

D Z
log a2

d2
max

½1Kdmaxðnx CnyÞCd2
maxnxny�

� �
log a

dmax

� � :

(10)
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Fig. 4. Dependence of the fractal dimension with maximum fracture

aperture.
Fig. 4 shows the dependence of fractal dimension

D with the maximum fracture aperture dmax

assuming nxZnyZnZ0.5 fractures per cm and

aZ100 cm. Fractal dimension goes to 2 for small

values of dmax but falls sharply to 1 for the highest

admissible values. The dependence of D with

fracture density n when dmaxZ0.1 cm is shown in

Fig. 5. Both curves show similar behavior indicating

that values of D near 2 correspond to lightly

fractured media (low density and small apertures)

and values near 1 to highly fractured media (high

density and large apertures).
5. Relative hydraulic conductivity

The two most widely applied models for predict-

ing relative hydraulic conductivity from the knowl-

edge of the water content relation are the models of

Burdine (1953) and Mualem (1976). These models

differ significantly in their approaches towards pore

interaction terms. In the Burdine model pores are

represented with a group of parallel capillary tubes

with different radii while in the Mualem model

pore geometry is more complex. For the particular

case of flow in fractured hard rock the simple Burdine

model seems to be the more consistent (Liu and

Bodvarsson, 2001; Kwicklis and Healey, 1993) and

will be adopted to predict relative hydraulic

conductivity.
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Fig. 6. Comparison between the Brooks–Corey model and the new

relations for different ranges of fracture apertures.
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The expression of the model given by Burdine is

KrðqÞZ
qKqr

qsKqr

� �2

Ðq
qr

hK2ðmÞ dm

Ðqs

qr

hK2ðmÞ dm

: (11)

Introducing (6) in (11) we obtain the following

closed form for Kr(h):

KrðhÞZ

1 h!hmin

hDK2KhDK2
max

hDK2
min KhDK2

max

0
@

1
A2

hDK4KhDK4
max

hDK4
min KhDK4

max

hmin%h%hmax

0 hOhmax

8>>>>>>><
>>>>>>>:

(12)

Expressions (6) and (12) represent the proposed

constitutive model for self-similar fractured hard

rocks. Note that all model parameters are determined

by geometric parameters of the network nx, ny, dmin,

dmax, and residual water content qr.

The novel constitutive model has some similarities

with the well-known Brooks–Corey model, which is

qðhÞZ
qs h!1=a

ðqsKqrÞðahÞKg Cqr hR1=a

(
(13)

KrðhÞZ
1 h!1=a

ðahÞKð3gC2Þ hR1=a

(
(14)

where a is the reciprocal of air entry pressure and g is

a model parameter related to pore size distribution.

Water content relation (13) is an empirical expression

while relative hydraulic conductivity (14) is obtained

using the water content relation in the Burdine model.

For large enough ranges of fracture apertures, that

is dmin/dmax, the term hDK2
max can be considered

negligible and for this particular case the expressions

(6) and (12) are identical to the ones proposed by

Brooks and Corey ((13) and (14)). The relation

between parameters of both models are aZ1/hmin

and gZ2-D.

Comparisons of the proposed and the Brooks–

Corey models for three different ranges of fracture

apertures are depicted in Fig. 6. The assumed
fracture network parameters are nxZnyZ4 f/cm,

dmaxZ10K1 cm and dminZ10K3, 10K5, 10K7 cm,

being the ranges of fracture apertures of 2, 4 and 6

orders of magnitude, respectively. According to

Fig. 6, the Brooks–Corey model seems to be adequate

to describe the hydraulic properties of fractured rocks

for large ranges of fracture apertures and low values of

pressure head.
6. Parametric analysis

In this section we analyze the influence of the two

main model parameters: the fracture density and the

maximum aperture. The geometric parameters and

physical constants used for the analysis are aZ
100 cm, gZ980.665 cm/s2, sZ72.75 dy/cm (20 8C),

rZ0.998 gr/cm3 (20 8C), bZ0 and qrZ10K6. For



Table 1

Network and model parameters for the analysis of fracture density

n (f/cm) dmin (cm) dmax (cm) hmin (cm) hmax (cm) D qs

Network 1 5 10K5 10K1 2.63 2.63!105 1.7793 0.2106

Network 2 5!10K1 10K5 10K1 2.63 2.63!105 1.9851 0.1154

Network 3 5!10K2 10K5 10K1 2.63 2.63!105 1.9985 0.0131
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the sake of simplicity we consider the same value n

for fracture density in both direction (nZnxZny).

In order to analyze the influence of the fracture

density we consider three fracture networks with

different values of n. The geometric parameters of the

fracture networks and the computed model parameters

are listed in Table 1. The water content and

relative hydraulic conductivity curves are shown in

Figs. 7 and 8, respectively. As expected, the

maximum values of water content decrease with the

number of fractures while the relative hydraulic

conductivity shows a negligible dependence with the

parameter n.

Table 2 lists the parameters of the fracture

networks used for the parametric analysis of the

maximum fracture aperture dmax. Fig. 9 shows that the

effects of dmax on the water content curves are similar

to the ones of parameter n. However, the relative

hydraulic conductivity curves are strongly influenced

by the parameter dmax. As shown in Fig. 10, the

smaller the maximum fracture aperture, the greater

the values of the relative hydraulic conductivity.
network 3network 2network 1

h (cm)
1000001000010001001010.1

0.2

0.15

0.1

0.05

0

q

Fig. 7. Water content curves of the fracture networks listed in

Table 1.
7. Model validation

In this section the proposed model is compared

with constitutive relations simulated from two-

dimensional fracture networks by Liu and Bodvarsson

(2001). In their work the network is considered to be a

fracture continuum where each fracture is conceptu-

alized as a two-dimensional porous media with

constitutive relations represented by the van Genuch-

ten model (1980). For a number of different uniform

capillary pressures at the REV boundaries, the

corresponding values of effective saturation and

relative hydraulic conductivity are obtained for a

randomly fracture network. This computational

procedure is similar to laboratory procedure to

determine constitutive relations to porous media.

The simulated constitutive relations were fitted

with the following equations

Se Z
qKqr

qsKqr

Z ½1C ðahÞn�1=nK1 (15)

Kr Z S3K2S3=4e C2=ðnK1Þ
e (16)
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Fig. 8. Relative hydraulic conductivity curves of the fracture

networks listed in Table 1.



Table 2

Network and model parameters for the analysis of maximum fracture aperture

n (f/cm) dmin (cm) dmax (cm) hmin (cm) hmax (cm) D qs

Network 1 5!10K1 10K5 1.0 2.63!10K1 2.63!105 1.6990 0.2422

Network 2 5!10K1 10K5 10K1 2.63!100 2.63!105 1.9851 0.1154

Network 3 5!10K1 10K5 10K2 2.63!101 2.63!105 1.9989 0.0074
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where Se is the effective saturation, and a and n are

empirical parameters. Eq. (15) is the van Genuchten

water retention curve and Eq. (16) is a modified

Brooks–Corey relative hydraulic conductivity

relation.

The comparison between the simulated effective

saturation obtained by Liu and Bodvarsson and the
network 3network 2network 1
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Fig. 9. Water content curves of the fracture networks listed in

Table 2.

network 3network 2network 1

h (cm)

K
r

1000010001001010.1

1

0.8

0.6

0.4

0.2

0

Fig. 10. Relative hydraulic conductivity curves of the fracture

networks listed in Table 2.
curves predicted by Eqs. (6) and (15) is shown in

Fig. 11. The proposed model fairly good predicts the

simulated values except for high saturations. The

resultant parameters are DZ1.503, hminZ0.5 cm and

hmaxZ50 cm.

In order to compare simulated and predicted values

of the relative hydraulic conductivity the Eq. (12) is

expressed in terms of effective saturation:

Kr Z S2
e

Se

hmin

hmax

� �DK2

K1

� �
C1

� �ðDK4Þ=ðDK2Þ

K1

hmin

hmax

� �DK4

K1

:

(17)

Fig. 12 shows the simulated Kr values and the

curves predicted by Eqs. (16) and (17) using

the parameters determined from Fig. 11. The fit to

the simulated values is reasonably good and it can be

improved by modifying the tortuosity factor in the

Burdine model (Eq. (11)) as explained in Liu and

Bodvarsson (2001).
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Fig. 11. Fit of the proposed model to the simulated effective

saturation and the Liu–Bodvarsson model.
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8. Conclusions

A physically based constitutive model for unsatu-

rated flow in fractal fractured hard rocks has been

presented. The expressions of water content and

relative hydraulic conductivity curves have analytical

closed-forms and all parameters can be completely

determined by the geometry of the main fracture

network and the residual water content. The proposed

model match reasonably well the simulated constitu-

tive relations obtained by Liu and Bodvarsson (2001)

and for large enough ranges of fracture apertures it

converges to the empirical Brooks–Corey model.

A parametric analysis indicates that water content

strongly depends on fracture density and aperture,

while the relative hydraulic conductivity is mainly

influenced by the maximum fracture aperture.

Strongly fractured rocks have a fractal dimension

close to one, while that of weakly fracture formations

approaches a value of two.

The proposed constitutive model is an effort to

understand and characterize unsaturated flow in

fractured hard rocks. The utility of the model to

describe water flow in real fractured formations has
yet to be proven by comparison with experimental

data.
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