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We present a comprehensive analysis of statistical tools for evaluating tensions in cosmological parameter 
estimates arising from distinct datasets. Focusing on the unresolved Hubble constant (𝐻0) tension, we explore 
the Pantheon Plus + SH0ES (PPS) compilation, which includes low-redshift Cepheid data from the SH0ES 
collaboration, along with the latest release of CMB data from the Planck collaboration, Cosmic Chronometers (CC) 
dataset and the most recent Baryonic Acoustic Oscillation (BAO) datasets. Employing various tension metrics, 
we quantitatively assess the inconsistencies in parameter estimates, emphasizing the importance of capturing 
multidimensional tensions. Our results reveal substantial tension between PPS and Planck 2018 datasets and 
moderate tension between the BAO data sets and all other datasets. We highlight the importance of adopting 
these metrics to enhance the precision of future cosmological analyses and facilitate the resolution of existing 
tensions.
1. Introduction

In the past twenty years, the amount and precision of cosmologi-

cal data has increased significantly. As a result, stringent constraints 
were established for the cosmological parameters such as the baryon 
and dark matter density parameters, the Hubble constant, and others. 
On the other hand, it is well known that the predictions of the standard 
cosmological model are in agreement with the majority of the observa-

tions. However, there are tensions between the values of some of the 
cosmological parameters obtained with different datasets. These dis-

crepancies remain an open question for cosmologists and are usually 
used as a motivation for studying alternative cosmological models. One 
of the most important unsolved issues is the so-called 𝐻0 tension: the 
value of the current Hubble parameter 𝐻0 that has been obtained using 
data from the Cosmic Microwave Background (CMB) assuming a stan-

dard cosmological model [22] is not in agreement with the one inferred 
in a model-independent way, with data from type Ia supernovae and 
Cepheids [27]. This issue has been extensively discussed in the litera-
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ture but there is no agreement within the community about the source 
of the discrepancy [10,26,28,32]. Another issue is the one called 𝑆8 ten-

sion, namely, the difference between the estimation of this parameter 

(defined as 𝑆8 = 𝜎8

(
Ω𝑚

3

)0.5
) from CMB and BAO data with the one ob-

tained from weak lensing and galaxy clustering data [13,1]. Hence, the 
ability to quantify differences in the estimation of cosmological param-

eters when different datasets are considered is essential for the success 
of present and future research in Cosmology.

Given two posterior distributions obtained from two different 
datasets A and B, the most common method to study statistical ten-

sion is to evaluate the one-dimensional marginalization of the posterior 
distributions. A rule of thumb formula is introduced in [16] to measure 
the discrepancy, expressed in terms of the number of standard devia-

tions 𝜎, between parameter estimations 𝜃 derived from distinct datasets. 
The formulation is as follows:

𝑁𝜃 =
|𝜇𝐴 − 𝜇𝐵|√
𝜎2
𝐴
+ 𝜎2

𝐵

, (1)
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where the means 𝜇𝐴∕𝐵 and the variances 𝜎𝐴∕𝐵 correspond to the ones 
of the posteriors obtained from each dataset. However, this method car-

ries some problems. For instance, marginalization can hide tensions that 
can only be seen in higher dimensions. This is caused by the fact that 
marginalization over some of the parameters necessarily implies a loss 
of information. Moreover, the number of dimensions of the problem also 
affects the inferred tension. The significance of the discrepancy in the 
parameter estimations from the two experiments depends on the num-

ber of shared parameters effectively constrained by both experiments. 
Therefore, a variety of methods have been developed to determine the 
consistency between the posterior distributions that are obtained from 
different datasets. For example, different tension metrics that quantify 
this problem in the whole parameter space at once have been studied 
in [24] and [23]. In this work, we focus on a particular type of met-

rics, namely the ones that are based on the posterior distributions, to 
study tensions between different data sets.1 We analyze the tension in 
the most recently released Pantheon Plus + SH0ES (PPS) [29] with three 
different datasets: the CMB Planck 2018 release (Planck18), Baryonic 
Acoustic Oscillation (BAO) BOSS and eBOSS most recent datasets, and 
Cosmic Chronometers data compilation (CC). Although the tension be-

tween PPS and Planck18 datasets may be familiar to the reader, the 
tension between CC and PPS has not been studied in detail, despite be-

ing mentioned in [18]. Since CC data only contains information about 
the Hubble parameter, a non-trivial tension in the comparison between 
PPS and CC may point to a tension in the Hubble constant at the back-

ground level, providing new insights into the study of the 𝐻0 tension.

This work is organized as follows: in Section 2 we describe the ten-

sion metrics that we apply to the different datasets, while in Section 3 we 
present the results of the statistical analyses that show inconsistencies in 
the obtained confidence intervals of some parameters. In Section 4 we 
show the amount of inconsistency that we obtain applying the method 
proposed in this article, that is, from the metrics described in Section 2

and compare it with the one inferred from the rule of thumb. We also 
discuss these results in light of the interpretation of what each metric 
is quantifying. Finally, in Section 5 we present the conclusions of our 
work.

2. Tension metrics

In this section we describe the different metrics that have been intro-

duced in [24,23]. We recall the Bayes formula that defines the posterior 
distribution

𝑃 (𝜃|𝐷) = (𝐷|𝜃) ⋅Π(𝜃)
𝜀(𝐷)

, (2)

where (𝐷|𝜃) is the likelihood of the data D given the parameters 
𝜃, Π(𝜃) is the prior distribution and 𝜀(𝐷) = ∫ (𝐷|𝜃) ⋅ Π(𝜃) 𝑑𝜃 is the 
Bayesian Evidence.2 We can divide the metrics into two types [16]: the 
ones based on Bayesian Evidence 𝜀(𝐷) and the ones based on the Poste-

rior distributions 𝑃 (𝜃|𝐷). In this work we focus on the last group, which 
was implemented in the Tensiometer repository.3 All the results are pre-

sented in terms of an effective number of standard deviation, 𝑁𝜎 , which 
is defined by [24]

P = Erf(𝑁𝜎∕
√
2) (3)

where 𝑃 corresponds to a probability that will identify agreement or dis-

agreement between the considered datasets while 𝑁𝜎 is the number of 
standard deviations associated to a 1D gaussian distribution with prob-

ability 𝑃 . Moreover, the interpretation of the probability 𝑃 varies with 
the chosen metric and will be clarified for each case in what follows.

1 In [16] these are called parameter-space methods.
2 This expression also depends on the assumed physical model , which is 

fixed in our analysis.
2

3 https://github .com /mraveri /tensiometer
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Fig. 1. An example of a quadratic estimator probability density distribution. In 
red, it is shown the area that represents the probability to exceed, PTE.

2.1. Gaussian metrics

Firstly, we describe tension metrics associated to quadratic estima-

tors, which assumed gaussian posterior distributions. In Fig. 1 we show 
the area that corresponds to the probability to exceed (PTE) certain ob-

served value of the estimator Q, which is noted as 𝑄 ∗. The assigned 
probability to estimate the tension is 𝑃 = 1 − PTE, and the equivalent 
𝑁𝜎 is obtained using eq. (3).

2.1.1. Parameter differences in standard form

This method consists in calculating the statistical difference between 
the inferred parameters given by dataset A (𝜃𝐴) and the ones given by 
dataset B (𝜃𝐵), with the estimator

𝑄DM = (𝜃̂𝐵 − 𝜃̂𝐴)𝑇 (𝐶̂𝐵 + 𝐶̂𝐴)−1(𝜃̂𝐵 − 𝜃̂𝐴) , (4)

where (𝜃̂𝑖) and 𝐶̂𝑖 are the mean and the covariance matrix on the param-

eter space obtained from the statistical analysis with dataset 𝑖 (where 𝑖
correspond to dataset A or B). If both posterior distributions are gaus-

sian, then 𝑄DM follows a 𝜒2
𝜈

distribution with 𝜈 = Rank[ĈB + ĈA] de-

grees of freedom.4 We stress that this metric measures the difference in 
the obtained confidence intervals of all parameters, while also including 
the effect of correlations between them. Therefore, it can be regarded 
as a reasonable generalization of the rule of thumb, with the additional 
benefit that it quantifies all inconsistencies jointly.

2.1.2. Parameter differences in updated form

Firstly introduced in [24], this method consists in calculating the 
statistical difference between the inferred parameters given the dataset 
A (𝜃𝐴) and the ones given by the joint datasets (𝜃𝐴𝐵), with the estimator

𝑄UDM = (𝜃̂𝐴𝐵 − 𝜃̂𝐴)𝑇 (𝐶̂𝐴𝐵 − 𝐶̂𝐴)−1(𝜃̂𝐴𝐵 − 𝜃̂𝐴) , (5)

where 𝐶̂𝐴𝐵 is the covariance matrix obtained from the statistical analy-

sis with the joint datasets. It can be seen that if the inferred parameters 
for both datasets A and A+B are gaussian distributed, 𝑄UDM has a 𝜒2

𝜈

distribution with 𝜈 = rank[(ĈAB − ĈA)] degrees of freedom. As it was 
shown in [24], in order to compute 𝑄UDM it is convenient to break the 
posterior distribution as a sum over the Karhunen–Loéve (KL) modes 
of the covariances involved. With this approach, the 𝑄UDM estimator 
has a 𝜒2 distribution with 𝜈 degrees of freedom, where 𝜈 is the num-

ber of the KL eigenvalues that are taken into account. We can point out 

4 The rank of a matrix A is equal to the dimension of the vector space gener-
ated by the columns of A.

https://github.com/mraveri/tensiometer
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two interesting features of this metric. Firstly, the directions of the pa-

rameter space that shows significant tension can be identified a priori, 
which helps its physical interpretation. Secondly, non-gaussianities are 
mitigated since we can select the most constraining directions in the pa-

rameter space by the two datasets. Finally, it is worth noticing that this 
metric is asymmetric, since eq. (5) is not invariant under the exchange 
of A → B. We stress that this metric answers a different question than 
the other ones, namely, how the results of the statistical analysis using 
a given dataset are updated if a new dataset is added. For this reason, 
in our view it is not recommended to quantify the tension with UDM 
metric if a strong tension has been detected with the other metrics, for 
example, DM.

2.1.3. Goodness-of-fit loss

This estimator measures the difference in the likelihood function 
evaluated at the maximum values of the posterior distribution, consid-

ering the two datasets jointly and separately in the statistical analysis

𝑄DMAP = 2𝑙𝑛𝐴(𝜃𝑝𝐴) + 2𝑙𝑛𝐵(𝜃𝑝𝐵) − 2𝑙𝑛𝐴+𝐵(𝜃𝑝𝐴+𝐵) , (6)

where 𝜃𝐴∕𝐵𝑝 are the Maximum a posteriori (MAP) parameters consider-

ing the dataset A/B. Notice that this statistic does not depend explicitly 
on the covariance of the distribution and only compares the evaluation 
of the likelihood on certain points. In the case in which the likelihood 
and the posterior are gaussian distributed, the estimator 𝑄DMAP has a 
distribution 𝜒2 with Δ𝜈 degrees of freedom, where

Δ𝜈 = 𝜈𝐴 + 𝜈𝐵 − 𝜈𝐴+𝐵 . (7)

In this case, the number of degrees of freedom is defined as

𝜈 =𝑁 − 𝑡𝑟[𝐶−1
Π 𝐶𝑝] , (8)

where 𝑁 is the number of data points and 𝐶Π, 𝐶𝑝 are the covariance 
matrix of the Prior and Posterior distributions, respectively. We empha-

size that this metric provides a good quantification of the difference 
between how well the theoretical predictions can describe both data 
sets jointly with respect to the same situation but considering the two 
data sets separately. Therefore, it is a nice tool regarding how the data 
fit the theoretical prediction but does not give a good estimate of the 
inconsistency between parameters.

2.2. Non gaussian metrics: Exact Parameter Shift

This method is based on the computation of the parameter difference 
probability density 𝑃 (Δ𝜃), where Δ𝜃 = 𝜃𝐴−𝜃𝐵 is the difference between 
the means of the posterior parameters that correspond to datasets 𝐴∕𝐵. 
The general expression for two uncorrelated datasets is given by [24,23]

𝑃 (Δ𝜃) = ∫ 𝑃𝐴(𝜃)𝑃𝐵(𝜃 −Δ𝜃)𝑑𝜃 , (9)

which is analogous to the expression of the cross-correlation function in 
signal processing. The statistical significance of the shift is calculated by 
summing over all the values of 𝑃 (Δ𝜃) over the isocontour corresponding 
to no shift Δ𝜃 = 0:

Δ= ∫
𝑃 (Δ𝜃)>𝑃 (0)

𝑃 (Δ𝜃)𝑑Δ𝜃. (10)

Here the assigned probability to identify the tension is 𝑃 = Δ and the 
equivalent 𝑁𝜎 is calculated inverting eq. (3). Although it may look like 
the evaluation of the last equation is straightforward, it is particularly 
difficult when the parameter space is high dimensional. Taking the dif-

ference between the samples of the two MCMC chains as it was described 
in [25], we can generate the chain of the parameter difference, which 
is an estimation of the convolution integral in eq. (9). Finally, the inte-

gration in eq. (10) can be accomplished using Kernel Density Estimation 
3

(KDE) methods. This method does not assume a particular form of the 
Physics Letters B 855 (2024) 138844

Table 1

Flat priors on the three cosmological parameters of the 
standard model used for all analyses in this work. Ω𝑚 and 
𝐻0 are derived parameters in Planck18, while the same 
applies to 𝜔𝑏 in BAO.

Parameter Ω𝑚 𝐻0 𝜔𝑏

Prior range [0.1 , 0.9] [20 , 100] [4 × 10−4, 0.3]

posterior distribution. This metric measures the discrepancy directly 
from the chains of the parameter difference defined above. Therefore, 
like 𝑄𝐷𝑀 , it quantifies the tension directly from the outputs of the 
MCMC process. However, in the case that the isocontour of 𝑃 (Δ𝜃 = 0)
is far from the maximum of 𝑃 (Δ𝜃), the output of the metric is difficult 
to compute.

Next, we point out some final observations about the metrics de-

scribed before. As it was shown in eq. (4), DM metric quantifies the 
difference between the parameters obtained from datasets A and B sepa-

rately, weighted by the sum of their covariance matrices as it was shown 
in eq. (6). Furthermore, DMAP metric quantifies the difference between 
the fit with the joint datasets (A+B) with respect to the ones using the 
datasets separately. Consequently, both metrics quantify different as-

pects of the tension in the parameter space and it is not trivial to compare 
between them. On the other hand, 𝑄𝑈𝐷𝑀 evaluates how the results us-

ing one dataset are updated when including another one. In short, in the 
case of gaussian posteriors, 𝑄𝐷𝑀 and Parameter Shift quantify the dis-

crepancy between inferred parameters directly from the outputs of the 
inference process and therefore should be considered the best metrics 
to quantify discrepancies between parameters.

3. Parameter inferences with different datasets

In this paper, we compute the estimators described in Section 2 for 
different combinations of four cosmological datasets. Firstly, we con-

sider the recently released Pantheon Plus compilation of type Ia super-

novae (SNIa). We note that this release includes the option of using low 
redshift Cepheid data obtained by the SHOES collaboration, which are 
crucial for the calibration of SNIa and therefore for the Hubble tension. 
Therefore, we name this data set as Pantheon Plus + SHOES (PPS). The 
Pantheon Plus compilation consists of 1,701 SNIa at redshifts between 
0.0012 < 𝑧 < 2.26, which are available in [29].5 Secondly, we con-

sider data obtained with the Cosmic Chronometers technique detailed 
in [30,31,19,33,17,20]. Thirdly, we consider the most recent BOSS and 
eBOSS datasets [15,2,3,5,11,7,14,21]. Finally, we use CMB data from 
the latest release of Planck [22] (Planck18).

To estimate the posterior distribution we use the latest available ver-

sion of CLASS [6] and perform a Markov Chain Monte Carlo (MCMC) 
analysis with the latest release of the MontePython software [8,4]. Ta-

ble 1 shows the priors on the shared parameter space6 that are consid-

ered in our analyses. Note that the prior in the physical baryon density 
𝜔𝑏 =Ω𝑏ℎ

2 is only used in the comparison between Planck18 and BAO.

For the CC dataset, the matter density Ω𝑚 and the Hubble parame-

ter 𝐻0 are the free parameters of the model. For PPS, the Supernovae 
absolute magnitude 𝑀𝑎𝑏𝑠 has to be taken into account as a nuisance pa-

rameter. For BAO, we consider (Ω𝑚, 𝐻0, Ω𝑏). Finally, when Planck18 
data is taken into account, all parameters of the standard cosmological 
model, ΛCDM, (𝜔𝑏, 𝜔𝑐𝑑𝑚, 𝜃𝑠, 𝐴𝑠, 𝑛𝑠, 𝜏𝑟𝑒𝑖𝑜) are considered, apart from 
the nuisance parameters of the Planck likelihood. In this case, Ω𝑚 and 
𝐻0 can be obtained as derived parameters of this analysis. Our analysis 
is focused on the comparison of different pairs of the mentioned datasets. 
Fig. 2 shows the results of the statistical analysis performed considering 

5 https://github .com /PantheonPlusSH0ES /DataRelease
6 In Planck18, Ω𝑚 and 𝐻0 are derived parameters, while in BAO the derived 
parameter is 𝜔𝑏.

https://github.com/PantheonPlusSH0ES/DataRelease
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Fig. 2. Results of the statistical analysis for the ΛCDM model using Planck likelihood 2018 with Cosmic Chronometers (left) and with Pantheon Plus + SH0ES (right), 
respectively. The darker and brighter regions correspond to 65% and 95% confidence regions, respectively. The plots in the diagonal show the posterior probability 
density for each of the free parameters of the model.
Planck18/CC and Planck18/PPS datasets jointly and separately.7 It fol-

lows that for Planck18/CC (left) the datasets are in agreement, while 
for Planck18/PPS the tension is considerable large. Besides, it is worth 
noticing that the shared parameter space for all datasets is the Ω𝑚 −𝐻0
plane, except for the pair Planck18/BAO in which the shared parameter 
space is (Ω𝑚, 𝐻0, 𝜔𝑏). The projections of the posterior distributions on 
the shared parameter subspace are shown in Figs. 3, 4, and 5. Finally, 
we point out that the posteriors are gaussian distributions in all cases. 
This is because priors are not informative.

4. Results

Here we present the results of our analysis. The pair of datasets that 
have been compared are Planck/CC, CC/PPS, PPS/BAO, Planck18/PPS 
and Planck18/BAO. Before presenting the results for each pair of 
datasets, we discuss the results in general for all the metrics.

4.1. Discussion for each metric

4.1.1. DM

Here we discuss DM metric in view of all our results. Accord-

ing to eq. (4), the tension for this metric is proportional to the dif-

ference between the means of the posterior distributions, and to the 
inverse of the sum of the covariance matrices. Following this defi-

nition, we encounter two paradigmatic cases: Firstly, the tension be-

tween Planck18/CC presents the lowest tension of all the analyses (as 
it is shown in Fig. 3, the difference between the means of each poste-

rior is negligible). Secondly, the tension between Planck18/PPS is the 
strongest one (the difference between the means is the most important 
one, as it is shown in Fig. 4 (right)). Besides, it is remarkable that DM 
metric indicates a different level of tension with respect to the sum of 
the 1D rule of thumb for all analysis. This is reasonable since the rule of 
thumb does not take into account the correlation between parameters.

7 In the case of Planck18, we do not show the contours corresponding to the 
4

nuisance parameters of the Planck likelihood.
Fig. 3. Results of the statistical analysis for the ΛCDM showing the marginaliza-

tion on the shared plane on the parameter space Ω𝑚−𝐻0 for Planck18+CC. The 
darker and brighter regions correspond to 65% and 95% confidence regions, re-

spectively. The plots in the diagonal show the posterior probability density for 
each of the free parameters of the model.

Finally, we encountered three cases with moderate tension: CC/PPS, 
Planck18/BAO and PPS/BAO.8 Let us briefly discuss the first two cases. 
Although in the 1D projection it seems that CC/PPS presents weaker 
tension than Planck18/BAO, the 2D projection indicates that it is the 
opposite case. The fact that DM metric takes into account the covari-
8 This last case shows weak to moderate tension.
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Fig. 4. Results of the statistical analysis for the ΛCDM showing the marginalization on the shared plane on the parameter space Ω𝑚 −𝐻0. The darker and brighter 
regions correspond to 65% and 95% confidence regions, respectively. The plots in the diagonal show the posterior probability density for each of the free parameters 
of the model.

Fig. 5. Results of the statistical analysis for the ΛCDM showing the marginalization on the shared plane on the parameter space Ω𝑚 − 𝐻0 for BAO+PPS and 
(Ω𝑚, 𝐻0, 𝜔𝑏) for Planck18+BAO. The darker and brighter regions correspond to 65% and 95% confidence regions, respectively. The plots in the diagonal show the 
posterior probability density for each of the free parameters of the model.
ance of the posterior distributions allows to quantify better the tension 
between datasets in moderate cases.

4.1.2. UDM

According to eq. (5), the tension for this metric is proportional to the 
difference between the means of the posterior distributions of one of the 
datasets and the joint analysis, and to the inverse of the difference be-

tween their covariance matrices. As it was discussed before, this metric 
is not symmetric and we expect different results when some dataset is 
updated with another one. In order to gain intuition of UDM results, we 
analyze two relevant cases.

Firstly, we analyze the case of CC/PPS. When CC results are updated 
with PPS, the obtained tension is ∼ 2.4𝜎, while when PPS is updated 
5

with CC the tension is ∼ 4.8𝜎. This can be explained as follows. Accord-
ing to eq. (5), the estimator may indicate higher tension if the difference 
in the means is high or if the difference |𝐶𝐴𝐵 − 𝐶𝐴| is small. In this 
case, the covariance matrices of the posteriors corresponding to PPS 
and PPS+CC are quite similar which makes the estimator 𝑄∗

𝑈𝐷𝑀
and 

the corresponding 𝑁𝜎 higher.

Secondly, we analyze the case of Planck18/PPS. When Planck18 re-

sults are updated with PPS the equivalent 𝑁𝜎 is ∼ 2.3𝜎, while when 
PPS is updated with Planck18 we obtain ∼ 4.6𝜎. Contrary to the case 
of PPS+CC, here the dominant effect on the metric is the difference 
between the means of the compared distributions, rather than the dif-

ference in the covariance matrices, as it was shown in the right panel 
of Fig. 4. We note that in this case, the UDM metric has one effec-

tive degree of freedom. This is because the KL decomposition points 
out that the majority of the variance is condensed in the first eigen-
value.
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4.1.3. DMAP

According to eq. (6), DMAP compares the likelihoods of the two 
datasets separately with the one of the joint analysis, all of them eval-

uated at the maximum of their corresponding posterior distributions. If 
both datasets are independent, we can write eq. (6) as

𝑄DMAP = 2 ln
( 𝐴(𝜃𝑝𝐴) ⋅𝐵(𝜃𝑝𝐵)
𝐴(𝜃𝑝𝐴+𝐵) ⋅𝐵(𝜃𝑝𝐴+𝐵)

)
. (11)

This equation shows that the comparison is between the separate 
likelihoods evaluated at the maxima of their posteriors and the same 
likelihoods evaluated at the maxima of the joint posterior distribution. 
Assuming gaussianity, when 𝜃𝑝𝐴+𝐵 is far from 𝜃𝑝𝐴 or 𝜃𝑝𝐵 , this results in 
a tension on the DMAP metric.

Unlike DM, this metric does not take into account the covariance 
matrix of the distributions but has information on the joint analysis. For 
this reason, both DM and DMAP quantify the tension in different ways 
and their results cannot be compared. However, like DM, this metric 
shows that the strongest tension also corresponds to Planck18/PPS and 
the weakest to Planck18/CC. Finally, since we are using flat uninforma-

tive priors, the effective number of degrees of freedom for all analyses 
is equal to the dimensions of the shared parameter space in all cases.

Also, we discuss two cases of moderate tension: CC/PPS and 
PPS/BAO. To facilitate the discussion, we assume that the posterior 
distribution is equal to the corresponding likelihood and that no rele-

vant information is lost in the marginalization process.9 The left panel 
of Fig. 4 (CC/PPS) shows that the maximum of the joint posterior is 
located in the 2𝜎 contour of the corresponding posteriors obtained con-

sidering only one dataset, and the left panel of Fig. 5 (PPS/BAO) shows 
a similar behavior but this time the maximum of the joint posterior is 
placed in the 1𝜎 contour of the corresponding contours obtained with 
only one dataset. This is in agreement with the results shown in Tables 3

and 5.

4.1.4. Exact Parameter Shift

Here we discuss our results for Exact Parameter Shift. In Fig. 6, we 
show the distribution of 𝑃 (Δ𝜃) for three different levels of tension: 
the Planck18/CC comparison with negligible tension (left), the CC/PPS 
comparison with moderate tension (center) and the Planck18/PPS com-

parison with strong tension (right). Apart from the 1𝜎 and 2𝜎 contours, 
the last two cases show the isocontour that corresponds to 𝑃 (Δ𝜃 = 0).

Besides, we expect that when the distributions are gaussian, the re-

sult of this metric is similar to the one of 𝑄𝐷𝑀 . Indeed, this is the case for 
CC/PPS, Planck18/BAO, Planck18/CC and PPS/BAO. It is particularly 
relevant the tension between Planck18/PPS, in which Exact Parameter 
Shift gives an infinite tension. Although this result may be uncomfort-

able, it can be explained as follows: there is no isocontour of 𝑃 (Δ𝜃) that 
corresponds to 𝑃 (Δ𝜃 = 0) as it was shown in Fig. 6 (right). According to 
eqs. (3) and (10), this implies that Δ = 1 and so the probability is trans-

lated to an infinite number of 𝜎. We also checked that this effect is not 
due to a problem of sampling.

4.2. Comparison between pairs of datasets

In what follows, we describe our results for the tension metrics when 
taking the different datasets in pairs.

4.2.1. Comparison between Planck18 and CC

The comparison between Planck18 and CC shows weak tension (see 
Table 2 and Fig. 3). As we discussed in Subsec. 4.1, in this comparison we 

9 Even in the case of uninformative priors, prior volume effects in the 
marginalization process can lead to a loss of information, as has been discussed 
in [12]. To solve this issue, these authors suggest the use of profile distribu-

tions. However, the latter work also shows that for the ΛCDM model and data 
6

sets similar to the ones used here, our assumption is valid.
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Table 2

Results of the application of different metrics on the datasets of 
Planck18/CC. The results are presented in terms of the proba-

bility P for a 𝜒2
𝜈

distribution with 𝜈 degrees of freedom when it 
corresponds (or 1 −Δ in the case of Exact Parameter Shift) and 
in all cases for the number of standard deviations 𝑁𝜎 .

𝜈 Q* PTE 𝑁𝜎

DM 2 0.54 0.76 0.300

UDMPlanck18→Planck18+CC 2 1.06 0.59 0.541

UDMCC→Planck18+CC 1 0.12 0.73 0.348

DMAP 2 0.63 0.73 0.345

Exact Param. Shift - - 0.83 0.212

Rule of thumb 𝑁Ω𝑚
= 0.280

𝑁𝐻0
= 0.0995

Table 3

Results of the application of different metrics on the datasets 
of CC/PPS. The results are presented in terms of the proba-

bility PTE for a 𝜒2
𝜈

distribution with 𝜈 degrees of freedom 
when it corresponds (or 1 −Δ in the case of Exact Parameter 
Shift) and in all cases for the number of standard deviations 
𝑁𝜎 .

𝜈 Q* PTE 𝑁𝜎

DM 2 10.38 5.57 × 10−3 2.772

UDMCC→CC+PPS 2 8.62 1.35 × 10−2 2.471

UDMPPS→CC+PPS 2 26.58 1.35 × 10−4 4.778

DMAP 2 4.85 8.84 × 10−2 1.704

Exact Param. Shift - - 4.80 × 10−3 2.820

Rule of thumb 𝑁Ω𝑚
= 0.0171

𝑁𝐻0
= 1.899

expect maximum consistency between datasets. It is worth noting that 
in all cases, the tension is higher than the one reported by the rule of 
thumb. This example shows that even in the case of no full consistency, 
the tension is higher when all shared parameter space is considered.

4.2.2. Comparison between PPS and CC

The comparison between PPS and CC is shown in Table 3 and Fig. 4

(left). As we discussed in Subsec. 4.1. DM and Exact Parameter Shift 
match their results as expected. Besides, DMAP metric indicates an 
smaller tension. Finally, note that DM and DMAP indicate moderate ten-

sion.

4.2.3. Comparison between Planck18 and BAO

Comparison between Planck18 and BAO is presented in Table 4 and 
Fig. 5 (right) and shows a weak to moderate tension. Unlike the previous 
analyses, in this case the shared parameter space has three dimensions: 
(Ω𝑚, 𝐻0, 𝜔𝑏). This implies that we cannot visualize the total likelihood 
but only the 2D projections. As expected, DM metric and Exact Param-

eter Shift are in agreement, while DMAP shows a weaker tension than 
the other ones.

4.2.4. Comparison between PPS and BAO

Comparison between PPS and BAO is shown in Table 5 and Fig. 5

(left). In this case, all metrics indicate a moderate tension. The results 
for the DM metric and Exact Parameter Shift are similar, while DMAP 
metric indicates a higher tension than the other ones.

4.2.5. Comparison between PPS and Planck18

Finally, the comparison between PPS and Planck18 is shown in Ta-

ble 6 and Fig. 4 (right). As we discussed in Subsec. 4.1, this is the case 
that shows the strongest tension. For the DM metric, we obtain a tension 
of ∼ 6.4𝜎, which is not far from the estimation obtained from the rule 
of thumb for 𝐻0. The most relevant result of this analysis is the infinite 
number of standard deviations using the Exact Parameter Shift metric, 

which has been already discussed in Subsec. 4.1.
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Fig. 6. Distribution of parameter differences defined in eq. (9), for the datasets Planck18/CC (left), CC/PPS (center) and Planck18/PPS (right). The first two delimited 
contours correspond to 65%, 95% confidence region. On the first figure, the black contour represents the contour that corresponds to 𝑃 (Δ𝜃 = 0). On the last two 
figures, this contour is outside the 95% confidence region.

Table 4

Results of the application of different metrics on the datasets of 
Planck18/BAO. The results are presented in terms of the proba-

bility P for a 𝜒2
𝜈

distribution with 𝜈 degrees of freedom when it 
corresponds (or 1 −Δ in the case of Exact Parameter Shift) and 
in all cases for the number of standard deviations 𝑁𝜎 .

𝜈 Q* PTE 𝑁𝜎

DM 3 4.62 0.20 1.276

UDMPlanck18→Planck18+BAO 3 1.45 0.69 0.395

UDMBAO→Planck18+BAO 1 0.21 0.65 0.460

DMAP 3 3.28 0.35 0.933

Exact Param. Shift - - 0.14 1.473

Rule of thumb 𝑁Ω𝑚
= 0.767

𝑁𝐻0
= 2.041

𝑁𝜔𝑏
= 1.847

Table 5

Results of the application of different metrics on the datasets 
of PPS/BAO. The results are presented in terms of the proba-

bility P for a 𝜒2
𝜈

distribution with 𝜈 degrees of freedom when 
it corresponds (or 1 −Δ in the case of Exact Parameter Shift) 
and in all cases for the number of standard deviations 𝑁𝜎 .

𝜈 Q* PTE 𝑁𝜎

DM 2 1.80 0.41 0.829

UDMBAO→PPS+BAO 2 2.32 0.314 1.007

UDMPPS→PPS+BAO 2 2.52 0.284 1.072

DMAP 2 1.55 0.460 0.739

Exact Parameter Shift - - 0.311 1.014

Rule of thumb 𝑁Ω𝑚
= 1.339

𝑁𝐻0
= 0.434

Table 6

Results of the application of different metrics on the datasets of 
Planck18/PPS. The results are presented in terms of the proba-

bility P for a 𝜒2
𝜈

distribution with 𝜈 degrees of freedom when it 
corresponds (or 1 −Δ in the case of Exact Parameter Shift) and 
in all cases for the number of standard deviations 𝑁𝜎 .

𝜈 Q* PTE 𝑁𝜎

DM 2 45.44 1.36 × 10−10 6.420

UDMPlanck18→Planck18+PPS 1 5.36 2.06 × 10−2 2.316

UDMPPS→Planck18+PPS 1 21.34 3.84 × 10−6 4.620

DMAP 2 21.23 2.46 × 10−5 4.218

Exact Parameter Shift - - 0 ∞

Rule of thumb 𝑁Ω𝑚
= 0.942

𝑁𝐻 = 6.093

5. Summary and conclusions

In this work, we discuss the importance of using tension metrics to 
determine tensions between different datasets. We show that the differ-

ent metrics analyzed here can quantify the tension more precisely than 
the widely applied Rule of Thumb.

Among the metrics used, three of them (i.e., DM, DMAP, Exact Pa-

rameter Shift) quantify the difference between the inferred parameters 
while the other one (UDM) measures how much one dataset updates 
the results of another when added to the statistical analysis. Also, we 
discuss some implementation details; for example, some computational 
difficulties appeared when computing the Exact Parameter Shift while 
analyzing the tension between Planck18 and PPS.

Our results show two extreme cases: i) a very good agreement be-

tween CC and Planck18, and ii) a strong tension between PPS and 
Planck18. We also find three intermediate cases with moderate tension 
(BAO and Planck18; BAO and CC; BAO and PPS). These moderate ten-

sions were not pointed out nor quantified before. Therefore, our analyses 
show that the tension metrics are excellent tools for quantifying moder-

ate tension between distinct data sets. With the availability of new data 
in the near future, it is expected that the errors will be reduced, and the 
posterior contours will be narrower, potentially increasing the tension 
between datasets.

Applying the tension metrics that we have analyzed here, allows us 
to perform a detailed and precise analysis of the tension between dif-

ferent datasets, including also the correlation between parameters. We 
emphasize that the use of tension metrics determines the tension be-

tween distinct datasets in the plane of shared parameters rather than 
the tension in a single parameter as in the case of the rule of thumb. We 
expect that the use of these metrics will become relevant for the anal-

ysis of future datasets. For example, some of these metrics have been 
used to discuss the recently released DESI results [9]. The increase in 
the precision of new results may lead to stronger tensions, which can be 
quantitatively described using tension metrics.

Finally, we discuss which metric is best to quantify the tension be-

tween datasets. To give a final answer, several aspects have to be taken 
into account. Firstly, as it has been pointed out before, UDM metric 
quantifies how a new dataset updates another one, and its results are 
not comparable with the ones of DM/Exact Parameter Shift or DMAP. 
Secondly, although the rest of the metrics indeed quantify the tension 
between independent datasets, DM/Exact Parameter Shift and DMAP 
quantify different aspects of the tension: while DMAP quantifies the dis-

tance between the MAP evaluating the likelihood of the joint posterior 
and the one using the datasets separately, DM quantifies the distance 
between the means of the independent posteriors weighted by their co-

variance matrix. Therefore, in our opinion, DM/Exact Parameter Shift 
answers accurately the question about the tension between independent 
7

0

datasets.
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