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Abstract: Antimicrobial resistance has been stated to be a global health problem. In Chile, the use
of antibiotics should be declared by medical prescription, but it is unknown what happens to the
drugs once the treatment ends. Among the possibilities for their disposal are the trash or the drain;
regardless of which scenario arises, antibiotics could accumulate in the environment, stimulating
the emergence of antimicrobial resistance mechanisms and their transfer between microorganisms.
Unfortunately, sometimes wastewater ends up in bodies of water, due to the dragging of elements
by rain, or by the presence of illegal water discharges. In this work, shotgun metagenomics was
used to elucidate the functional and microbial composition of biohazard elements in the bay of
Puerto Varas City, Chile. As expected, a high diversity of microorganisms was found, including
bacterial elements described as human or animal pathogens. Also, a diverse repertory of antimicrobial
resistant genes (ARGs) was detected, which confers mainly resistance to macrolides, beta-lactams,
and tetracyclines, consistent with the families of antibiotics most used in Chile. Similar ARGs
were identified in DNA mobile elements. In addition, we tested the antimicrobial susceptibility in
14 bacterial strains isolated from Llanquihue Lake. This is the first report of the presence of genomic
elements that could constitute a health problem, considering the importance of the interconnection
between environmental, animal, and human health, a concept known as One Health.

Keywords: antimicrobial resistance; metagenomics; DNA mobile elements

1. Introduction

The emergence and spread of antimicrobial resistance (AMR) is a major global health
problem [1] and the World Health Organization (WHO) has classified it as a major threat to
global public health [2]. AMR occurs when microbes, such as bacteria, fungi, viruses, and
parasites, become resistant to the drugs used to treat them [3], hindering or even making it
impossible to treat infections caused by antimicrobial resistant microorganisms [4]. The
widespread implications of AMR extend beyond individual health outcomes to encompass
broader public health and economic challenges [5]. AMR has economic consequences;
its impacts include increased healthcare costs, lost productivity, and overall economic
burden [6], reflected mainly in an increase in healthcare costs to treat persistent microbial
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infection due to extended treatment, and the clinical readmission of unhealed patients [7].
Antimicrobial resistance can lead to increased costs of treating resistant bacterial infections.
However, the economic burden goes beyond healthcare costs and includes reduced income
due to prolonged illness and premature death, affecting both individuals and society [8].
In low- and middle-income countries, where infectious diseases are most prevalent, the
failure of first-line antibiotics has led to increased mortality and costs [9]. In addition,
the economic impact of antimicrobial resistance affects not only humans but also animals,
leading to economic losses in animal husbandry and further straining economies [10].

Many factors contribute to the development and spread of AMR, including the overuse
and misuse of antibiotics in human and animal clinical practice, the indiscriminate use
of antibiotics in animal production as growth promoters, poor sanitation and hygiene of
health care systems, and the improper disposal of waste contaminated with antibiotics
and resistant bacteria [11]. One of the leading causes for the dissemination of AMR is the
presence of antimicrobial resistance genes (ARGs) in environmental reservoirs, such as
lakes, rivers, and oceans [12]. Also, mobile genetic elements (MGEs) play a significant
role in the transference and dispersion of ARGs among bacteria. They facilitate horizontal
gene transfer (HGT) by several mechanisms. MGEs can carry ARGs and transfer them
to other bacteria in genomic elements known as plasmids, contributing to the spread of
ARGs [13]. Understanding the prevalence and distribution of ARGs and MGEs in aquatic
ecosystems is crucial to develop strategies that mitigate their potential impact on public
health. The resistome consists of all ARGs, including those circulating in both pathogenic
and non-pathogenic bacteria [14], and aquatic environments have been already reported as
reservoirs of these ARG elements [15,16].

Given the significant increase in global anthropogenic activities and the growing con-
cern regarding AMR, it becomes imperative to investigate the presence and characteristics
of ARGs and MGEs in the environment. By investigating the presence of ARG elements
in coastal water recovered from Puerto Varas shore, this study aims to shed light on the
prevalence, distribution, and potential implications of antimicrobial resistance in this spe-
cific aquatic environment. This research is essential for developing strategies to mitigate
the spread of antimicrobial resistance and safeguard public health in the region.

Shotgun metagenomics is a powerful tool that allows us to sequence in depth all the DNA
present in a sample, enabling the exploration of the genetic and functional diversity of microbial
communities [17]. In this work, we used shotgun metagenomics to perform a quick description
of the microbial composition of Llanquihue Lake at three points of Puerto Varas city shore,
aiming to characterize the bacterial communities present in the beach and identify the existence
and abundance of ARGs in the environmental DNA due to the important role of these biologic
elements for human health. By assessing the ARGs and identifying the MGEs that may drive
ARG transference, this research will help to understand the hazards associated with the transfer
of AMR from environmental reservoirs to humans. This work constitutes an example of how
metagenomics can be useful in the surveillance of microbiological risks in areas where cities are
in close contact with the natural environment.

2. Results
2.1. Composition of Bacterial Communities That Inhabit Llanquihue Lake

Shotgun metagenomic sequencing and bioinformatic analysis indicate a heterogeneous
taxonomic composition of bacterial-type microorganisms in Llanquihue Lake (Figure 1,
Supplementary Figure S1, and Supplementary Table S1), indicating the taxonomic complexity
associated with the microbial communities that inhabit the lake (Figure 2). Taxonomical
assignation shows that the main phyla presented belong to Proteobacteria, Firmicutes, Bac-
teroidota, Actinobacteriota, and Verrucomicrobiota (Figure 2 and Supplementary Table S1).
In the taxonomic data, the presence of bacterial genera Brucella, Mycoplasma, Mycobacterium,
Microcystis, and Flavobacterium was identified, which harbor bacterial species of interest in
veterinary clinical practice [18]. In addition, we found the presence of bacterial genera be-
longing to intestinal microbiota such as Prevotella, Coprococcus, Bifidobacterium, Faecalibacterium,
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and Ruminococcus [19], with Prevotella copri being one of the most abundant species in sample
PV1.1. At the species level, a total of 3740 species (Supplementary Table S1) were identified,
including environmental water-related species such as Nanopelagicus abundans [20], Fonsi-
bacter ubiquis [21], and Planktophila vernalis [22]. Interestingly, several taxonomical species
related to skin and intestinal infections in humans were detected, mainly belonging to the
genus Campylobacter, Clostridium, Escherichia, Mycobacterium, Salmonella, Shigella, Staphylococcus,
Streptococcus, and Yersinia (Supplementary Figure S1). Although many of these taxonomic
findings are repeated among the analyzed sites, the abundance of each of these taxonomies
varies, indicating that the microbial community structure differs depending on its location
(Figure 1). In specific, some of the bacterial species identified can be related to the presence of
birds (Jeotgalibaca ciconiae, Ornithobacterium rhinotracheale, Pasteurella multocida subsp. multocida,
and Riemerella anatipestifer), while others can be related to the presence of wild fish, marine
birds, and aquaculture activities performed around the lake (Aeromonas salmonicida, Vibrio an-
guillarum, Flavobacterium columnare, Flavobacterium psychrophilum, Renibacterium salmoninarum,
Aliivibrio fischeri, Piscirickettsia salmonis, and Tenacibaculum maritimum). Also, we detected
the presence of DNA sequences related to bacteria genus belonging to soil and vegetation
(Rhizobium, Streptomyces, and Mesorhizobium). Overall, these observations reflect the complex
composition of the microbial community present in Llanquihue Lake.
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PV2.1, PV3.1, and EC samples belongs to “Candidatus Nanopelagicus abundans”, while the orange 
color in PV1B.1 and PV3 represents the taxa Prevotella copri. In PV1B, the olive color represents the 
abundance of the taxa, namely Stenotrophomonas maltophilia. 

Figure 1. Taxonomy abundance at the species level represented as stacked bar plot of each sample
site of Puerto Varas shore. Three points of the Llanquihue lake beach were sampled (PV1, PV2, PV3)
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and one point (EC) 200 m far from the coast was sampled, at surface (SUP) and 5 m submerged
from the water column (5 m). The sampling was repeated one month later (samples namely with .1).
Only PV3 sampling was repeated two months later (namely .2). The color pattern of each bar shows
the microbial community structure, while the amplitude of each color represents the percentage of
abundance of the assigned taxonomy. The blue color that dominates the taxonomical pattern in PV2,
PV2.1, PV3.1, and EC samples belongs to “Candidatus Nanopelagicus abundans”, while the orange
color in PV1B.1 and PV3 represents the taxa Prevotella copri. In PV1B, the olive color represents the
abundance of the taxa, namely Stenotrophomonas maltophilia.
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Figure 2. Phylogenetic tree that reveals the intricate web of relationships among microbial phyla.
Major phyla such as Verrumicrobiota, Fusobacteria, Proteobacteria, Firmicutes, Actinobacteria, and
Bacteroidetes emerge as prominent branches, highlighting their importance in processes such as
fermentation and natural decomposition. The number denotes the bootstrap value of each node
below a confidence value of 90 percent. Non-numbered branches have a bootstrap value above
90 percent.

2.2. Identification of AMR Genes Present on DNA Recovered from Llanquihue Lake

The metagenomic analysis revealed a diverse array of antimicrobial resistance genes
across the environmental DNA recovered from water samples. To report this, we group
the different genes identified according to the antimicrobial resistance family to which
they belong (Figure 3). These included genes that confer resistance to antibiotics com-
monly used in human clinical treatments, such as β-lactams and chloramphenicol, as
well as genes associated with resistance to antibiotics used in agriculture and veterinary
medicine, such as macrolides, tetracyclines, and fluoroquinolones, such as the tet genes,
which confer resistance to tetracyclines by encoding for efflux proteins, or by encoding
ribosomal protection proteins or enzymes that chemically modify tetracycline [23]. An-
other remarkable family of genes with high prevalence was the bla family, which encodes
resistance to beta-lactam antibiotics [24,25], as well as the dfr genes, which encode the
trimethoprim-resistant dihydrofolate reductase, initially found in Escherichia coli, Salmonella
enterica, and Pasteurella multocida [26–28], and cat genes, which encode for chloramphenicol
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acetyltransferase for the inactivation of chloramphenicol by addition of an acyl group [29].
Interestingly, we detected the presence of mcr-7.1 sequences in one sample, which confers
resistance to colistin [30]. Notably, the abundance and composition of ARGs varied spatially
and temporally, with differential presence in areas impacted by anthropogenic activities,
such as rainwater drainage (PV1 area and its time replicates) and public beaches (PV2
and PV3 areas, and its time replicates). Table 1 summarizes the antimicrobial family gene,
a pharmaceutical drug example, and includes an example mechanism that confers the
described resistance.
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Figure 3. AMR gene families identified on environmental DNA recovered from Llanquihue Lake.
The heatmap represents the genes identified and groups them according to their antimicrobial
resistance family.

Table 1. Summary of antibiotic resistance genes found and associated resistance mechanisms.

Family Gen Antibiotic
Family

Drug
Example

Resistance Mechanism
Example

Literature
References

bla Beta-lactams Imipenem Antibiotic Inactivation [24]
cat Phenicols Chloramphenicol Antibiotic Inactivation [29]
cfx Cefamycins Cefoxitin Antibiotic Inactivation [31]
dfr Diaminopyridines Trimethoprim Target modification [26]
erm Macrolides Erythromycin Target modification [32]
inu Lincosamides Clindamicin Antibiotic Inactivation [33]
mef Macrolides Erythromycin Efflux Pump [34]
msr Macrolides Erythromycin Efflux Pump [35]
oqx Multi-Drug Multi-Drug Efflux Pump [36]

tet Tetracyclines Doxicycline
Efflux Pump, Target

Modification, Antibiotic
Inactivation

[23]

vat Streptogramins Virginiamycin Antibiotic Inactivation [37]

2.3. Mobile Genetic Elements Carrying AMR Genes Are Related to Microbial Species of
Health Interest

To further complete the characterization of ARGs present in the Llanquihue lake,
metagenomic assemblies were screened to explore the presence of MGE. The results showed
the presence of mobile elements belonging mainly to the MOBP1 group, classified based
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on their relaxase gene [38], which included elements identified in bacterial host belonging
to genus Clostridiales, Clostridioides, Aeromonas, Vibrio, Enterococcus, Escherichia, Bacteroides,
Parabacteroides, Klebsiella, and Proteus (Supplementary Table S2). However, a significant
portion of the mobile elements were not classified according to a MOB group, such as
pR997, pSX2_LC6, pRIVM_C010068_1, pAFAEC, and pMMCAT_PdisCL06T03, originally
identified in hosts such as Proteus mirabilis, Shewanella sp., Enterobacter hormaechei, Aliar-
cobacter faecis, and Parabacteroides distasonis, respectively. Furthermore, we identified an
overlap between the original host reported for MGE identified in our metagenomic data and
the presence of harmful microbial species (Supplementary Figure S1 and Supplementary
Table S2).

Because MGEs play a significant role in the evolution and adaptation of organisms
by facilitating genetic diversity and horizontal gene transfer, we wondered which genes
were being carried by the plasmid sequences identified. For this purpose, we explore
MGE sequences (Supplementary File S1) to look for the specific presence of ARGs in its
genomic code. As a general trend, we found ARGs conferring resistance to erythromycin,
azithromycin, lincomycin, doxycycline, tetracycline, amoxicillin, ampicillin, mainly en-
coded by the genes mph(E), msr(D), mef (A), erm(B), erm(F), lnu(C), tet(M), tet(W), tet(C),
tet(O), blaSHV-12, and ant(6), respectively. These ARGs were carried in the MGE sequences
(Supplementary File S1) identified initially in bacteria belonging to species such as Lactococ-
cus garvieae, Enterococcus faecalis, Acinetobacter sp., Escherichia coli, and Shewanella sp.

2.4. Antimicrobial Susceptibility Tests of Microbial Isolates Do Not Show the Presence of
Antimicrobial Resistance Patterns

A total of 14 different isolates of enterobacteria were recovered and cultured from water
samples. A total of three isolates belonging to Citrobacter spp., three of Enterobacter spp., six
of E. coli, and one of Rahnella aquatilis, were identified by 16S rRNA PCR, Sanger sequencing,
and BLAST. Six antibiotics were tested on all isolated bacteria, and the inhibition halos
obtained ranged from 15 to 49 mm. No resistant bacterial populations according to CLSI
classification were detected (Table 2).

Table 2. Susceptibility studies on bacteria isolated from Llanquihue Lake.

nº Species

Antibiotic Drug Tested

Cefotaxime Ampicillin
/Sulbactam

Sulfamethoxazole
/Trimethoprim Gentamicin Ciprofloxacin Imipenem

IZD (mm) Int IZD (mm) Int IZD (mm) Int IZD (mm) Int IZD (mm) Int IZD (mm) Int

23 Citrobacter freundii 36.3 ± 0.6 S 19.7 ± 0.6 S 26.0 ± 1.0 S 19.3 ± 0.6 S 39.0 ± 1.0 S 28.3 ± 1.5 S
55 Citrobacter gillenii 36.3 ± 1.5 S 32.0 ± 1.0 S 24.3 ± 0.6 S 24.0 ± 1.0 S 44.3 ± 1.2 S 27.3 ± 0.6 S
62 Citrobacter gillenii 32.7 ± 1.2 S 38.0 ± 2.0 S 22.7 ± 0.6 S 20.7 ± 0.6 S 50.0 ± 1.0 S 37.0 ± 1.7 S
2 Enterobacter absuriae 34.7 ± 2.9 S 29.7 ± 0.6 S 33.3 ± 0.6 S 19.3 ± 1.5 S 36.3 ± 0.6 S 27.3 ± 0.6 S
14 Enterobacter cloacae 35.7 ± 1.2 S 30.0 ± 0.0 S 32.7 ± 1.2 S 19.7 ± 1.2 S 40.3 ± 0.6 S 31.0 ± 1.0 S
39 Enterobacter ludwigii 34.0 ± 1.7 S 32.3 ± 1.2 S 31.3 ± 0.6 S 23.3 ± 0.6 S 47.3 ± 0.6 S 33.0 ± 1.0 S
41 Enterobacter ludwigii 35.0 ± 2.0 S 34.7 ± 0.6 S 35.7 ± 0.6 S 24.0 ± 0.0 S 49.0 ± 1.0 S 35.3 ± 1.2 S
21 Escherichia coli 36.7 ± 0.6 S 19.7 ± 0.6 S 24.7 ± 0.6 S 24.3 ± 0.6 S 34.0 ± 0.0 S 31.0 ± 1.0 S
22 Escherichia coli 35.3 ± 06 S 20.3 ± 1.2 S 26.3 ± 0.6 S 20.3 ± 0.6 S 41.3 ± 1.2 S 31.3 ± 1.5 S
26 Escherichia coli 37.3 ± 0.6 S 23.3 ± 0.6 S 28.3 ± 2.1 S 22.0 ± 1.0 S 38.3 ± 0.0 S 29.3 ± 1.5 S
27 Escherichia coli 34.0 ± 1.0 S 20.0 ± 0.0 S 27.0 ± 1.0 S 19.7 ± 2.1 S 35.3 ± 0.6 S 31.3 ± 1.5 S
28 Escherichia coli 33.0 ± 0.0 S 21.3 ± 1.5 S 27.3 ± 0.6 S 23.7 ± 0.6 S 41.0 ± 1.0 S 32.3 ± 1.5 S
42 Escherichia coli 36.7 ± 1.5 S 20.3 ± 1.2 S 24.7 ± 0.6 S 19.0 ± 1.0 S 38.3 ± 0.6 S 30.3 ± 2.3 S
3 Rahnella aquatilis 25.3 ± 3.1 S 18.7 ± 1.2 S 21.3 ± 1.5 S 15.3 ± 0.6 S 25.3 ± 0.6 S 23.3 ± 0.6 S

ATCC
25922 Escherichia coli 31.3 ± 0.6 ✓ 20.7 ± 0.6 ✓ 24.7 ± 0.6 ✓ 24.3 ± 0.6 ✓ 45.0 ± 0.0 ✓ 34.7 ± 0.6 ✓

IZD: Inhibition Zone Diameter expressed in millimeters mean ± standard deviation, Int: interpretation according
to CLSI breakpoints [39], S: susceptible, ✓: quality control-approved according to values defined by CLSI [39].

3. Discussion

Currently, studies with a One Health perspective, which aim at environmental, human,
and animal surveillance, are needed due to the threat associated with AMR phenomena.
It is crucial to understand that this phenomenon is ubiquitous; therefore, research must
be conducted on humans, animals, and the environment as a whole. Detection of a high
abundance of ARGs in different environments corresponds to one of the first steps required
to counteract this phenomenon. Nevertheless, as cultivable bacteria only represent a small
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fraction of the whole microbiota within a specific environment [40,41], ARG monitoring
mostly depends on studies performed from total DNA extracts [42]. Studies related to
ARGs in a variety of environmental areas have been supported by molecular biology-based
methods and sequencing methods [43–47]. Here, we studied the presence of ARGs in
Llanquihue Lake through metagenome sequencing. As metagenomics is a non-targeted
method for detecting and quantifying taxonomic and functional genetic diversity in each
environment, these strategies allow us to make inferences about the occurrence and pro-
portions of a variety of groups within a complex microbial community [48]. In addition,
metagenomics is one of the most attractive tools for exploring natural environments due to
the large amount of information that can be obtained [49–51].

We could evidence the presence of cfxA6 and cfxA2 genes in Llanquihue Lake, related
to the expression of class A beta lactamases, which have both cephalosporins and penicillins
as substrates. In China, the presence of these genes has been detected in different water
bodies [52]. The presence of these genes was also found in Poland, in a wastewater
treatment plant [53]. In this study, we have found genes associated with the bla family:
blaFAR-1, blaOXA-490, blaOXA-491, blaTEM-102, and blaTEM-104. These genes are also
associated with the expression of beta-lactamases in different pathogenic bacteria. No
reports were found in the literature about the presence of blaFAR-1, blaOXA-490, and bla491
genes in water bodies. Furthermore, some reports indicate the presence of blaTEM-102 and
bla104 genes, which have previously been reported in different types of water bodies, and
studies have mentioned the potential risk to human health posed by their presence in the
environment [54–56].

Interestingly, we observed the presence of the mcr-7 gene, whose family is related to
conferring colistin resistance, a highly relevant drug in the treatment of infections complicated
by multiresistant Gram-negative bacteria [57–59]. Some studies demonstrate the presence
of these genes in water bodies around the world [60,61]. The presence of types of genes
in a lake where recreational activities are undertaken constitutes a risk for the population.
Abundant gene families found in Lake Llanquihue were the ones associated with resistance
to tetracyclines such as tet(37), tet(A), tet(C), tet(O), tet(Q), and tet(W). Several studies have
shown the presence of these resistance genes in aquatic environments [62–65]. For example, the
tet(37) gene family has been reported at the environmental level in an anthropogenically
stressed estuary on the northwest coast of Portugal [66]. In particular, the presence of
these genes constitutes risks for productive activities associated with aquaculture. This
is because one of the most widely used antibiotics in freshwater production cycles is
oxytetracycline [67]. The potential expression of these genes in pathogenic bacteria affecting
farmed fish could cause the ineffectiveness of these treatments. In summary, the presence of
these genes in DNA isolated from water reservoirs highlights the widespread distribution
of antimicrobial resistance determinants in the environment. Additionally, our analysis
unveiled the presence of MGE, such as plasmids associated with ARGs, highlighting the
dynamic nature of AMR in aquatic ecosystems and its potential dissemination.

One limitation of our study was to isolate and characterize bacterial strains with an-
timicrobial resistance phenomena. As detection of the presence of ARGs from data obtained
by sequencing does not necessarily imply the expression of such genes in each microbial
community, further empirical tests are required for describing the putative expression of re-
sistant phenotypes [68]. To achieve this, we performed susceptibility assays in 20 microbial
isolates obtained from Llanquihue Lake. Although the presence of multiresistant strains
was not detected, as was expected concerning the metagenomic results presented here,
these results might not be entirely representative of the occurrence of multiresistant strains
in the environment. ARG detection through metagenome sequencing gives information
about both culturable and unculturable bacteria; thus, classic microbiological techniques
for culture and susceptibility assays from microbial isolates have limitations that should be
considered for the detection and isolation of multiresistant strains.

Proper watershed management has important positive effects on the mitigation of
human health risks associated with the presence of ARGs in the environment [69]. The
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implementation of effective public politics on water management, such as regulating and
monitoring the discharges of domestic, industrial, and hospital wastewater into water
bodies, can help to avoid ARG transference and pharmaceutical dispersion [70,71]. For
example, reducing the use of agricultural antibiotics close to water bodies [72] or limiting
the presence of aquaculture activities in freshwater [73] would contribute to reducing the
load of pharmaceutical pollutants in water systems. Additionally, constant monitoring of
water quality would contribute significantly to decision making to promote sustainable
practices in the watershed [74]. Moreover, evidence-based decision making on water
quality, supported by monitoring data, can be crucial for delivering safe drinking water,
optimizing water quality, and managing water resources effectively [75,76]. By minimizing
water pollution, selective pressure on harmful microorganisms that inhabit the aquatic
environment would be reduced, diminishing the spread of antimicrobial resistance and
virulence genomic elements [77,78]. This comprehensive approach would not only protect
the health of local communities by safeguarding the purity of the water resource but would
also contribute to the preservation of antibiotic effectiveness and sustainable public health
management in the long term [79].

4. Materials and Methods
4.1. Sample Collection and Microbial Isolation

To obtain the microbial DNA, the water samples were collected from the coastal shore
of Puerto Varas city, located close to Llanquihue Lake. Llanquihue Lake is the second largest
lake in Chile, with a surface area of approximately 860 km2 and a maximum registered
depth of 317 m [80]. Its main city, Puerto Varas, is on the lake’s eastern shore. The samples
were taken from 3 sites of Puerto Varas shore, at a depth of 50 cm to the surface, at sites PV1,
PV2, and PV3 (Supplementary Figure S2), on the shores of the city’s eastern beach, in front
of the city center coast, and on the beach located at the west end of the city, respectively.
The sampling was repeated one month later (samples namely with .1). Only PV3 sampling
was repeated two months later regarding the first samples (namely .2). A total of 3 L of
water for each sample site was collected using sterile 1 L glass bottles and preserved with
an icepack until processed in the laboratory on the same day of sampling. A total of 3 L of
water was filtered through mixed cellulose ester (MCE) membranes of 0.22 µm pore size
(Merck-Millipore #GSWP04700, Burlington, MA, USA), using a glass filter system pumped
with negative pressure. Filters were stored in RNA Later (Sigma-Aldrich #R0901, Saint
Louis, MI, USA) until DNA extraction, as described below. In parallel, 1 mL of water was
streaked on Brain Heart Infusion agar, Trypto-Casein Soy agar, Eosin Methylene blue agar,
Mueller–Hinton agar, and MacConkey agar plates, and cultivated at 25 ◦C for 24 h. Isolated
cell colonies grown in each media were passed 2 times to new agar plates of the same
media to facilitate their purification, and then, Gram stain was used to check the purity of
the isolated bacteria. Isolated microorganisms were observed under microscopy and stored
in sterile glycerol 10% v/v at −80 ◦C.

4.2. DNA Purification and Metagenomic Sequencing

The stored MCE filters were used for DNA extraction employing AccuPrep Genomic
DNA Extraction Kit (Bioneer #K-3032, Daejeon, Republic of Korea), following the manufac-
turer’s instructions. Briefly, filters were resuspended in 500 µL DNA Extraction buffer and
stirred to release microbial cells. Enzymatic digestion with 20 µL of lysozyme (20 mg/mL)
and 20 µL of proteinase K (20 mg/mL) was used to disrupt microbial cells. The suspension
was incubated for 1 h at 37 ◦C and then for 1 h at 55 ◦C. After enzymatic digestion, we
followed the steps provided by the manufacturer for bacterial DNA extraction. The quality
of the obtained DNA was checked by 1% agarose gel electrophoresis, while DNA quantity
was measured by absorbance and the ratios 260/280 nm were calculated to assess the purity
of the DNA obtained. Before DNA sequencing, we tested the amplification capacity of
DNA using 16S bacterial universal PCR. A total of 1 µg of DNA was sent to Novogene
(Sacramento, CA, USA) genomic service for shotgun metagenomic sequencing. DNA was



Antibiotics 2024, 13, 679 9 of 14

sequenced by paired-end (2 × 150 bp) reads using the Illumina NovaSeq 6000 (San Diego,
CA, USA) platform with an output of 6 GB per sample.

4.3. Metagenomic Data Analysis and Identification of AMR Genes

Raw data obtained from the sequencing provider were initially inspected with FastQC
(https://www.bioinformatics.babraham.ac.uk/projects/fastqc, accessed on 15 December
2023), and then reads were filtered and trimmed using Trimmomatic v0.40 [81] using the fol-
lowing parameters: LEADING:20, TRAILING:20, SLIDINGWINDOW:5:20, AVGQUAL:20,
and MINLEN:90, followed by the application of Bowtie2 to screen out the contaminant
DNA sequences from human and viruses [82]. The paired-end files were merged using the
script provided in the Microbiome Helper v2.3 pipeline [83] and metagenomic data were
processed to obtain metagenomics de novo assembly using MegaHit v1.2.9 [84], and the
quality of the conting obtained was inspected using Quast v5.2 [85]. The taxonomic profil-
ing was obtained at the species level using Kraken2 [86], keeping the taxonomic assignation
with over 500 hits by sample, while antimicrobial resistance genes were inspected using
ABRicate v1.0 [87], utilizing the Resfinder v4.5.0 [88] databases. Mobile genetic elements
were retrieved using plaSquid v1.0.0 [89]. The fasta files obtained from plaSquid were used
to look for the presence of AMR genes carried in the mobile elements using ABRicate, as
described above. Data obtained were imported to R statistical language [90] for further
analysis and representation using phyloseq [91] and ggplot2 [92] packages.

4.4. Antimicrobial Susceptibility Assay

Antimicrobial susceptibility testing of 14 isolates was performed using the disk diffu-
sion method described by Hudzicki, 2009 [93]. Mueller–Hinton I agar (DIFCO) was em-
ployed to evaluate bacterial susceptibility to six antibiotic drugs: cefotaxime (30 µg), ampi-
cillin/sulbactam (10/10 µg), sulfamethoxazole/trimethoprim (1.25/23.75 µg), ciprofloxacin
(5 µg), imipenem (10 µg). Zone inhibition diameters were interpreted according to CLSI
breakpoint tables [94]. All studies were carried out in triplicate. The halo measurements
were expressed as the average of the measurements plus the standard deviation. Escherichia
coli ATCC© 25922 was used as a quality control strain.

5. Conclusions

Our study provides valuable insights into the prevalence, diversity, and nature of
antimicrobial resistance genes presented in environmental water recovered from a lake
system enclosed beside a city. By elucidating the dynamics of ARG and its dissemination,
we can contribute to the collective efforts aimed at combatting the occurrence of resistance
phenomena and preserving the efficacy of antimicrobial agents for future generations.
Research on the identification of antimicrobial resistance and virulence genes in environ-
mental water highlights the urgent need for standardized monitoring methods to address
the global public health threat posed by antibiotic resistance. Understanding the presence,
diversity, and transmission pathways of resistance genes in water environments is essential
for developing effective strategies to mitigate the spread of antimicrobial resistance between
microbial species and the generation of antimicrobial multidrug-resistant microorganisms.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/antibiotics13070679/s1, Figure S1: Heatmap of pathogen species
identified in Llanquihue Lake; Figure S2: Sample locations on Llanquihue Lake. File S1: Fasta MGEs
sequences obtained from PlaSquid. Table S1: Taxonomic assignation obtained from Kraken2. Table
S2: MGEs identified from PlasSquid sequences. Table S3: ARGs identified on MGEs.

https://www.bioinformatics.babraham.ac.uk/projects/fastqc
https://www.mdpi.com/article/10.3390/antibiotics13070679/s1
https://www.mdpi.com/article/10.3390/antibiotics13070679/s1
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