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ABSTRACT

The use of information measures for model selection in geophysical models

with subgrid parameterizations is examined. Although the resolved dynami-

cal equations of atmospheric or oceanic global numerical models are well es-

tablished, the development and evaluation of parameterizations that represent

subgrid-scale effects pose a big challenge. For climate studies, the parameters

or parameterizations are usually selected according to a root-mean-square er-

ror criterion, that measures the differences between the model state evolution

and observations along the trajectory. However, inaccurate initial conditions

and systematic model errors contaminate root-mean-square error measures. In

this work, information theory quantifiers, in particular Shannon entropy, sta-

tistical complexity and Jensen-Shannon divergence, are evaluated as measures

of the model dynamics. An ordinal analysis is conducted using the Bandt-

Pompe symbolic data reduction in the signals. The proposed ordinal infor-

mation measures are examined in the two-scale Lorenz’96 system. By com-

paring the two-scale Lorenz’96 system signals with a one-scale Lorenz’96

system with deterministic and stochastic parameterizations, we show that in-

formation measures are able to select the correct model and to distinguish

the parameterizations including the degree of stochasticity that results in the

closest model dynamics to the two-scale Lorenz’96 system.
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1. Introduction37

The numerical models for climate predictions and weather forecasts involve a set of dynamical38

equations which represents the atmospheric or oceanic motions on a grid. Coupled to the re-39

solved dynamical equations of the models, there is a set of parameterizations which represents the40

subgrid-scale physical processes. The model parameterizations are responsible for a large fraction41

of model error and thus for the resultant uncertainty associated to climate predictions (see e.g.42

Stainforth et al. 2005). One major challenge in model development is to decrease model error43

by recovering aspects of the natural system evolution represented by the parameterizations in the44

model. However, the actual dynamics of the system is unknown; limited and sparse observations45

with associated measurement errors is the only source of information of the natural system evo-46

lution. The usual procedure for parameterization development and also for inferring unknown47

parameters is to tune the parameterization or the parameters in order to decrease root-mean-square48

errors between the model integrations and the observations starting from initial conditions that49

are close to the natural system state at a given time. For short times, the model state is close to50

the natural system state, so that model sensitivity should follow natural system sensitivity (Pulido51

2014). However, systematic model errors drift the model state from the natural system trajectory52

for long times (from 5-days); therefore the model and the natural system differ substantially. In53

this context, observed natural system sensitivity is not useful to constrain model sensitivity, and54

root-mean-square errors give limited information for model improvement.55

Data assimilation techniques have been proposed as a method for estimating model parameters56

(Ruiz et al. 2013a; Aksoy 2015) and for model development (Pulido et al. 2016; Lang et al. 2016).57

In a data assimilation system, the model state is recursively pushed towards the observations at58

the analysis times so that one expects that model sensitivity can be constrained from the observed59
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natural system sensitivity. Under the presence of multiple sources of model errors in a realistic60

scenario, the estimation of model parameters with data assimilation techniques compensates not61

only model errors due to the physical process represented in that parameterization but also other62

sources of model errors. For instance, Ruiz and Pulido (2015) show that estimating the parameters63

associated with moist processes in an atmospheric general circulation model compensates not only64

errors from convection but also errors produced by an incorrect representation of boundary layer65

dynamics. Therefore, the estimated parameters are optimal for that particular combination of66

model errors and for that particular point of the model state. In other situations, that estimated set67

of parameters will not represent the natural system sensitivity.68

Klinker and Sardeshmukh (1992) examined the initial tendency errors, the differences between69

model sensitivity and observed sensitivity during the first time step from the initial conditions.70

Rodwell and Palmer (2007) show that systematic initial tendency errors can be useful to assess71

climate models. Errors from different sources should be decoupled at initial times and they should72

be localized close to the source locations. In a multi-scale system, the errors that dominate at initial73

times are produced by fast processes. The model sensitivity feedback interactions associated with74

slow processes are expected to be weak compared with fast processes so that they will not be easily75

captured by initial tendency errors (Rodwell and Palmer 2007).76

The predictability of a dynamical system is quantified by the growth rate of errors as the system77

evolves. For chaotic systems, a small error in the initial conditions grows as the prediction range78

increases. The average long-term exponential separation between two trajectories which initially79

differ by an infinitesimal distance is given by the leading Lyapunov exponent. If the leading Lya-80

punov exponent is positive, the system is chaotic — errors grow with time. The leading Lyapunov81

exponent is a possible measure to quantify the predictability of the dynamical system. There is a82

strong relation between the Shannon entropy and the Lyapunov exponents. For a dynamical sys-83
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tem which has a sufficiently smooth probability distribution the Pesin identity holds, the sum of84

the positive Lyapunov exponents is equal to the Kolmogorov-Sinai entropy (Pesin 1977; Eckmann85

and Ruelle 1985). In this way, the permutation Shannon entropy can be considered as an upper86

bound of the Lyapunov exponents (e.g. Bandt and Pompe 2002). Therefore, entropy is also a87

useful quantity to characterize the predictability in the climate system.88

Leung and North (1990) introduce Shannon entropy as a measure of the uncertainty in a climate89

signal. They examine the similarities between a climate and a communication system. A state90

in the climate system with large entropy would be unpredictable. There are many possible states91

that are equally probable. Majda and Gershgoring (2011) propose to use information theory for92

measuring model fidelity and sensitivity. They use the relative entropy to measure the distance93

between the probability distribution functions (PDFs) of the natural system and of the numerical94

model, assuming that both PDFs are Gaussian. Tirabassi and Massoller (2016) use symbolic time-95

series analysis and mutual lag between time series at different grid points to identify communities96

in climate data, i.e. sets of nodes densely interconnected in the network.97

In the present work, we examine information theory measures as a tool to evaluate numeri-98

cal models. We extend the concepts introduced by Majda and Gershgoring (2011) to the use of99

Jensen–Shannon divergence (Grosse et al. 2002) computed with the ordinal symbolic PDFs. This100

ordinal analysis is conducted using the Bandt and Pompe (2002) symbolic data reduction in the101

signals, in particular, to determine the corresponding ordinal-based quantifiers, such as normalized102

Shannon entropy and statistical complexity. They can be used to distinguish different dynamical103

regimes and to discriminate clearly chaotic from stochastic signals (Rosso et al. 2007, 2012a,b).104

By comparing information measures from time series of variables of a set of imperfect models105

with information measures from observed time series, our aim is to find the imperfect numerical106

model that is closest to the information measures of the natural system.107
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Information measures of the two-scale Lorenz’96 system (Lorenz 1996) are evaluated using108

ordinal symbolic analysis as a function of the “physical” parameters of the system: the constant109

forcing and the interaction coefficient between the slow and fast dynamics. This two-scale system110

is then considered as the natural system evolution, while the numerical imperfect model is the111

one-scale Lorenz’96 (Lorenz 1996). We assume the small-scale processes cannot be represented112

explicitly in this imperfect model, so that the effects of small-scale processes are parameterized113

as a polynomial function which depends on large-scale variables. The information measures from114

ordinal symbolic analysis are used to find the most suitable parameterization of the small-scale115

processes. The information measures of the imperfect model should be as close as possible to116

the information measure of the “natural system”, the two-scale Lorenz’96 system. We evaluate117

whether the measures are suitable for parameter selection, this is, whether parameter changes have118

enough sensitivity in the information measures, so that the optimal parameters could be properly119

inferred from information measures.120

Physical parameterizations in atmospheric or oceanic numerical models represent the subgrid-121

scale physical processes, through functional dependences with the resolved variables. These re-122

solved variables, that the parameterizations depend on, are slow large-scale variables; hence in123

general the models lack from small-scale variability. Palmer (2001) suggested the use of stochas-124

tic parameterizations to account for this lack of variability in the models. There are several works125

in the last decade that show that both weather forecasts and climate predictions appear to benefit126

from stochastic parameterizations. For instance, the ensemble prediction system of the European127

Center for Medium-range Weather Forecasts (ECMWF) uses a stochastic kinetic backscatter algo-128

rithm to improve the skill of ensemble forecasting (Shutts 2005). Convection processes have also129

been proposed to be represented through stochastic parameterizations (Christensen et al. 2015).130

Some climate features, such as the quasi-biennial oscillation, are better represented in models with131
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stochastic parameterizations (Piani et al. 2004; Lott et al. 2012). Wilks (2005) showed that includ-132

ing a stochastic parameterization in the Lorenz’96 system produces improvements compared to133

deterministic parameterizations of both the model climatology and ensemble forecast verification134

measures. Here, we evaluate whether the use of information measures is sensitive to stochastic135

parameterizations and whether some of the noise variance parameters of stochastic parameteriza-136

tions may be constrained by trying to reproduce with the model the information measures from137

the observed time series.138

2. Information measures for characterizing model dynamics139

Chaotic dynamical systems are sensitive to initial conditions. These manifest instability every-140

where in the phase space and lead to non-periodic motion, i.e. chaotic time series (Abarbanel141

1996). They are unpredictable in the long term despite the deterministic character of the temporal142

trajectory. In a system undergoing chaotic motion, two neighboring points in the phase space move143

away exponentially. Let x1(t) and x2(t) be two such points, located within a ball of radius R at time144

t. Further, assume that these two points cannot be resolved within the ball due to observational145

error. At some later time t ′ the distance between the points will typically grow to146

|x1(t
′)−x2(t

′)| ≈ |x1(t)−x2(t)| exp(Λ |t ′− t|), (1)

with Λ > 0 for chaotic dynamics, being Λ the leading Lyapunov exponent. When this distance at147

time t ′ exceeds R, the points become observationally distinguishable. This implies that instability148

reveals some information about the phase-space population that was not available at earlier times149

(Abarbanel 1996). Thus, under the above considerations chaos can be thought as an information150

source.151
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The information content of a system is typically evaluated via a PDF, P, describing the charac-152

teristic behavior of some measurable or observable quantity, generally a time series X (t). Quan-153

tifying the information content of a given observable quantity is therefore largely equivalent to154

characterizing its probability distribution. This is often done with the wide family of measures155

called information theory quantifiers (Gray 1990). We can define information theory quantifiers as156

measures able to characterize relevant properties of the PDF associated with the time series which157

can be generated from observations of a dynamical system or from model integrations.158

a. Ordinal symbolic analysis159

The evaluation of quantifiers derived from information theory, like Shannon entropy and sta-160

tistical complexity, supposes some prior knowledge about the system; specifically, a probability161

distribution associated to the time series under analysis should be provided beforehand. Although162

for a physical quantum system, the concept of probability is uniquely defined; there are several163

ways to define a probability distribution for a dynamical system. The traditional is the histogram,164

the state space is partitioned into bins and by counting the number of times Ni that the trajectories165

of an ensemble pass through the i-bin at a given time, the probability is, in this way, defined as166

pi = Ni/N, where N is the total number of trajectories. This symbolic sequence can be regarded167

to as a non causal coarse-grained description of the time series under consideration.168

An alternative definition is given with time sequences. Suppose we use a sequence of L time169

steps and we label the bins, then in L time steps the trajectory passes through L bins, and we170

can form a symbolic sequence of length L. In the symbolic sequence, each symbol from a finite171

alphabet represents a bin, and the pattern is formed by the sequences of bins, which visits the172

trajectory in the L time steps. Counting the occurrence of each pattern, over the total number of173
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sequences we determine the probability distribution. If we diminish the size of the bins, in the174

limit we can derive from this probability the Kolmogorov-Sinai entropy (Schuster and Just 2006).175

For some dynamical systems, the information measures determined from bin-symbolic analysis176

are sensitive to the way the bins are generated (Bollt et al. 2000). Bandt and Pompe (2002) in-177

troduced a simple and robust symbolic methodology that takes into account time causality of the178

time series —a causal coarse-grained methodology— by comparing neighboring values in a time179

series. In this work, we refer as ordinal symbolic analysis to the Bandt and Pompe methodology.180

The symbolic data are: (i) created by ranking the values of the series; and (ii) defined by reorder-181

ing the embedded data in ascending order, which is equivalent to a phase-space reconstruction182

with embedding dimension (pattern length) D. In this way, the diversity of the ordering symbols183

(patterns) derived from a scalar time series is quantified.184

The appropriated symbolic sequence arises naturally from the time series, and no system-based185

assumptions are needed in Bandt and Pompe methodology. In fact, the necessary “partitions” are186

devised by comparing the order of neighboring relative values rather than by apportioning ampli-187

tudes according to different levels. This technique, as opposed to most of those in current practice,188

takes into account the temporal structure of the time series generated by the physical process under189

consideration. As such, it allows us to uncover important details concerning the ordinal structure190

of the time series (Rosso et al. 2007) and can also yield information about temporal correlation191

(Rosso and Masoller 2009a,b).192

The “ordinal patterns” of order (length) D in the Bandt and Pompe methodology are generated193

by194

(s) 7→
(

xs−(D−1),xs−(D−2), . . . ,xs−1,xs

)

, (2)

which assigns to each time s the D-dimensional vector of values at times s− (D−1), . . .,s−1,s.195

By “ordinal pattern” related to the time (s), we mean the permutation π = (r0,r1, . . . ,rD−1) of196
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[0,1, . . . ,D−1] defined by197

xs−rD−1
≤ xs−rD−2

≤ ·· · ≤ xs−r1
≤ xs−r0

. (3)

In this way the vector defined by (2) is converted into a unique symbol π . We set ri < ri−1 if198

xs−ri
= xs−ri−1

for uniqueness, although ties in samples from continuous distributions have null199

probability.200

Then, the occurrence of each symbolic pattern is counted in the whole time series. The prob-201

ability of each symbol, πi, is the number of occurrences of the pattern over the total number202

of analyzed sequences in the time series. The Bandt and Pompe PDF (BP-PDF) is given by203

P = {p(πi), i = 1, . . . ,D!}, with204

p(πi) =
#{s|s ≤ M− (D−1); (s) is of type πi}

M− (D−1)
, (4)

where # denotes cardinality and M is the time series length.205

In order to illustrate ordinal symbolic analysis, let us consider a simple example: a time se-206

ries with seven (M = 7) values X = {4,7,9,10,6,11,3} and compute the BP-PDF for D = 3.207

In this case, the state space is divided into 3! partitions so that 6 mutually exclusive permuta-208

tion symbols are considered. The triplets (4,7,9) and (7,9,10) represent the permutation pattern209

{012}, since they are in increasing order. On the other hand, (9,10,6) and (6,11,3) correspond210

to the permutation pattern {201} since xt+2 < xt < xt+1, while (10,6,11) has the permutation211

pattern {102} with xt+1 < xt < xt+2. Then, the associated probabilities to the 6 patterns are:212

p({012}) = p({201}) = 2/5; p({102}) = 1/5; p({021}) = p({120}) = p({210}) = 0.213

The existence of an attractor in the D-dimensional phase space is not required in the ordinal214

symbolic analysis. The only condition for the applicability of the method is a very weak stationary215

assumption. For k ≤ D , the probability for xt ≤ xt+k should not depend on t.216
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b. Entropy, statistical complexity and Jensen-Shannon divergence217

Entropy is a basic quantity with multiple field-specific interpretations. For instance, it has been218

associated with disorder, state-space volume, and lack of information (Brissaud 2005). When219

dealing with information content, the Shannon entropy is often considered as the foundational220

and most natural one (Shannon 1948; Shannon and Weaver 1949). It is a positive quantity that221

increases with increasing uncertainty and is additive for independent components of a system.222

From a mathematical point of view, Shannon entropy is the only information measure that satisfies223

the Kinchin axioms (Khinchin 1957).224

Let P = {pi; i = 1, . . . ,N} with ∑N
i=1 pi = 1, be a discrete probability distribution, with N the225

number of possible states of the system under study. The “Shannon” logarithmic information226

measure is defined by227

S[P] = −
N

∑
i=1

pi ln(pi) . (5)

This can be regarded to as a measure of the uncertainty (lack of information) associated to the228

physical process described by P. For instance, if S[P] = Smin = 0, we are in a position to predict229

with complete certainty which of the possible outcomes i, whose probabilities are given by pi,230

will actually take place. Our knowledge of the underlying process described by the probability231

distribution is maximal in this instance. In contrast, our knowledge is minimal for a uniform232

distribution Pe ≡ {pi = 1/N, i = 1, . . . ,N} since every outcome exhibits the same probability of233

occurrence. Thus, the uncertainty is maximal, i.e., S[Pe] = Smax = lnN. In the discrete case, we234

define a “normalized” Shannon entropy, 0 ≤ H ≤ 1, as235

H [P] = S[P]/Smax . (6)

Statistical complexity is often characterized by a complicated dynamics generated from rela-236

tively simple systems. Obviously, if the system itself is already involved enough and is constituted237
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by many different parts, it may clearly support a rather intricate dynamics, but perhaps without238

the emergence of typical characteristic patterns (Kantz et al. 1998). Therefore, a complex system239

does not necessarily generate a complex output. Statistical complexity is therefore related to struc-240

tures hidden in the dynamics, emerging from a system which itself can be much simpler than the241

dynamics it generates (Kantz et al. 1998).242

We follow the original idea for statistical complexity introduced by López-Ruiz et al. (1995).243

A suitable complexity measure should vanish both for completely ordered and for completely244

random systems and it cannot only rely on the concept of information (which are maximal and245

minimal for the above mentioned systems). It can be defined as the product of a measure of246

information and a measure of disequilibrium, i.e. some kind of distance from the equiprobable247

distribution of the accessible states of a system (López-Ruiz et al. 1995; Lamberti et al. 2004).248

The statistical complexity measure to be used here (Lamberti et al. 2004; Rosso et al. 2007) is249

defined through the functional product form250

C [P] = QJS[P,Pe] ·H [P] (7)

of the normalized Shannon entropy H , see (6), and the disequilibrium QJS. It is defined in terms251

of the Jensen-Shannon divergence DJS[P,Pe],252

QJS[P,Pe] = Q0 ·DJS[P,Pe] = Q0 · {S[(P+Pe)/2]−S[P]/2−S[Pe]/2}, (8)

where Q0 is equal to the inverse of the maximum of DJS[P,Pe] which is obtained when one of the253

components of P is one and the remaining are zero. Therefore, the disequilibrium QJS measures254

the normalized distance of the probability distribution of the system under study P and the uniform255

distribution Pe which is the equilibrium PDF.256

For a given value of H , the range of possible C values varies between a minimum Cmin and257

a maximum Cmax , restricting the possible values of the statistical complexity measure (Martı́n258
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et al. 2006). The planar representation entropy-complexity plane, H ×C , is an efficient tool to259

distinguish between the deterministic chaotic and stochastic nature of a time series since the per-260

mutation quantifiers have distinctive behaviors for different types of dynamics (Rosso et al. 2007).261

This tool has also been used for visualization and for a characterization of different dynamical262

regimes when the system parameters vary (Zanin et al. 2012).263

Finally, we consider a measure for model evaluation against the observed time series. A measure264

of the distance between the probabilities from the model and observed time series. This concept265

has been used earlier by Majda and Gershgoring (2011) who called it model fidelity. They use the266

Kullback-Leibler relative entropy to measure the distance between the two probabilities. Arnold et267

al. (2013) evaluated the use of Hellinger distance and Kullback-Leibler distance in the Lorenz’96268

system. The two measures gave similar performance. We use the Jensen-Shannon divergence to269

measure the distance between the probabilities to be coherent with the information theory quanti-270

fiers used in this work and because it is a symmetric positive-definite quantity. The square-root of271

the Jensen-Shannon divergence satisfies metric properties and triangle inequality (Lin 1991).272

Assuming PM and PO are the corresponding BP-PDFs from the model time series and from273

the observed time series respectively, the Jensen-Shannon divergence is defined as a symmetric274

measure of the Kullback-Leibler divergence,275

DJS[PM,PO] = ∑
[

pM
i ln(pM

i /pO
i )+ pO

i ln(pO
i /pM

i )
]

= ∑(pM
i − pO

i ) ln(pM
i /pO

i ), (9)

it vanishes when pM
i = pO

i for all i. It can also be expressed in terms of the Shannon entropy (5):276

DJS[PM,PO] = S[(PM +PO)/2]−S[PM]/2−S[PO]/2 . (10)

To evaluate (10), we determine the probability of the observed time series PO and of the differ-277

ent model time series PM using ordinal symbolic analysis. The Jensen-Shannon divergence is a278

measure of distance between two PDFs, PM and PO, so that a small Jensen-Shannon divergence279
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indicates a model PDF close to the observed PDF. The best model or the optimal parameters are280

the ones whose the time series gives the smallest Jensen-Shannon divergence.281

3. Description of the numerical experiments282

In the numerical experiments, we evaluate the potential of ordinal symbolic analysis to select283

subgrid-scale parameterizations using the integration of the two-scale Lorenz’96 system (Lorenz284

1996) as the natural system evolution. The equations of this system are given by a set of N285

equations of large-scale variables Xn,286

dXn

dt
+Xn−1(Xn−2 −Xn+1)+Xn = F − h c

b

nM/N

∑
j=(M/N)(n−1)+1

Yj ; (11)

where n = 1, . . . ,N; and a set of M equations of small-scale variables Ym, given by287

dYm

dt
+ c b Ym+1(Ym+2 −Ym−1)+ c Ym =

h c

b
Xint[(m−1)/(M/N)]+1 ; (12)

where m = 1, . . . ,M. Note that both sets of equations (Eqs. (11) and (12)) are in a periodic domain,288

that is X0 = XN, X−1 = XN−1 and Y0 =YM , Y1 = YM+1, Y2 =YM+2.289

Equations (11) and (12) are essentially the same but with different scales. They have coupling290

terms between them, the equations of small-scale variables, (12), are forced by the local (closest)291

large-scale variable. The equations of large-scale variables, (11), are forced by the external forcing292

F , and by the averaged small-scale variables which are located around the large-scale variable in293

consideration.294

Lorenz (1996) suggested this simple model as a one-dimensional atmospheric model with two295

distinct time scales in a latitudinal circle with interactions between the two scales and he used296

it to illustrate atmospheric predictability issues. In the experiments, we use the standard set of297

constants: N = 8, M = 256, coupling constant h = 1, time-scale ratio c = 10, and spatial-scale298
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ratio b = 10 (unless stated otherwise). Note that setting h = 0 in (11), we recover the one-scale299

Lorenz’96 system.300

In reality, the atmospheric numerical models cannot represent the small-scale variables associ-301

ated with convection processes, small-scale waves, etc., so that the effects of the small-scale vari-302

ables on the large-scale equations must be parameterized in the numerical models through forcing303

terms with functional dependencies of only the large-scale variables and a set of free parameters.304

Thus, the equations of the imperfect model are305

dXM
n

dt
+XM

n−1(X
M
n−2 −XM

n+1)+XM
n = Gn(X

M
n ,a0, · · · ,aJ) ; (13)

where n = 1, . . . ,N and XM
n represents the variables of the imperfect model. The function306

Gn(X
M
n ,a0, · · · ,aJ) is a parameterization of the small-scale processes and the forcing term, it seeks307

to mimic the right hand side term of (11). The a j are free parameters.308

Two representations of the forcing term are examined in this work: a) a deterministic parame-309

terization given by a polynomial function,310

Gn(X
M
n , a0, · · · ,aJ) =

J

∑
j=0

a j · (XM
n ) j ; (14)

and b) a stochastic parameterization defined in Wilks (2005) by a polynomial function and a311

stochastic component given by realizations of a first-order autoregressive process312

Gn(X
M
n , a0, · · · ,aJ,σ ,φ) =

J

∑
j=0

a j · (XM
n ) j + ηn(t) ; (15)

where313

ηn(t) = φ ηn (t −∆t) + σ (1−φ 2)1/2 νk(t) , (16)

φ is the autoregressive parameter, νk is a realization of a normal distribution with zero mean and314

unit variance, and σ is the standard deviation of the process. Both φ and σ , apart from a j, are free315

parameters.316
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The Lorenz’96 system was integrated using a Runge-Kutta of fourth order, with an integration317

step of δ = 0.001. In what follows the time resolution of the time series or the observational time318

resolution is taken to be δ = 0.05 (this corresponds to observations every 50 timesteps), which319

considering the growth rates of the system, it represents 6 hours in the atmosphere and so it is320

able to capture the instability growth (Lorenz 1996). To avoid spin-up behavior, the state is started321

from a random initial condition and it is integrated by 105 observational times (this corresponds322

to 5 ·106 time steps). The resulting state is used as the initial condition and it is integrated further323

by Nd = 105 observational times (i.e. Nd is the time series length) which are used to compute the324

information measures.325

In order to evaluate the imperfect model, we use an “observed” time series of a single large-326

scale variable from the natural system evolution, the two-scale Lorenz’96 system. That is, we327

assume that the large-scale is the only information observed so that signals from a single large-328

scale variable are used in the ordinal symbolic analysis. The small-scale dynamics is neither329

modeled nor observed, except in the “true” state integration which is conducted with the two-scale330

Lorenz’96 and considered as the natural system trajectory.331

In all the experiments, we use the ordinal symbolic analysis to determine BP-PDFs associated332

with the time series of the dynamical system and then the information quantifiers, normalized333

Shannon entropy (6), statistical complexity (7) and Jensen-Shannon divergence (10), are com-334

puted. The length of the pattern for the ordinal analysis is taken to be D = 6. This gives a total of335

D! = 6! = 720 possible ordinal symbolic patterns, which clearly satisfy the condition Nd ≫ D! for336

robust statistics (Rosso et al. 2007). The choice of the length of the pattern is a compromise deci-337

sion, a longer D gives a more causal and higher resolution PDF, but it requires a longer time series338

for accurate statistics. We took D = 6 as in Rosso et al. (2007); Serinaldi et al. (2014). However,339
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note that because of the short climate time series available, Tirabassi and Massoller (2016) used340

D = 3 for monthly climate time series with meaningful results.341

In a first set of experiments, we explore the two-scale Lorenz’96 system with the information342

quantifiers: Shannon entropy (6) and statistical complexity (7). Different dynamical regimes are343

uncovered as the forcing and the coupling coefficient are varied.344

A second set of experiments focuses on model fidelity, in which we determine the BP-PDFs of345

the observed time series PO and of the modeled time series PM, and so (10) is evaluated. Observed346

and modeled time series are completely independent including the initial condition. They are347

both assumed to be on the attractor of the dynamical system (after the spin-up integration). The348

synthetic observed time series is in the second set of experiments generated with an integration of349

the one-scale Lorenz ’96 system and a set of prescribed parameter values. Then we can evaluate350

the sensitivity of the information quantifiers to the model parameters for integration of the one-351

scale Lorenz ’96 system with different parameter values. In particular, we expect a minimum in the352

Jensen-Shannon divergence when the model parameters are set at the “true” values (the ones used353

to generate the observations). The evaluated parameterizations in this perfect model framework354

are a deterministic parameterization, which consists of a quadratic polynomial function (14), and355

a stochastic parameterization, which consists of a quadratic polynomial function and a first-order356

autoregressive process (15).357

To estimate the optimal parameter values, a genetic algorithm was implemented (Charbonneau358

2002; Pulido et al. 2012). The genetic algorithm is an optimization Monte Carlo method inspired359

in natural selection, in which a population of individuals is evolved and the fitness (cost function)360

of each individual is evaluated. Processes of mutation, crossover and selection are considered361

in the population evolution (see Charbonneau 2002 for further details on the algorithm). The362

genetic algorithm is able to find the global minimum even in the presence of multiple local minima,363
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however it presents slow convergence (Pulido et al. 2012). Therefore, we opted for a combined364

optimization method, the genetic algorithm is applied first, and then the newUOA optimization365

(Powell 2006), using as initial guess parameters the ones estimated with the genetic algorithm. The366

newUOA is an unconstrained minimization algorithm which does not require derivatives. Both, the367

genetic algorithm and newUOA are suitable for control spaces of up to a few hundred dimensions.368

The Jensen-Shannon divergence is used as the minimization function in the optimization method.369

After preliminary experiments, we found out that 5 generations in the genetic algorithm were370

enough to give a well suited initial guess for the newUOA algorithm (i.e. the changes in the371

parameters between generations were smaller than 4%).372

The third set of experiments explores the Jensen-Shannon divergence for imperfect models. In373

this case the observed time series is obtained from a ’nature’ integration of the two-scale Lorenz374

’96 system, and we seek to reproduce the dynamics of the system with integrations of imperfect375

models generated from one-scale Lorenz ’96 systems with deterministic and stochastic parame-376

terizations. From these experiments we determine a set of optimal values using the mentioned377

optimization method for a deterministic and stochastic parameterization that seek to represent the378

small-scale dynamical effects of the two-scale Lorenz ’96 system. These optimal parameter values379

are used in long-term climate prediction experiments to examine whether the optimal parameters380

have a positive impact on climate measures.381

4. Results and discussion382

a. Experiments with the two-scale Lorenz ’96 system383

First, the ordinal symbolic analysis is applied to the integration of what we consider as the nat-384

ural system evolution, the two-scale Lorenz ’96 system. Integrations varying the forcing F were385
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conducted with a resolution of δF = 0.01, and the ordinal symbolic analysis is applied to each386

integration (i.e. time series of the Lorenz ’96 variable X1). Figure 1 shows the information quan-387

tifiers: permutation entropy (H , Fig. 1a), permutation statistical complexity (C , Fig. 1b). From388

Figs. 1a and 1b, four regions with different dynamical regimes are found (which are delimited by389

vertical dotted lines): (i) For small external forcing, 0 ≤ F ≤ 3.75, the system is dissipative and so390

after the spin-up time the entropy goes to zero. (ii) A narrow region, between 3.75< F < 4.5, with391

high permutation entropy and high permutation statistical complexity. (iii) An intermediate region,392

between 5 < F < 12, with small entropy H ≈ 0.2− 0.23 and similar complexity. (iv) Finally a393

region for larger F , F > 13, which has large entropy H > 0.4 but relatively small complexity394

(C < 0.4).395

Figure 1c shows the causal entropy-complexity plane (H ×C ) which combines the entropy and396

statistical complexity measures. In this plane, the statistical complexity has a minimum and max-397

imum value as a function of entropy (Cmin and Cmax respectively), which are the upper and lower398

continuous curves in Fig. 1c, so that all the possible dynamical regimes are limited to the area399

between these curves. The four dynamical regimes can be clearly distinguished in the entropy-400

complexity plane. The dissipative regime is located at the extreme of null entropy and complexity.401

The regime (ii) is represented with gray triangles (with black contours), which corresponds to402

the narrow region between 3.75 < F < 4.5 with large entropy and maximal complexity (at the403

Cmax curve). The quasi-periodic dynamical regime (iii) with low entropy and maximal statistical404

complexity is denoted by the black triangles that are close to the upper curve which represents405

the maximal statistical complexity. The large F chaotic regime (iv) which has large entropy and406

relatively small complexity is represented with gray circles. Since the system is purely determin-407

istic, there are no dynamical regimes in the large entropy region, close to H = 1, which would408

represent a purely stochastic system (Rosso et al. 2007).409
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410

411

Figure 2 shows the time series, resulting from the dynamical regimes obtained from the two-412

scale Lorenz ’96 dynamical system (except the dissipative regime) identified using the information413

quantifiers, for F = 4 (Figure 2a), F = 7 (Figure 2b) and F = 18 (Figure 2c). These represent quasi-414

periodic motion with high entropy, quasi-periodic motion with low entropy and chaotic motion,415

respectively.416

Figure 3 shows the information quantifiers from integrations of the two-scale Lorenz ’96 system417

varying the coupling constant h. The external forcing is fixed to F = 4,6,18. For h → 0 we recover418

the measures for the one-scale Lorenz ’96 system since the two sets of equations, (11) and (12), are419

uncoupled. In that case, the permutation entropy and the permutation statistical complexity scales420

with the forcing. For F = 4, there is a peak of entropy and complexity when the coupling constant421

h is close to 1, which was the regime already found in Fig. 1 with complexity close to Cmax (note422

that in those integrations h = 1). For coupling constants larger than h > 1.2, the large-scale and423

small-scale states are constants (note that the amplitude of oscillations for F = 4 and h = 1 in Fig.424

2a is very small). As we increase F to 6, the large complexity regime is found for larger coupling425

between the two scales, for h between 1.4 and 2. On the other hand, small entropy and complexity426

is found for the F = 18 for coupling constants between 1 and 2. For larger coupling constants, a427

regime with high disordered patterns is found (small complexity and large entropy). For coupling428

constants close to 5, a regime with high statistical complexity appears to emerge for the F = 18 but429

we did not explore integrations for larger coupling constants. Some of the dynamical regimes that430

appear to emerge from the Lorenz ’96 system varying the coupling constant and varying stochastic431

noise will be investigated further in a follow-up work.432

433
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b. Perfect-model experiments434

To evaluate the potential of information quantifiers to distinguish between time series generated435

with different parameterizations, we conducted a so-called twin experiment. We consider the one-436

scale Lorenz ’96 system, (13), with a known parameterization as the natural system evolution to437

generate the observed time series and then we evaluate the information measures for integrations438

of the one-scale Lorenz ’96 system with varying parameters using the hybrid optimization algo-439

rithm, with genetic algorithm and newUOA methods. This is an experiment where the model is440

assumed perfect, and a set of prescribed parameters are used to generate the observations. Then,441

the optimization method is used to estimate the parameters through the differences in the observed442

and modeled time series. In this way, we can evaluate whether the Jensen-Shannon divergence443

measure determined with the ordinal symbolic analysis is able to estimate the “true” parameters.444

The first perfect model experiment uses a deterministic quadratic parameterization, (14) in the445

system (13). The true parameter values are set to at
0 = 17.0, at

1 =−1.20, at
2 = 0.035 (t superscript446

denotes true values). These values are expected to be a representative deterministic parameter-447

ization of the two-scale model (Pulido et al. 2016). In this perfect-model experiment with the448

system (13), there is no constant forcing but a quadratic forcing. The resulting dynamical regime449

from (13) with quadratic forcing (at
0 = 17.0,at

1 = −1.20,at
2 = 0.035) is expected to be like an450

F = 17− 18 constant forcing. The integration with the true parameters is considered as the ob-451

servational time series. The Jensen-Shannon divergence, (10) is minimized through the hybrid452

optimization algorithm which seek for the optimal model parameter values. The symbolic ordinal453

analysis is applied to each model and observational time series to evaluate the Jensen-Shannon454

divergence, (10). The optimal parameter values obtained with the hybrid optimization algorithm455

were a0 = 17.1, a1 = −1.18 and a2 = 0.032. This twin experiment shows that the information456
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measures can be used to determine optimal parameters, the estimated optimal values are very457

close to the true parameter values. In preliminary experiments, we also evaluated the Hellinger458

divergence (e.g. Arnold et al. 2013) as an alternative to Jensen-Shannon divergence. Both distance459

measures performed similarly well, so that we only show the experiments with Jensen-Shannon460

divergence.461

The sensitivity in the Jensen-Shannon divergence to the parameters is shown in Fig. 4 varying462

each of the parameters and the other two parameters are fixed to the optimal values (which were463

obtained with the hybrid optimization method using Jensen-Shannon divergence). The optimal464

parameter is very well defined in the three parameters. The minimum of the Jensen-Shannon di-465

vergence is clearly located at the true parameters. One weak point of the measure is that it presents466

noise, including several local extremes. This affects the convergence speed of optimization meth-467

ods.468

A second perfect-model experiment takes a stochastic parameterization, (15), for the polyno-469

mial coefficients we use the same true values as in the previous experiment, at
0 = 17, at

1 = −1.2,470

at
2 = 0.035 but we now include a noise forcing term with standard deviation σ t = 1. Two op-471

timization experiments with autoregressive parameters φ t = 0 and φ t = 0.984 were conducted.472

These two extreme values were taken by Wilks (2005) to represent serially independent and se-473

rially persistent stochastic forcing, respectively. The resulting optimal parameter values of the474

hybrid optimization algorithm are shown in Table 1. The combined estimation of deterministic475

parameters and the stochastic parameter σ gives rather good estimates. The stochastic parameter476

is slightly underestimated by 10-20% in the two optimization experiments.477

Once the optimal parameters for the stochastic parameterization are estimated, we then evaluate478

the sensitivity of Jensen-Shannon divergence measure with respect to this observational time se-479

ries varying σ values in the model integrations. Figure 5 depicts the Jensen-Shannon divergence480
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as a function of σ parameter for autoregressive parameters of φ t = 0 and φ t = 0.984 (the other481

parameters are fixed to the optimal values that were estimated with the hybrid optimization algo-482

rithm). A rather narrow negative peak is found in Fig. 5 close to the true parameter values. The483

φ t = 0.984 case (Fig. 5b) appears to be better conditioned.484

485

c. Imperfect-model experiments486

The usual procedure to infer unknown parameters of a parameterization scheme in an imper-487

fect, coarse-grained, model is to tune the unknown parameters and to evaluate the response of488

the changes in the parameters on the root-mean-square error, which measures the differences be-489

tween the evolution of some representative variables and the corresponding observed variables (or490

reanalysis data). The optimal parameters are the ones that minimize the root-mean-square error.491

We conducted a similar experiment with synthetic observations but using information measures,492

i.e. Jensen-Shannon divergence, instead of root-mean-square error measures. The advantage of493

the ordinal symbolic analysis is that as it does not depend on the amplitude but on the “shape” of494

the patterns, it is not sensitive to possible systematic model errors. The analysis is performed in a495

sufficiently long trajectory (105 observational times). The probability of all the possible patterns496

is composed by a large number of cases and it is expected to be independent of the initial con-497

dition (the spin-up time is not considered in the statistics). The observed time series corresponds498

to a single variable taken from a model integration of the two-scale Lorenz ’96 system which is499

started from random initial conditions and the spin-up period is removed. The model time series500

is also generated from random initial conditions and integrating the one-scale Lorenz ’96 sys-501

tem. Therefore, the two time series are completely independent—they do not have a common502
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initial condition. In this sense, the Jensen-Shannon divergence is a global measure of the system503

dynamics.504

Since we deal with an imperfect model, which does not represent explicitly the small-scale505

dynamics, the parameter estimation is not a twin experiment in which we know the “true” optimal506

parameters, so that the existence of a single set of optimal parameters is not a priori ensured.507

We conducted two extreme experiments, one with the natural system evolution set for an external508

forcing of F = 7, which results in quasi-periodic motion, and the other for a forcing of F = 18,509

which results in chaotic dynamical behavior. As mentioned, the ordinal symbolic analysis may510

be applied to chaotic and quasi-periodic time series as long as the weak stationary assumption is511

satisfied.512

The hybrid optimization algorithm was applied to the two observed time series. The genetic513

algorithm restricts the search for optimal values to the region delimited by the maximum and514

minimum values stated in Table 2. The parameter limits (maximum and minimum values) of the515

search region were taken according to the values obtained by Pulido et al. (2016). In the case that516

the resulting optimal value of the genetic algorithm is at a boundary of the region, it is an indicative517

that the region is too narrow in that parameter and that the limit value should be changed. The518

estimated optimal values with the hybrid optimization algorithm for F = 7 and F = 18 are also519

shown in Table 2.520

The Jensen-Shannon divergence sensitivity to each of the parameter values for the case F = 7,521

varying one parameter value and fixing the other two to the optimal values which resulted from522

the hybrid optimization algorithm, is shown in Fig. 6. Parameters exhibit strong sensitivity in523

a small region close to the optimal values. These sensitivity experiments are produced after the524

optimization, with independent integrations that are not related to the optimization method. For525

some parameter values, the Lorenz ’96 model presents numerical instabilities. A uniform time526
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series is assigned for these cases and so a delta PDF results, which in turn gives a large Jensen-527

Shannon divergence.528

The sensitivity of the Jensen-Shannon divergence to each of the parameters for the case of529

F = 18 is shown in Fig. 7, while the other two parameters are fixed at the optimal values. The530

parameter a0 exhibits a reasonable sensitivity around the optimal value. On the other hand, a1531

and a2 show several peaks so that they are more difficult to be precisely estimated, however, the532

genetic algorithm is clearly able to find the global minimum even in the presence of these local533

minima (Fig. 7c).534

535

536

As the information quantifiers give useful information on the optimal parameter values of the537

deterministic parameterization, we now turn our attention to stochastic parameterizations for the538

imperfect case. We include the first-order autoregressive process (16) in the parameterization (15),539

and search with the hybrid optimization algorithm for the optimal parameter values including the540

optimal standard deviation σ , (a0, a1, a2, σ ), and again we only explore for two fixed autore-541

gressive parameters φ = 0 and φ = 0.984. The resulting optimal parameter values of the hybrid542

optimization algorithm are shown in Table 2.543

The Jensen-Shannon divergence as a function of the standard deviation is depicted in Fig. 8 for544

the optimal deterministic parameter values (shown in Table 2). For an external forcing of F = 7 a545

smooth function is found with a clear minimum (see Fig. 8a). The minimum is found at σ = 0.32546

for φ = 0. Similar values of the Jensen-Shannon divergence are found at σ = 0.15 for φ = 0.984.547

Both sets of values are suitable for representing the stochastic process that mimics the effects548

of Lorenz’96 small-scale variables. Note that the Jensen-Shannon divergence for the optimal549

σ value is smaller than the one for σ = 0 so that the stochastic parameterization improves the550
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representation of small-scale variables. This is also valid when both deterministic and stochastic551

parameterizations have their own optimal parameters.552

For F = 18 Jensen-Shannon divergence has smaller values than F = 7. This means that the553

parameterization is able to represent better the effects of the small-scale variables for this case due554

to the chaotic dynamics. The divergence depicts a noisy dependence, but a constrained optimal555

range of the standard deviation is still clearly identified from Fig. 8b. There is an optimal range for556

4 < σ < 6 with similar DJS values in which the parameterization is practically indistinguishable.557

Similar Jensen-Shannon divergence values are also found for the φ = 0.984 experiment with with558

a more constrained minimum (better conditioned Jensen-Shannon divergence) at about σ = 2.1.559

To evaluate the information quantifiers as a method for model selection. We conducted an ex-560

periment in which we assume that the model has different parameterizations, changing the order561

of the polynomial function in the deterministic parameterization and for some experiments adding562

the stochastic process (16). A total of eight optimization experiments with different parameteri-563

zations were conducted for an observed time series taken from the two-scale Lorenz ’96 system564

with F = 18. For each parameterization, the set of optimal parameters estimated by the hybrid565

optimization algorithm are stated in Table 3. The square root of Jensen-Shannon divergence for566

the optimal parameters is also shown in the Table. The best parameterization is the one that gives567

the minimal Jensen-Shannon divergence from the observed PDF. The quadratic polynomial pa-568

rameterization is the best deterministic one. Interestingly, the stochastic parameterizations present569

a significantly better performance with this information measure. The higher-order polynomial570

terms are very sensitive to small changes in the variables and parameters and for some parameter571

values they produce numerical instabilities in the Lorenz ’96 model (Pulido et al. 2016). Indeed,572

the optimization experiment with the fourth-order polynomial stochastic parameterization did not573
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converge towards optimal parameter values because of these ubiquitous numerical instabilities (to574

overcome this, careful manual changes in the parameter limit values would be required).575

The forcing given by the parameterizations with optimal parameters for the F = 18 experiments,576

including the quadratic deterministic, and the quadratic stochastic parameterizations with φ = 0577

and with φ = 0.984 are shown in Fig. 9 (Panels (a), (b) and (c) respectively). The forcing given578

by the small-scale variables in the two-scale Lorenz ’96 is also shown in the Figure (gray dots).579

We emphasize, this “true” forcing is only shown as the purpose of evaluation of the optimization580

experiments, but the time series of a single large-scale state variable is the only source of infor-581

mation used in the optimization experiments. The simple polynomial parameterizations with fixed582

standard deviation represent rather well the complex forcing dependencies given by the small-583

scale variable. However, they are obviously unable to represent the dependence of the standard584

deviation with the value of the state variable particularly at the tail (large X values) and with the585

dX/dt > 0 and dX/dt < 0 branches of the forcing, see Crommelin and Vanden-Eijnden (2008);586

Pulido et al. (2016).587

As an independent measure of the climatology of the model with optimal parameters, we use588

the classical histogram PDF. They were computed from the whole integration with the different589

optimal parameter values. Figure 10 shows the histogram PDF for the nature integration for F = 18590

and the ones with the optimal parameters for the quadratic deterministic parameterization (dashed591

line) and for the stochastic parameterizations using φ = 0 (dotted line) and φ = 0.984 (gray line).592

A very good agreement between the true histogram PDF and the model PDF is achieved. The593

stochastic parameterizations give a slightly better agreement to the true histogram PDF.594
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5. Conclusions595

Ordinal symbolic analysis only depends on the repetition of patterns within a time series. If it596

is combined with information measures, they represent a useful framework to evaluate models, in597

particular unresolved processes of multi-scale models. Since ordinal symbolic analysis does not598

depend directly on the state, the quantities can be used for long time intervals (time series) even599

in the presence of model error. The ordinal symbolic analysis is used in this work for long time600

series and it accounts for the model fidelity with strong sensitivity to the parameters of the subgrid601

parameterization which represents the small-scale processes.602

Although stochastic parameterizations appear to give improvements in the atmospheric numeri-603

cal models, the tuning of stochastic parameters represents a challenge. On-line parameter estima-604

tion techniques as Kalman filtering present difficulties estimating these stochastic parameters even605

for small and intermediate systems. DelSole and Yang (2010) show that it is not possible to con-606

strain stochastic parameters with ensemble-based Kalmar filters augmenting the model state with607

the stochastic parameters. Ruiz et al. (2013b) show that a separate adaptive inflation treatment608

is required for the parameter covariance to avoid its collapse. Pulido et al. (2016) show that the609

time variability given by Kalman filtering parameter estimates is not useful to constrain stochastic610

parameters in a subgrid parameterization. In this work, we show that information measures from611

ordinal symbolic analysis are useful for tuning stochastic parameters with promising results.612

This work evaluates the sensitivity of the parameters to the information measures, which is use-613

ful for model selection. Furthermore, for parameter optimization a hybrid optimization technique614

using a genetic and newUOA algorithms was implemented in this work for low dimensional mod-615

els. For some cases, the information measures based on the ordinal symbolic analysis do not give616

smooth dependencies with the parameters. This may be a problem for traditional gradient descent617
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optimization methods. For parameter estimation in high-dimensional models more sophisticated618

optimization techniques suitable for noisy cost functions, like simulated annealing, or stochastic619

gradient descent, are required to minimize the Jensen-Shannon divergence for the probability dis-620

tributions of observations and an imperfect model. The evaluation of optimization techniques in621

high-dimensional models with information measures will be examined in a follow-up work.622

The proposed parameter estimation method offers an alternative framework to methods that623

couple model state to observations like for instance data assimilation. On the other hand, in the624

proposed method the model time series is generated independently of the observed state of the625

system. The model state is assumed to be in its own model attractor (which is not necessarily626

the one from nature). Only partial observation of the system is needed, indeed the observed time627

series may be a single relevant variable or a small set of variables. The information measures could628

be applied to a set of free integrations from different climate models or a set of free integrations629

from a single climate model with different parameterizations or parameters, to evaluate from an630

observed time series, which climate model or parameterization give the most accurate results—the631

closest PDF to the observed PDF.632

This work evaluates the information measures with the Lorenz’96 system, which is a small633

model with 8 – 256 variables. Two major points need to be evaluated with more realistic models,634

the impact of a higher-dimensional state space on the information measures, and the length of the635

time series needed to compute the probability distributions. The length of the time series used in636

this work would represent about 70 years in the atmospheric time scale. It depends on two factors,637

the required time resolution and the length of the pattern used for the ordinal symbolic analysis.638

The time resolution used in this work is related to the time-scale of the resolved large-scale pro-639

cesses, and indeed the used time series corresponds to a large-scale variable. The length of the640

sequence is taken to be six in this work, as used in other applications Sippel et al. (2016); Seri-641
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naldi et al. (2014). However, Tirabassi and Massoller (2016) used three for monthly climate time642

series (which are of limited length) with meaningful results. The way to combine the information643

measures of different variables for high-dimensional problems needs to be explored.644

The information measures can deal with weak observational noise (Rosso et al. 2007), how-645

ever as expected Shannon entropy gives a maximum if the time series is stochastic without646

correlations— completely dominated by white noise. For the cases with strong observational647

noise, the signal may not be useful for analyzing fast processes, but averaging the time series and648

applying ordinal symbolic analysis in longer time steps may give useful information for slower649

physical processes.650
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a0 a1 a2 σ

True Values 17.0 -1.20 0.035 1.0

φT = 0 17.0 -1.17 0.031 0.82

φT = 0.984 17.0 -1.19 0.034 0.88

TABLE 1. Values of the parameters (ai, i degree of the polynomial term and standard deviation, σ ) for the

quadratic stochastic parameterization in the perfect-model experiment. The true values correspond to the values

used to generate the observations. The optimal values obtained with the hybrid optimization algorithm for φ t = 0

and φ t = 0.984 experiments.
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Coef F = 7 F = 18

Min Max Det φ = 0 φ = 0.984 Min Max Det φ = 0 φ = 0.984

a0 2.0 8.0 5.79 5.78 6.97 14.0 19.0 17.7 18.5 17.1

a1 -3.5 0.0 -2.79 -1.76 -2.18 -3.0 0.0 -1.19 -1.28 -1.26

a2 0.0 0.8 0.50 0.22 0.25 0.0 0.5 0.038 0.039 0.049

σ 0.0 2.0 0.32 0.15 0.0 5.0 4.67 2.13

TABLE 2. Values of the parameters (ai, i degree of the polynomial term and σ ). The maximum and minimum

values used to constrain the optimization and the optimal values obtained with the hybrid optimization algorithm

corresponding to the deterministic (Det), φ = 0 and φ = 0.984 experiments.
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a0 a1 a2 a3 a4 σ
√

DJS

Linear 18.36 -0.981 0.3950E-01

Quadratic 17.7 -1.19 0.038 0.3224E-01

Cubic 18.6 -1.50 0.062 0.0002 0.3434E-01

Quartic 18.2 -1.35 0.094 -0.0046 0.00007 0.3309E-01

Linear 19.1 -1.00 3.83 0.3120E-01

Quadratic 18.5 -1.28 0.039 4.67 0.2910E-01

Cubic 17.1 -1.15 0.073 -0.0033 1.49 0.3050E-01

TABLE 3. Estimated values of the parameters (ai, i degree of the polynomial term, and stochastic parameter

σ ) for the deterministic and stochastic parameterizations with φ = 0 in the imperfect-model experiment.
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given set of parameters, and the one from the natural two-scale Lorenz ’96 system evolution for an external
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FIG. 9. Scatterplots of the forcing as a function of the state variable given by the two-scale Lorenz ’96

model (gray dots) and the one given by the deterministic (a) and the stochastic parameterizations, φ = 0 (b) and

φ = 0.984 (c), with optimal parameters (black dots) for the F = 18 case.
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