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In this work, a three-node triangular finite element with two degrees of freedom per node for the large
strain elasto-plastic analysis of axisymmetric solids is presented. The formulation resorts to the adja-
cent elements to obtain a quadratic interpolation of the geometry over a patch of four elements from
which an average deformation gradient is defined. Thus, the element formulation falls within the
framework of assumed strain elements or more precisely of F-bar type formulations. The in-plane
behavior of the element is similar to the linear strain triangle, but without the drawbacks of the qua-
dratic triangle, e.g. contact or distortion sensitivity. The element does not suffer of volumetric locking in
problems with isochoric plastic flow and the implementation is simple. It has been implemented in a
finite element code with explicit time integration of the momentum equations and tools that allow
the simulation of industrial processes. The widely accepted multiplicative decomposition of the defor-
mation gradient in elastic and plastic components is adopted here. An isotropic material with non-lin-
ear isotropic hardening has been considered. Two versions of the element have been implemented
based on a Total and an Updated Lagrangian Formulation, respectively. Some approximations have been
considered in the latter formulation aimed to reduce the number of operations in order to increase
numerical efficiency. To consider bulk forming, with large geometric changes, an automatic local reme-
shing strategy has been developed. Several examples are considered to assess the element performance
with and without remeshing.

� 2008 Elsevier B.V. All rights reserved.
1. Introduction

The finite element analysis of the bulk forming processes,
including rolling, forging, extrusion, etc. is relatively complex be-
cause it implies important changes in the original geometry, large
strains, isochoric plastic flow, interaction (contact) with the form-
ing tools and in many cases, self-contact and a strong thermo-
mechanical coupling. When large strains are involved the use of
low order elements with only displacements degrees of freedom
is preferred as they are more reliable and robust. For problems
than can be simulated as bidimensional this leads to linear trian-
gles and bilinear quadrilaterals. It is well known that when these
elements are based on a standard displacement formulation they
are vulnerable to volumetric locking. Besides that, specially in
the case of triangles, very fine meshes are necessary to obtain accu-
rate results. Considerable efforts have been made in recent years to
bypass these drawbacks. For the bilinear quadrilateral the develop-
ments have been quite successful leading to elements that do not
lock for quasi-incompressible problems and show a good approxi-
ll rights reserved.
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mation for coarse meshes. The formulations used, including re-
duced/selected integration, the addition of incompatible modes,
B-bar methods and assumed/enhanced strain methods, may be
seen in [1–4] and the references cited therein.

However, although meshing programs using quadrilaterals have
notably improved, the triangles are more convenient for general
applications as the triangular mesh generators are more robust
and efficient, facilitating the development of automatic remeshing
strategies for highly distorted geometries. This has motivated the
development of triangular elements introducing drilling degrees
of freedom [5], mixed/hybrid formulations [6–9] and F-bar type
formulations [10]. The first approach is restricted to small strain
plane stress problems (as part of a shell element), the second is
presently restrained to small strains also and the others, although
eliminate the volumetric locking problem, do not improve the poor
behavior of the linear triangle. A promising approach, that keeps
displacements as the only degrees of freedom and improves the
in-plane behavior was presented in [11], where the strains are
computed resorting to the geometry of the adjacent elements. This
approach will be extended in this paper. The use of a patch of ele-
ments for the computation of strains is not new and has been pre-
viously considered mainly for C1 problems. Probably the first
successful applications were under energy formulations in the
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finite difference context by Bushnell [12] (see also [13]) and in the
finite element context by Barnes [14]. In the last 15 years several
shell elements have been developed using this idea (see for exam-
ple [15] and the references cited therein).

For large strain elasto-plastic problems, the constitutive models
based on the multiplicative decomposition of the deformation gra-
dient are now widely accepted. This broad consensus emerges
from the microstructural theory of monocrystal and, at least for
isotropic materials, there is no controversy referred to the defini-
tion of the intermediate configuration that characterizes the
hypothesis. Examples of constitutive models and computational
algorithms to integrate the resulting evolution equations based
on this hypothesis may be found in Refs. [16–21] among others.

In bulk forming processes, most of the problems of interest im-
ply large changes in geometry, making necessary to apply a reme-
shing strategy and a data transfer scheme. It is of paramount
importance that these strategies keep the finite element solution
within a prescribed accuracy. Different algorithms for transfer of
variables have been proposed, among them those based on the
Superconvergent Patch Recovery (SPR) method introduced in
[22,23] are frequently used. In this algorithm a global approxima-
tion of the variables in the domain is obtained with a polynomial
expansion over a set or patch of elements. This polynomial expan-
sion approaches (via least squares) the values provided by the fi-
nite element analysis at some points of the patch that have
superconvergent properties. The original algorithm has been mod-
ified by different authors [24–26] improving different aspects, e.g.
include balance equation in the patch, increase the robustness of
the interpolation at boundary points, etc. leading to the so-called
Enhanced Superconvergent Patch Recovery methods. Although the
procedure is heuristic, it has been tested enough to admit that
the results are quite accurate; see for example Ref. [27] and more
recently Ref. [28]. The first authors to apply the SPR algorithm to
elasto-plastic problems were Boroomand and Zienkiewicz [29]
and among the applications in the finite strain range Refs.
[30,31] may be cited.

In this paper, a three-node triangular element for the analysis of
bidimensional (plane strain and axisymmetric) isotropic solids
with an elasto-plastic constitutive model based on the multiplica-
tive decomposition of the deformation gradient is developed. Both
a Total Lagrangian Formulation (TLF) and an Updated Lagrangian
Formulation (ULF) have been considered. In the former a standard
model as presented in Ref. [18] is used while in the latter the ap-
proach suggested in Ref. [17] to increase the computational effi-
ciency reducing the number of operations at the element level
was implemented. The element was coded in the finite element
program Stampack [32]. An automatic strategy to trigger local
remeshing including a transfer scheme based on the original Super-
convergent Patch Recovery [22,23] was implemented.

An outline of this work is as follows. Next section describes the
constitutive models used and the numerical algorithms adopted to
integrate the evolution equations for both the TLF and the ULF. The
finite element and the assumed strain approach developed is pre-
sented in Section 3. The local remeshing scheme is summarized in
Section 4, that also includes some comments about the transfer of
internal variables. Several examples solved with the new element
are presented in Section 5 including cases with and without reme-
shing and comparisons with other results existing in the literature.
Finally some conclusions are gathered at the end of the paper.
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Fig. 1. Configurations considered in the multiplicative decomposition.
2. Constitutive model

In this section, the main aspects of the elasto-plastic constitu-
tive model and of the two integration algorithms used in this work
for the analysis of solids under large strains are summarized. The
first algorithm, associated to a TLF, is very similar to one in the
monograph [18], the details of it and several numerical examples
may be found in [33]. The second algorithm, associated to an
ULF, is based on Ref. [17]. For the element presented in this paper
both formulations show comparative advantages and disadvan-
tages. The ULF requires to recompute the average derivatives of
the shape functions at each iteration but avoids some expensive
push-forward/pull-back type operations.

2.1. Hypothesis associated to the material model

The domain occupied by the solid in its original/undeformed
configuration in the space R3 will be denoted by X0 with boundary
C0 (see Fig. 1). A function uðX; tÞ relating, at every time t, the mate-
rial points X on the reference configuration X0 with the present/de-
formed configuration Xt will be defined, such that it is possible to
obtain the deformation gradient as:

FðX; tÞ ¼ ouðX; tÞ
oX

: ð1Þ

Fig. 1 shows schematically the different configurations involved in
the multiplicative decomposition of the deformation gradient. Be-
sides the original X0 and the present configuration Xt , the figure
also includes the additional stress-free intermediate configuration
(denoted by iXt).

The basic kinematic hypothesis is the multiplicative decomposi-
tion of the deformation gradient F in an elastic part Fe and a plastic
one Fp according to

F ¼ FeFp; ð2Þ

where it is also assumed that the plastic part does not modify the
volume (isochoric plastic flow), then detðFpÞ ¼ 1 and detðFÞ ¼
detðFeÞ ¼ J. This multiplicative decomposition is uniquely defined
but for a rigid body rotation and expression (2) is enough to define
without ambiguities the unstressed intermediate configuration for
isotropic materials, that is the type of material model considered
here. From the elasticity point of view the elastic deformations will
be computed via an hyperelastic relationship and it will be assumed
that the strain energy can be decoupled into a part due to the
change of volume and a part due to the distortion of the solid. For
simplicity it will also be assumed that is feasible to fix a linear rela-
tionship between adequate strain and stress measures in terms of a
bulk modulus K and a shear modulus l. The yield function will be
assumed to depend on the second invariant of the deviatoric stress
tensor J2 only. An associative flow rule with isotropic hardening will
be considered so that a radial return algorithm can be applied to get
back to the yield surface when plasticity occurs. Finally rate inde-
pendent plasticity, no thermo-mechanical coupling and an isother-
mal process will be assumed.

2.2. Integration algorithm

As in most of the elasto-plastic algorithms (see for example Ref.
[19] or [18]), the problem is decomposed in two parts: an elastic
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part where the plastic variables are frozen (elastic predictor) and a
plastic part where the total strains are kept fixed (plastic correc-
tor), in such a way that the combination of both problems is equiv-
alent to the original one.

A few details pertaining to the kinematic of the configurations
shown in Fig. 2 are given. The present configuration is associated
to the step nþ 1 and is obtained adding the configuration in step
n and the incremental displacements un:

xnþ1 ¼ unþ1ðXÞ ¼ unðXÞ þ un½unðXÞ�; ð3Þ

where for the integration of the constitutive equations, the config-
uration unðXÞ at step n and the incremental displacements un are
data. According to Fig. 2 and using (3), the total deformation gradient
at the present step Fnþ1 can be obtained as

Fnþ1 ¼
oxnþ1

oX
¼ ½1þrxn un�Fn ð4Þ

with 1 the second order unit tensor. Using the chain rule

Fnþ1 ¼
oxnþ1

oX
¼ oxnþ1

oxn

oxn

oX
¼ fnþ1Fn ð5Þ

allows to define the relative gradient fnþ1 as

fnþ1 ¼
oxnþ1

oxn
¼ Fnþ1F�1

n ¼ 1þ $xn un: ð6Þ

Depending on the formulation used, it may be found more con-
venient to use the inverse of the relative deformation gradient f�1

nþ1

that can be computed simply as

f�1
nþ1 ¼

oxn

oxnþ1
¼ 1� $xn un; ð7Þ

where expression (7) can be easily obtained from (4).
Total Lagrangian Formulation: From the decomposition (2) the

trial elastic part of the deformation gradient can be computed as

Fe trial
nþ1 ¼ Fnþ1Fp

n
�1 ð8Þ

representing the point of departure of the algorithm. Performing the
spectral decomposition of the elastic right Cauchy–Green tensor Ce

we have:

Ce trial
nþ1 ¼ Fe trial

nþ1

� �T
Fe trial

nþ1

� �
¼ Ue trial

nþ1

� �2
¼
X3

i¼1

ktrial
i

� �2

nþ1
ri � ri; ð9Þ

where ktrial
i and ri are the eigenvalues and eigenvectors, respectively,

of the elastic right stretch tensor Ue trial
nþ1 . This allows to introduce an

elastic logarithmic strain measure over the intermediate configura-
tion with components of the form

ee trial
i ¼ ln ktrial

i

� �
ð10Þ
f
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Fig. 2. Configurations considered in the integration of the constitutive model.
and a conjugated stress measure O, that can be split in volumetric
and deviatoric components:

Otrial
nþ1 ¼ K lnðJÞ1þ 2ldev ee trial

nþ1

� �
¼ p1þ otrial: ð11Þ

Using the standard radial return algorithm for J2ðoÞ plasticity, the up-
dated internal variables ðFp

nþ1
�1
; ep

nþ1Þ can be computed. The stress
tensor O and the second Piola–Kirchhoff stress tensor referred to
the intermediate configuration S, are related through the elastic
part of the right stretch tensor Ue:

S ¼ ðUeÞ�1OðUeÞ�1
: ð12Þ

It can be seen in Fig. 2 that to obtain a stress measure over the ori-
ginal configuration a plastic pull back transformation is necessary:

S ¼ ðFpÞ�1SðFpÞ�T
: ð13Þ

This stress measure can be used to write the weak form of the
momentum equations as

dP ¼
Z

X0

½dEGL : S�dX0 þ dPext ¼ 0; ð14Þ

where EGL is the Green–Lagrange strain tensor:

EGL ¼
1
2
ðFTF� 1Þ: ð15Þ

Updated Lagrangian Formulation: Again, the point of departure is the
multiplicative decomposition of the deformation gradient (2) and
the chain rule in (5) that allows to write the trial elastic component
as

Fe trial
nþ1 ¼ fnþ1Fe

n: ð16Þ

For the ULF it is more convenient to use a spatial strain measure.
The last equation allows to define the elastic Finger tensor, to be
used as internal variable, as

be
nþ1

�1
� �trial

¼ f�T
nþ1 be

n

� ��1
f�1

nþ1 ð17Þ

and the corresponding elastic Almansi strain tensor:

ee trial
nþ1 ¼

1
2

1� be
nþ1

�1
� �trial

� �
: ð18Þ

Assuming, in this case a linear relation between the Kirchhoff stress
tensor and the elastic Almansi strain tensor (which for metals is
fully justified), we can write

strial
nþ1 ¼ K tr ee trial

nþ1

� 	
1þ 2ldev ee trial

nþ1

� 	
; ð19Þ

where the elastic deviatoric strains are dev ee
nþ1

� 	
¼ � 1

2 dev be
nþ1

�1
h i

,
that together with (19) allow to write the trial deviatoric part of the
Kirchhoff stress tensor as

strial
nþ1 ¼ �ldev be

nþ1
�1

� �trial
� �

: ð20Þ

The simplicity of J2 plasticity allows to consider a classical radial
return algorithm to obtain the corrected stresses and internal vari-

ables be
nþ1

�1
; ep

nþ1

� �
. Using the Kirchhoff stress tensor, the weak

form of the momentum equations on the present configuration
can now be written as

dP ¼
Z

Xnþ1

de : sdXnþ1 þ dPext ¼ 0; ð21Þ

where e is the usual infinitesimal strain tensor. The main advantage
of the ULF summarized above is the reduction in the number of
operations necessary to integrate the constitutive equation at each
Gauss point. Note that the spectral decomposition of C implicit in



Table 1
Quadratic shape functions over the patch of elements

N1 ¼ fþ ng N2 ¼ nþ gf N3 ¼ gþ fn
N4 ¼ f

2 ðf� 1Þ N5 ¼ n
2 ðn� 1Þ N6 ¼ g

2 ðg� 1Þ
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(9) or the transformations (12) and (13) are avoided. For a typical
problem the ULF requires 30% less of CPU time than the TLF.

Note that for TLF and the ULF the linear relation between elastic
strains and stresses is applied over different stress/strain mea-
sures. Because of that, slight differences in the results obtained
with both formulations are expected. The results obtained with
the TLF will be assumed as the reference values in the numerical
experiments below.
3. Finite element approximation

Low order elements are preferred when large distortion occurs
(large strain range) and also when interaction between bodies
(contact) is involved. Due to the strong and combined non-linear-
ities standard implicit codes may show unsolvable convergence
problems. Because of that most of the commercial finite element
programs intended to metal forming simulations use pseudo static
solutions obtained through the explicit integration of critically
damped dynamic equations. For fully explicit algorithms degrees
of freedom other than displacements, like pressure that have no
associated mass, require special integration algorithms which lead
to a certain loss in efficiency: e.g. it may be necessary a double loop
over each integration point or a smaller time increment [9]. These
aspects are the motivation for the approximation developed next,
an extension of a triangular element presented in [11], that in-
cludes only translational displacement as degrees of freedom.

3.1. Geometry mapping

The point of departure of this approach is a domain discretized
with three-node triangles, but now, in contrast with the standard
displacement approach for linear triangles, the computation of
the strains at each element is made considering the geometry of
the three surrounding elements too.

Fig. 3a shows the patch of four elements defined by the central
element ‘‘C”, where the strains are to be computed, and the three
adjacent elements. The same patch of elements is shown in
Fig. 3b but now in the usual parametric space where, for the central
element, the same nodal positions of the standard linear element
are kept, and the positions occupied by the extra nodes and ele-
ments can be seen.

The patch of four triangular elements is defined by six nodes,
and although it has been formed adding linear triangles, it allows
to define a quadratic interpolation of the geometry. The corre-
sponding shape functions NI can be obtained imposing conditions
NIðnJ;gIÞ ¼ dIJ in a standard way, where dIJ is the Kronecker delta.
These functions have been listed in Table 1 where the coordinate
f ¼ 1� n� g has been included.

The goal of this quadratic interpolation is to define an assumed
strain approach that allows to avoid volumetric locking on one
1

23

4

5
6

C

2 3

1

X1

X2

Axis of
Revolution

4

1 2

6

5 3

G3

G2
G1

η

ξ

a b

Fig. 3. Patch of triangular elements. (a) Spatial coordinates and (b) natural
coordinates.
hand and to improve the in-plane behavior on the other. Denoting
by XI and xI the nodal coordinates in the reference (undeformed)
configuration and in an arbitrary (deformed) configuration, respec-
tively, and with uI the corresponding displacements, we have

X ¼
X6

I¼1

NIXI; ð22aÞ

x ¼
X6

I¼1

NIxI ¼
X6

I¼1

NIðXI þ uIÞ: ð22bÞ

It must be noted that the element results non-conforming, i.e.
the interpolations of the geometry along the common boundary
of two elements leads to different values, because the quadratic
interpolations are independent for each patch as they are written
in terms of different nodes (different patches). As shown in Ref.
[11] this non-conformity has no important consequence and the
element passes the patch test.

A very important aspect of this quadratic interpolation is that
when the deformation gradient is computed at the center of each
side of the central element (points denoted as Gi in Fig. 3b) the con-
tributions of the nodes that do not belong to the two adjacent ele-
ments vanish. Consider for example the mid-point of side 2-3 ðG1Þ
between the central element ‘‘C” and element ‘‘1”, the nodes that
do not belong to any of these elements are nodes 5 and 6. If we
compute the derivatives of the associated shape functions (see
Table 1), we have

N5
;n ¼ n� 1

2
; N5

;g ¼ 0; ð23aÞ

N6
;n ¼ 0; N6

;g ¼ g� 1
2

ð23bÞ

it can be easily seen that these derivatives vanish at the side center
n ¼ g ¼ 1

2

� �
, i.e. the gradient depends only on the position of nodes

1–4. This property makes these points excellent candidates to be
used in an assumed strain approach, because the same deformation
gradient will be computed at these points independently from both
adjacent elements.

3.2. Computation of strains

In the original element [11] the right Cauchy–Green deforma-
tion tensor C computed at mid-side points is linearly interpolated
in the element. In this work, as a multiplicative decomposition of
the deformation gradient F will be used for the constitutive model,
the deformation gradient computed at each side center will be
interpolated instead. Let us see some details:

The Jacobian matrix of the quadratic mapping (22a) at each
mid-side points Gi is

J0
i ¼

oX
on
ðniÞ ¼

X6

I¼1

NI
;nðniÞXI; ð24Þ

Ji ¼
ox
on
ðniÞ ¼

X6

I¼1

NI
;nðniÞxI; ð25Þ

where n ¼ ðn;gÞ, the lower index i means computed at Gi and the
upper index 0 means computed at the original configuration. The
expressions (24) and (25) allow to evaluate the in-plane compo-
nents of the deformation gradient at those points:
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Fi ¼
ox
oX
ðniÞ ¼

ox
on

on

oX
ðniÞ ¼ JiðJ

0
i Þ
�1 ð26aÞ

¼
X6

I¼1

NI
;nðniÞ ðJ0

i Þ
�1xI ð26bÞ

¼
X6

I¼1

NI
;XðniÞxI: ð26cÞ

With the aim to have an efficient finite element, one integration
point per element will be used. For that an average deformation
gradient is defined as

F ¼ 1
V

Z
V

FdV ; ð27Þ

where the integrals are computed numerically using the Gi points as
sampling points. For plane strain problems this leads simply to the
average of the deformation gradients computed on each mid-side
point:

F ¼ 1
3

X3

i¼1

Fi; ð28Þ

while for axisymmetric problems (with X1 ¼ radius and
X1i ¼ X1ðniÞÞ the average deformation gradient results:

F ¼
2p
R

A FX1 dA
2p
R

A X1 dA
¼
P3

i¼1X1iFiP3
j¼1X1j

ð29Þ

than can also be seen as a weighted average, using the radius of
each point X1i as weighting factor. The average gradient F results:

F ¼
P3

i¼1X1i
P6

I¼1NI
;XðniÞxIP3

j¼1X1j

ð30aÞ

¼
X6

I¼1

P3
i¼1NI

;XðniÞX1iP3
j¼1X1j

xI ð30bÞ

¼
X6

I¼1

NI
;XxI: ð30cÞ

If a TLF is used, the last expression shows that it is possible to
obtain weighted Cartesian derivatives of the nodal shape functions
ðNI

;XÞ with respect to the reference configuration. This simplifies
the computation of the average deformation gradient F because
the derivatives ðNI

;XÞ are invariant during the process and can be
computed only once.

The weighted deformation gradient in (30a) includes only the
in-plane components. For plane strain the stretch of a fiber normal
to the plane (direction X3) is simply k3 ¼ 1. For axisymmetric prob-
lems different approaches may be considered as long as the ele-
ment obtained is free from volumetric locking. One possibility is
to use linear approximations on each element of the patch for
the evaluation of the normal stretch at their centers, and to com-
pute a weighted average of these stretches. Good results have been
obtained using the average between the stretch at the central ele-
ment and the average of the stretches in the adjacent elements.
Denoting by

ðk3ÞC the stretch at the central element C computed in standard
form from the coordinates of its three nodes

ðk3ÞC ¼
P3

I¼1LIxI
1P3

I¼1LIXI
1

ð31Þ

ðk3Þ1—3 the average of the stretches computed in the adjacent
elements

ðk3Þ1—3 ¼
1
3

X3

i¼1

P3
I¼1LIxIðiÞ

1P
J¼1LJXJðiÞ

1

; ð32Þ
where LI are the standard linear triangular functions (area coordi-
nates) and xIðiÞ

1 indicates the radius at local node I of adjacent ele-
ment i. Giving values at the center of each element LI n ¼ g ¼ 1

3

� �
the average out-of-plane stretch results:

�k3 ¼
ðk3ÞC þ ðk3Þ1—3

2
ð33aÞ

¼ 1
2

P3
I¼1xI

1P3
I¼1XI

1

þ 1
3

X3

J¼1

P3
K¼1xKðJÞ

1P3
K¼1XKðJÞ

1

 !( )
ð33bÞ

¼
X6

I¼1

MIxI
1; ð33cÞ

where the MI are constants that can be also computed at the begin-
ning of the process.

When the adjacent element to side i is missing (domain bound-
ary), the above expressions can not be applied directly and may be
modified as follows:

� For the computation of the in-plane components of the deforma-
tion gradient on the mid-side point Fi, use the usual expressions
of the constant strain triangle (CST). In the implementation, this
can also be done defining a fictitious position for the inexistent
node ðI þ 3Þ (see Fig. 4)

xIþ3 ¼ xJ þ xK

2
þ xJ þ xK

2
� xI


 �
¼ xJ þ xK � xI ð34Þ

transferring the contributions according to

duIþ3 ¼ duJ þ duK � duI: ð35Þ

Note that these four points ðI; J; I þ 3;KÞ define a parallelogram
with a constant Jacobian matrix that is equal to the Jacobian ma-
trix computed from the three nodes of element C. Note also that
for a side along the axis of symmetry the radius is null and is
then null its contribution to the average gradient.

� For the out-of-plane component, use again the above average
between kC and k1—3, but for the latter averaging include only
the existing adjacent elements (if only two adjacent element
exist, �k3 results from the average between ðk3ÞC and the average
stretch of the two adjacent elements).

In the numerical experiments it has been detected that when an
element has only one adjacent element (two of its sides are part of
the boundary), the gradient averaging alleviates the volumetric
locking but does not eliminate it completely. Because of that,
whenever possible, the nodal connectivities of such elements are
modified automatically within the computational code so that they
have two adjacent elements. Note that in the code, once the three-
node triangular mesh have been input, before any computation the
four-triangle patches must be formed, i.e. the adjacent elements
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have to be detected. It is at this stage when element connectivities
may be modified.

If an ULF is used, the above expressions (30a) and (33a) require
NI
;x and MI to be computed each time the reference configuration is

updated. If the update is performed at every step and the algorithm
for the constitutive model described above is used, it is more con-
venient to compute the inverse of the relative gradient between
the configuration at the previous step ðnÞ and the present configu-
ration ðnþ 1Þ

f�1 ¼ oxn

oxnþ1
¼
X6

I¼1

NI
0xnþ1

xI
n; ð36Þ

where xI
n are the nodal coordinates at the previous step and the

derivatives NI
0xnþ1

are obtained with expressions identical to (30a).
In a similar fashion, using (33a), the relative normal stretch be-
tween both configurations can be obtained.

3.3. B-bar matrix

Once the stresses have been evaluated for any of the two
Lagrangian formulations, the equivalent nodal forces are computed
from the virtual work expression (14) or (21).

3.3.1. Total Lagrangian Formulation
The variation of the Green–Lagrange strains is

dEGL ¼
1
2
ðFTdFþ dFTFÞ ð37Þ

that can be displayed as

d

E11

E22

2E12

E33

2
6664

3
7775 ¼

X6

I¼1

NI
01FT

1

NI
02FT

2

NI
02FT

1 þ NI
01FT

2

�k3½MI; 0�

2
66664

3
77775½duI� ¼ BTLdup; ð38Þ

where Fi is the column i of F and dup includes the virtual displace-
ments of the six nodes in the patch.

Note again that the average derivatives NI
0i and the factors MI

have been computed at the start of the process.

3.3.2. Updated Lagrangian Formulation
The variation of the small strain tensor e is

de ¼ 1
2
ðrxnþ1 duþrT

xnþ1
duÞ ð39Þ

that can be written as

d

e11

e22

2e12

e33

2
6664

3
7775 ¼

X6

I¼1

NI
01 0

0 NI
02

NI
02 NI

01

�k3MI 0

2
66664

3
77775½duI� ¼ BULdup; ð40Þ

where the average derivatives NI
0i and the factors MI have to be

recomputed at each iteration using (30a) and (33a) with current
configuration coordinates.
b c

Fig. 5. Mesh distorsion for finite strain processes. (a) Initial inner angles and (b)
distorsion of the triangular element and inner angles at time n.
4. Adaptive remeshing strategy

An automatic remeshing strategy allows to analyze problems
including large distortions and important changes in the geometry.
It comprises two main aspects that must be considered in detail:
the generation of the new mesh and the transfer of variables be-
tween the old and the new mesh. The latter aspect is particularly
relevant for the history-dependent variables as is the case of the
internal variables of the constitutive model.
4.1. Automatic zone remeshing

Remeshing techniques are intended to avoid large aspect ratios
in order to maintain an adequate approximation level. They gener-
ally imply the replacement of all the elements in the domain of
interest at each remeshing stage. Such a strategy has some draw-
backs, among them: (a) the transfer of variables imply some loss
of information (e.g.: some gradients may be locally smoothed)
(b) normally the new (unstructured) mesh has a larger number
of elements than the original mesh. In order to improve these as-
pects, a possible solution is to remesh only a zone of the domain,
i.e. the part where the element distortion is above a certain thresh-
old. It is then proposed to replace only the most distorted elements
(and the surroundings ones) with new elements of similar size but
with a more regular shape. The most relevant aspects are to estab-
lish an adequate measure of the element distortion and to develop
an algorithm for the selection of the elements to be included in the
zone to be remeshed.

There are different measures of the distortion in triangular ele-
ments. Perhaps the most widely used is to compare the inner an-
gles of the deformed triangle with the inner angles in the
undeformed triangle (see Fig. 5b and c). These ratios will be used
in this work.

The remeshing stage is automatically triggered when the distor-
tion ratio b at any element satisfies:

b ¼min
an

j

a0
j

 !
< dmin; ð41Þ

where a0
j is the original angle at node j and an

j is the angle at node j
at current configuration (step n) (see Fig. 5). In Eq. (41) the maxi-
mum allowable distortion ratio is defined by the parameter dmin.
The elements to be replaced are those than satisfy b < dmax where
dmax is higher than dmin, in this way all the elements that show a cer-
tain degree of distortion will be replaced and not only those that
have arrived to the critical value. Very good results have been ob-
tained using the pair of parameters ½dmin;dmax� ¼ ½1=3;2=3�.

For bidimensional solids the boundary of the zone to be re-
meshed is a closed line. The most important aspects in the defini-
tion of this boundary are

� To distinguish correctly which part of the zone boundary
belongs to the body boundary and which part is an inner bound-
ary. This is important because the nodes in the inner boundary
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must be kept as they also belong to the elements in the non-
remeshed part (see Fig. 6a). Fortunately this is an straightfor-
ward task because the present element formulation requires
the information of the neighbor elements.

� To avoid the existence of loops (see Fig. 6b). To accomplish this,
taking advantage again of the information of each element
neighbors, it is found convenient that if an element satisfies
the condition to be remeshed then all its adjacent elements
are also included in the zone to be remeshed.

� Finally, the element distortions normally lead to the existence of
external boundary segments with lengths quite different from
the uniform side length prescribed for the mesh generation.
When these segments are too long (specially in contact condi-
tions), they should be divided accordingly as the results may
show low precision. When these segments are too short they
should be merged, if not the new mesh will show small ele-
ments (see Fig. 6c) that have a deleterious influence in the crit-
ical time used for explicit time integrators, leading to larger CPU
times.

The generation of the new mesh with the prescribed element
size, including the boundary conditions is performed with the soft-
ware GiD [34] using the batch file options.
4.2. Transfer of variables

The algorithm used for variable transfer between meshes is
based on the original SPR [22,23] and the proposal by Akin [36].
This technique shows an important capability to interpolate vari-
ables accurately from superconvergent points which are normally
coincident with element integration points.
4.2.1. Updated Lagrangian Formulation
If the reference configuration is updated at every step, the inter-

nal variables of the constitutive model are defined over the de-
Modification of segments
defining boundary

After zone remeshing

Body boundary of
the zone to remesh

Inner boundary of
the zone to remesh

Before zone remeshing

a

b c

Fig. 6. Important aspects in the remesh zone definition. (a) Type of boundary
identification; (b) appearance of a possible inner loops and (c) small boundary
segments leading to elements of reduced size.
formed configuration. As a consequence, the internal variables
fep;be�1g can be directly transferred. Alternatively it is possible
to transfer the Kirchhoff stress tensor and to recompute tensor
be�1

from it. This later approach has the advantage that deviatoric
stresses may be scaled after the transfer to satisfy the von-Mises
equivalent stress existent before the transfer.
4.2.2. Total Lagrangian Formulation
The internal variables of the constitutive model are the (scalar)

equivalent plastic strain ep and the inverse of the plastic deforma-
tion gradient Fp�1. The Cartesian components of the latter can not b
interpolated from different Gauss points because Fp�1 is not
unequivocally defined (is not invariant to a rotation R of the inter-
mediate configuration). It is then more convenient to transfer spa-
tial variables that are invariant under a rotation of the intermediate
configuration and we have chosen to transfer the Kirchhoff stress
tensor s. Once the transfer of s is performed it is possible to recover
the internal variables ðFp�1Þ to continue with the elastic plastic pro-
cess. Besides that the new mesh becomes the reference configura-
tion (it is not a TLF any longer) and the deformation gradient is
now computed relative to the remeshed configuration. Then at
every new stage we have F ¼ 1 ¼ FeFp ¼ UeFp, then:

Fp�1 ¼ UeðsÞ: ð42Þ

Note that in this case the plastic deformation gradient includes
a volumetric component associated to the elastic volumetric strain
at the present configuration but this has no consequences in the
simulation.
5. Numerical results

In this section, a set of numerical results obtained with the for-
mulation described above is presented. Solids undergoing large
elasto-plastic strain have been analyzed with special emphasis in
axisymmetric problems.

The element described in Section 3 was implemented in the fi-
nite element code Stampack [32] that uses an explicit integration
of the momentum equations and a penalty formulation for contact.
The pseudo static results obtained with the present formulation
are identified by the acronym TR2D. In all the examples but the
second, present results have been compared with those obtained
with the software Abaqus/Explicit [37] using the enhanced strain
four node quadrilateral with one integration point and hourglass
control (CAX4R).

The first two examples do not use the remeshing strategy an
have been included mainly to compare the results obtained with
both (TLF and ULF) the formulations considered and also to com-
pare the present element with other formulations existing in the
literature and experimental values. In the third example, the reme-
shing strategy is used although it is not strictly necessary and al-
lows to compare results with and without remeshing. In the last
two examples remeshing is mandatory to arrive to the end of the
simulation due to the strong distortion of the mesh. In all the
examples the parameters (distortion limits) considered to control
remeshing were ½dmin; dmax� ¼ ½1=3;2=3�.

All the original configurations of the examples below have four
sides and are amenable to be modelled with regular structured
meshes. This also helps to easily visualize at each stage of the pro-
cess the part of the mesh that has not been remeshed yet. The data
input for the program includes a flag to automatically (or not)
modify connectivities of elements with only one adjacent element.
This modification is performed not only on the original mesh (pro-
vided by the user) but also on the meshes provided by GiD at each
remeshing stage.
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5.1. Elasto-plastic hollow sphere under internal pressure

In this initial, example the elasto-plastic behavior of a thick hol-
low sphere under internal pressure is considered. The inner radius
of the sphere is 0.254 m with a thickness of 0.254 m. Taking ac-
count of global symmetry the upper half of the sphere is only mod-
elled. The material is assumed to be aluminium with mechanical
properties: Young’s modulus E ¼ 38 GPa, Poisson’s ratio m ¼ 0:33,
mass density q ¼ 2672 kg=m3, initial yield stress ry ¼ 27 MPa
and hardening modulus r0y ¼ 270 MPa. The maximum internal
pressure is 35 MPa that leads to a full plastification of the sphere.
The discretization used is shown in Fig. 7a and includes 64
(8 � 4 � 2) triangles. Fig. 7b plots the radial displacement of the
points in the inner (upper curves) and outer (lower curves) sur-
faces. For comparison purposes the plot also includes the results
obtained with three elements in software Abaqus [37]; namely,
(a) the above mentioned CAX4R, (b) CAX4 a fully integrated four
node quadrilateral and (c) CAX3H a linear triangle with constant
pressure. In the first case results are obtained with Abaqus/Explicit
and in the other two with the Abaqus/Standard (implicit) version.

It can be seen that the results provided by the fully integrated
quadrilateral CAX4, although no exactly equal at all points, are
more uniform than those of element TR2D, specially along the in-
ner surface. Besides that the results obtained with element TR2D
are quite better that those obtained with the hybrid triangular ele-
ment CAX3H that shows the improvement of present formulation
over other linear triangles. Also note the rather poor performance
of element CAX4R in this simulation.

5.2. External inversion of a thin-walled tube using a die

This example considers a process that allows to make double
walled tubes through the axial compression of a single-walled tube
against an adequate die (see Fig. 8). This problem, usually simu-
lated as an impact at low speed (see [38,17,39,4] among others),
shows moderately large strains that depend on the opening radius
ðrmÞ of the die. The case considered here was taken from the work
of Rosa et al. [39] where experimental results are also reported.

The material of the tube is aluminium with elastic mechanical
properties: Young’s modulus E ¼ 69 GPa, Poisson’s ratio m ¼ 0:3
and density q ¼ 2700 kg=m3. The plastic behavior is governed by
the J2 model with non-linear isotropic hardening given by
ry ¼ 0:2983� ð28� 10�4 þ epÞ0:086 GPa. The friction coefficient be-
tween the tube and the die is l ¼ 0:1.

The mesh includes 480 ð4� 60� 2Þ triangular elements. The
four rows of elements across the thickness are necessary to capture
p
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θ

a

Fig. 7. Expansion of a hollow sphere. (a) Original geometry and discre
the details of the forming process. Fig. 8 shows the final deformed
geometry and the equivalent plastic strains for the maximum
punch travel of 38 mm. Although the distortions are rather low
the equivalent plastic strain have a maximum value of 0.8. Fig. 9
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plots the driving force versus the displacement of the top platen.
This curve shows a peak of almost 20 kN corresponding to the in-
stant in which the end of the tube has traveled round the curved
part of the die. After that the load increases monotonically until
the end of the simulation. Compared with the experimental results
presented in [39], present results (TR2D) show a good agreement at
the beginning of the simulations and some differences after the
load peak. Compared with the numerical simulations in [39] there
are differences at the first part of the process but they are quite
close for the second half of the punch travel. There is also a very
Table 2
Upsetting of cylindrical billet

Strategy ep
max Time (s)

CAX4R [37] 1.8791 –
TR2D full remeshing 1.8431 13.64
TR2D zone remeshing 1.8471 10.33

Comparison of CPU times and ep between full and zone remeshing using TR2D.
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Fig. 11. Back extrusion of a cylindrical billet. (a) Initial geometry and (b–d) deforme
good agreement with the experimental final deformed geometry
(not shown). The results obtained with both formulations (TLF
and ULF) presented above are almost coincident as can be seen
in the figure.

5.3. Upsetting of a cylindrical billet

This benchmark, defined in Ref. [40], is the forming of a cylin-
drical billet between two rigid plates that is reduced in length by
60%. The problem involves not only large strains but an important
distortion of the mesh, making necessary the application of a reme-
shing scheme. The specimen is 30 mm long with a radius of 10 mm
and is compressed between two flat dies. The material properties
are Young’s modulus E ¼ 200 GPa, Poisson’s ratio m ¼ 0:3 and the
density q ¼ 7833 kg=m3. A linear isotropic hardening is assumed,
with a initial yield stress ry ¼ 700 MPa and a hardening modulus
r0y ¼ 0:3 GPa. A non-slip condition of the billet with the tools is as-
sumed (perfectly rough) that is controlled with a high friction coef-
ficient l ¼ 1:0.
82
m

m

4
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m
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c d

d configurations for increasing punch travels and details of the remeshed zones.
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Only the upper half of the geometry was discretized due to
symmetry with an initially structured mesh including 288
ð12� 12� 2Þ triangular elements. The strong change in geometry
introduces large mesh distortions mainly along the diagonal A0B0

than can be seen in Fig. 10a as the remeshed zone.
Only one remeshing stage has been used leading to a mesh with

320 elements. This number is quite below the 400 elements
obtained when the whole domain is remeshed [33].

The numerical results obtained with the present formulation
have been compared with those obtained with the software Aba-
qus [37] using the same initial mesh with 144 ð12� 12Þ CAX4R ele-
ments and an adaptive meshing scheme instead of remeshing.

The curves of reaction force versus vertical displacement of the
plate are plotted in Fig. 10b for the elements CAX4R and TR2D,
showing practically no differences. Table 2 compares the maxi-
mum values of equivalent plastic strain and the CPU time (since
remeshing until the end of the simulation) obtained with element
TR2D using zone remeshing and full remeshing. The saving in CPU
time in this example is of the order of 25% when zone remeshing is
used instead of full remeshing.
Displacement [mm]

Lo
ad

[

0 20 40 60 80
0

50

100

CAX4R - Abaqus

TR2D
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5.4. Back extrusion of a cylindrical billet

The generation of a tube by back extrusion of a cylindrical billet
leads to plastic flow with a very strong geometry change. The ori-
ginal axisymmetric geometry is shown in Fig. 11a. The tools are as-
sumed rigid and the material of the billet is aluminium with
Young’s modulus E ¼ 38 GPa, Poisson’s ratio m ¼ 0:33 and density
q ¼ 2672 kg=m3. The plastic behavior is defined by an initial yield
stress ry ¼ 27 MPa and linear isotropic hardening with modulus
r0y ¼ 1:1 MPa. The contact with the tools is assumed frictionless.
The original mesh includes 1088 ð16� 34� 2Þ triangular element.
The rigid die is fixed and the punch travels down 82 mm to gener-
ate the tube as shown in Fig. 11. For this simulation 22 remeshing
stages were used with an average of 1060 elements. Fig. 11b–d
shows three different instants of the process when zone remeshing
have been performed. The shadowed elements indicate the new
elements provided by the mesher [34].
Table 3
Back extrusion of a cylindrical billet

Element ep
max Lmax (mm)

CAX4R [37] 4.080 200.20
TR2D (present) 3.841 196.92

Maximum equivalent plastic strain and final tube length.

EPS: 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3 3.2 3.4 3.6 3.8 4

a b
Fig. 12. Back extrusion of a cylindrical billet. Final deformation and contour fill of
the equivalent plastic strain. (a) CAX4R [37] and (b) TR2D (present).
Table 3 shows the maximum equivalent plastic strain and the
final length of the tube for the simulations using the present ap-
proach (TR2D) and using [37] (CAX4R). The differences may be
due to the discretization strategy used by Abaqus that considers
a structured mesh with moving nodes (Adaptive Meshing) every
10 steps. This strategy gives very good results for most part of
the simulation but in the final steps shows a spurious thinning at
the lower part of the tube (see Fig. 12a). Note that the simulation
is frictionless, then no vertical forces can developed along the tube.
This spurious thinning implies an increase in both the maximum
effective plastic strain and in the length of the tube.
4.0 mm

10

20 mm

8 mm

Fig. 14. Forging of a disk with a sinusoidal die. Original and deformed configura-
tions for different punch travels.

Table 4
Forging of a disk with a sinusoidal die. Maximum equivalent plastic strain and final
disk radius

Element ep
max rmax (mm)

CAX4R [37] 2.625 31.90
TR2D (present) 2.588 31.99
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Fig. 15. Forging of a disk with a sinusoidal die. Final deformation and contour fill of the equivalent plastic strain. (a) CAX4R [37] and (b) TR2D (present).
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Finally, Fig. 13 plots extrusion force versus punch displacement.
The results obtained with element TR2D are quite more uniform
and do not show the initial peak nor the final decay obtained with
element CAX4R. These may be due to the awkward original mesh
used for element Abaqus necessary to accommodate to the impor-
tant shape changes keeping a sort of structured mesh.

5.5. Forging with a sinusoidal die

This last example allows to assess the element behavior in forg-
ing problems involving complex geometries and an important
material flow during the deformation process. The sinusoidal
geometry of the upper die considerable restricts the plastic flow
causing high mesh distortions and making mandatory a remeshing
strategy to carry out the analysis.

The problem (see left part of Fig. 14) consists of a rigid die and a
deformable disk 10 mm thick with of radius of 20 mm. The die has
a sinusoidal cross sectional shape with an amplitude of 5 mm and a
period of 10 mm. The disk is made of steel with Young’s modulus
E ¼ 200 GPa, Poisson’s ratio m ¼ 0:3, density of q ¼ 7800 kg=m3

and linear isotropic hardening defined by an initial yield stress of
ry ¼ 100 MPa and a hardening modulus of r0y ¼ 300 MPa. The die
moves vertically with a constant velocity of 2 m/s until a total dis-
placement of 7.6 mm.

The lower face of the disk is constrained in the vertical direction
and the friction with the lubricated tools is disregarded. The disk
has been discretized with 800 ð10� 40� 2Þ triangular elements
(451 nodes). Six remeshing stages were used in the analysis with
an average of 850 elements. Table 4 shows two representative re-
sults using the present element and those obtained with program
Abaqus [37] using element CAX4R with adaptive remeshing every
5 steps of 6795 total steps. The results obtained are very similar
but it may be noted that the mesh used in Abaqus is much finer
including 1152 quadrilateral elements and 1261 nodes. The right
part of Fig. 15 shows the final deformed mesh of the disk and the
contours of equivalent plastic strains.
6. Conclusions

A triangular finite element for the simulation of bidimensional
(axisymmetric) solids has been presented. The element is adequate
for industrial applications including large strains and important
geometrical distortions. The element geometry is defined by three
nodes with translational degrees of freedom only and for the com-
putation of the strains (deformation gradient) it is also resorted to
the geometry of the adjacent elements. The formulation developed
falls into assumed strain type approaches or F-bar type. The defor-
mation gradient at each element is computed through a weighted
average of the deformation gradients computed at each mid-side of
the element using a quadratic interpolation of the geometry over
the element and the neighbor ones. The computational implemen-
tation of the element is simple and, due the low interpolation order
including only displacement degrees of freedom, has advantages in
problems involving contact, adaptive remeshing and explicit inte-
gration of the momentum equations.

The element shows a very good behavior in the finite strain
range compared with enhanced strain four node quadrilaterals
and volumetric locking was not detected in elasto-plastic problems
that always includes certain degree of compressibility. The ele-
ment performance is similar to the linear strain triangle but with-
out the distortion sensitivity and contact problems of the latter.

For the examples included (metals with J2 plasticity where the
hypothesis of small elastic strain is reasonable), as expected, the
numerical results do not show remarkable differences between
an Updated Lagrangian Formulation and a Total Lagrangian
Formulation.

The CPU times of the former are approximately 30% less than
the latter due to the important reduction in the number of opera-
tions necessary for the integration of the constitutive model. This
reduction is specially important in the simulation of industrial pro-
cesses that are generally very CPU time demanding.

The strategy developed for the mesh improvement involved
only the zones of the solid where distortions have grown beyond
a certain limit. A simple criterion based on inner angles ratios
has been used to define the zone to be remeshed. This local reme-
shing decreases the loss of information due to transfer of variables,
improves mesh regularity and diminish CPU times. In the simula-
tions there are zones that in part of the process do not deform at
all or that move as a rigid body. A full remeshing is not only unnec-
essary but also non-convenient and inaccurate.

All the examples included are axisymmetric because most of
the metal forming simulations that can be modelled as 2D prob-
lems are of this type. Nevertheless the element and the strategies
developed can be applied to plane strain situations. The idea of
meshing only the most distorted elements and the criteria used
can be immediately extended to 3D problems. In any case a versa-
tile meshing tool that accepts multiple-connected domains and
different restrains on the boundary is necessary.
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