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ISOPARAMETRIC FUNCTIONS AND SOLUTIONS OF YAMABE TYPE

EQUATIONS ON MANIFOLDS WITH BOUNDARY.

GUILLERMO HENRY AND JUAN ZUCCOTTI

Abstract. Let (M, g) be a compact Riemannian manifold with non-empty boundary.
Provided f an isoparametric function of (M, g) we prove existence results for positive
solutions of the Yamabe equation that are constant along the level sets of f . If (M, g)
has positive constant scalar curvature, minimal boundary and admits an isoparametric
function we also prove multiplicity results for positive solutions of the Yamabe equation
on (M ×N, g+ th) where (N,h) is any closed Riemannian manifold with positive constant
scalar curvature.

1. Introduction

One of the classical generalizations of the celebrated Yamabe Problem, the so called
minimal boundary Yamabe Problem, was proposed by Escobar [20] in 1992. Given a compact
Riemannian manifold (Mn, g) of dimension n ≥ 3 with non-empty boundary ∂M , the
minimal boundary Yamabe problem consists in finding a conformally equivalent metric
to g with constant scalar curvature and zero mean curvature on the boundary. This is
a equivalent to obtain, for some constant c, a positive smooth solution of the following
boundary value problem

(1)

{

an∆gu+ sgu = cupn−1 on M,
2

(n−2)
∂u
∂η

+ hgu = 0, on ∂M,

where an = 4(n−1)
(n−2) , pn = 2n

n−2 , η is the outward unit normal vector field along ∂M , sg is the

scalar curvature and hg is the mean curvature of ∂M . Indeed, if u > 0 is a smooth solution
of Equation (1) then the Riemannian metric gu = upn−2g satisfies that

sgu = c and hgu = 0.

Escobar proved in [20] that unless dim (M) ≥ 6, (M,g) is non-locally conformally flat, ∂M
is umbilic and the Weyl tensor vanishes identically on it, there exists a positive smooth
solution to the Equation (1). The remaining case was settled by Brendle and Chen [5]
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2 G. HENRY AND J. ZUCCOTTI

provide the positive mass theorem holds. For a non-variational approach see the recent
paper by Xu [42].

Positive solutions to Equation (1) are in one to one correspondence with positive critical
points of the functional

(2) Jg(u) :=

∫

M
an|∇u|2g + sgu

2dvg + 2(n − 1)
∫

∂M
hgu

2dσ
(

∫

M
upndvg

)
2
pn

where dvg and dσ are the the volume elements induced by g on M and ∂M , respectively.
In this setting we define the Yamabe constant of (M,g) as

Y (M,∂M, [g]) := inf
u∈C∞(M)−{0}

Jg(u).

Let us denote by [g] the conformal class of g, that is the set of Riemannian metrics of the
form φg with φ > 0 smooth. It is well known that Y (M,∂M,h) = Y (M,∂M, g) for any
h ∈ [g], hence the Yamabe constant is a conformal invariant and we are going to denote it
by Y (M,∂M, [g]).

Let (Sn
+, g

n
0 ) be the n−dimensional upper half sphere endowed with the standard metric.

Cherrier proved in [15] that if

(3) Y (M,∂M, [g]) < Y (Sn
+, ∂S

n
+, [g

n
0 ]),

holds, then Y (M,∂M, [g]) is attained by a positive smooth function. Escobar in [20] proved
that Inequality (3) holds in most of the cases. Therefore, there is a positive smooth solution
to the Equation (1) with minimal Yamabe energy.

Given c1, c2 ∈ R, a more general problem is to ask whether is possible to find g̃ ∈ [g]
such that sg̃ = c1 and hg̃ = c2. Let Lg := an∆+sg and Bg := 2

(n−2)
∂
∂η

+hg be the conformal

Laplacian and the boundary operator respectively. The scalar curvature of gu and the mean
curvature of ∂M with respect to gu are given by

(4) sgu = u1−pnLg(u)

and

(5) hgu = u−
pn
2 Bg(u).

Therefore, the problem of conformally deforming a metric g to one with constant scalar
curvature c1 and constant mean curvature equals to c2 on ∂M is equivalent to find a
positive solution of

(6)

{

Lg(u) = c1u
pn−1 on M,

Bg(u) = c2u
pn
2 on ∂M.

The minimal boundary Yamabe problem is the special case when c1 ∈ R and c2 = 0.
Another important case if when c1 = 0 and c2 ∈ R. This problem was addressed by
Escobar in [18] in order to generalized Riemann mapping theorem to higher dimension and
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it is known as the constant boundary mean curvature Yamabe problem. Let us consider the
functional

Qg(u) :=

∫

M
an|∇u|2g + sgu

2dvg + 2(n − 1)
∫

∂M
hgu

2dσ
(

∫

∂M
up∂ndσ

) 2

p∂n

where p∂n = 2(n−1)
(n−2) , and the conformal invariant

Ỹ (M,∂M, [g]) := inf
u∈C∞(M)−{0}

Qg(U).

Escobar proved (see [18] and [21]), under the assumption that Ỹ (M,∂M, g) is finite, that
if either n ≥ 6 and ∂M has a nonumbilic point or n ≥ 6, M is locally conformally flat and
∂M is umbilic or n = 4, 5 and ∂M is umbilic or n = 3, then there is a scalar flat metric
in [g] with constant mean curvature on ∂M . Actually, the metric he found is of the form

gu = upn−2g where u is a minimizer of Ỹ (M,∂M, g). The cases that were not considered
by Escobar were covered in several articles by Marques [33] and [34], Almaraz [2] and [3],
Chen [11], and Mayer and Ndiaye [31] using a non-variational approach.

If Y (M,∂M, [g]) = 0, then there exists a positive solution of Equation (6) with c1 = c2 = 0
(see [18] and [21]). Han and Li conjectured in [26] that if Y (M,∂M, [g]) > 0, Equation (6)
admits a positive smooth solution for any c1 > 0 and c2 ∈ R (or equivalently c1 = 1 and
c2 ∈ R). This conjecture was proved for a wide range of manifolds by the combined works
of Han and Li [26], [27], Chen and Sun [13] and Chen, Ruan and Sun [14]. On the other
hand, when Y (M,∂M, [g]) < 0, Chen, Ho and Sun [12] showed that there exists a unique
positive smooth solution of Equation (6) for any c1 < 0 and c2 < 0.

Let (M,g) be a closed Riemannian manifold. A non-constant smooth function f :M −→
R is called isoparametric if there exist a and b smooth functions such that

(7) ‖∇f‖2 = b ◦ f
and

(8) ∆gf = a ◦ f.
The geometric meaning of these conditions is the following. Equation (7) implies that the

regular level sets, which are called isoparametric hypersurfaces, are equidistant to each other,
while both Equation (7) and Equation (8) imply that regular level set are constant mean
curvature hypersurfaces. Wang proved in [41] that the only critical level sets of f are the
maximum t+ and the minimum t−, and their preimages M+ = f−1(t+) and M− = f−1(t−)
are submanifolds of M that we called focal submanifolds. Moreover, he proved that each
isoparametric hypersurface is a tube over either of the focal submanifolds. This implies
that there are topological obstructions to the existence of isoparametric functions. Indeed,
a closed Riemannian manifold that admits an isoparametric function must be diffeomorphic
to the union of two disc bundles over the focal submanifolds (see Miyaoka [32]). On the
other hand, by a result of Qian and Tang [36] we know that for any closed manifold M that
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admits a Morse-Bott function f with critical level set M+ ∪M− where M− and M+ are
both closed connected submanifolds of codimensions at least 2, there exists a Riemannian
metric g such that f is an isoparametric function of (M,g).

The theory of isoparametric hypersurfaces is very rich. It started, motivated by the
modelling of wavefronts, in the first decades of the twenty century with the classification of
isoparametric hypersurfaces of Euclidean and the Hyperbolic space by Segre [38] and Cartan
respectively. The classification of isoparametric hypersurfaces on the sphere turned out to
be a very hard problem (see [43]). It was initiated by Cartan [7] in 1939 and was completed
recently by Chi [9] but a lot of researchers contributed significatively to the solution of this
problem. For a survey in the history on the classification of isoparametric hypersurfaces we
refer the reader to [10] and the references therein (see also [8]).

The isoparametric theory was applied in several contexts. Only to mention some of them,
see Tang and Yan [40] on the Yau’s conjecture on the first eigenvalue of the Laplace-Beltrami
operator of a minimal hypersurface in the unit sphere; or Tang and Yan [39] on Willmore
submanifolds (see also Qian et al. [37]).

In the last years they have appeared several articles that make use of isoparametrics
functions to produce both positive and changing sign solutions of the Yamabe equation
on closed Riemannian manifolds. See for instance, Henry and Petean [30], Henry [29],
Fernández and Petean [23], de la Parra et al. [17], among others. In this article we are
going to exploit some of the ideas of mentioned papers and applied them to the setting of
compact manifolds with boundary.

Let us define isoparametric function in the setting of compact manifold with non-empty
boundary.

Definition 1.1. We say that a non-constant smooth function f : M −→ R is an isopara-
metric function of (M,g) if it satisfies (7), (8) and is locally constant on ∂M .

Let f be an isoparametric function of (M,g). We are going to address the following
question:

Does there exist a Riemannian metric g̃ conformal to g such that f is an isoparametric
function of (M, g̃) as well and satisfies either g̃ has constant scalar curvature and minimal
boundary or g̃ is scalar flat and ∂M is a constant mean curvature hypersurface?

We will give a positive answer to this question whenever all the connected components
of M− and M+ have positive dimension.

Let

k(f) := min
{

dim (M−),dim (M+)
}

.

By Sf we denote the space of functions that are constant along the level sets of f and by
[g]f the set of metrics h ∈ [g] such that f is an isoparametric function of (M,h) as well.

Our main result is the following:
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Theorem 1.2. Let (Mn, g) be a compact manifold (n ≥ 3) with boundary and let s ≥ 1.
Let f be an isoparametric function of (M,g) and assume that sg ∈ Sf . Let us denote with
(a), (b) and (c) the following assumptions:

(a) k(f) ≥ n− 2.

(b) k(f) < (n− 2) and s < 2(n−k(f))
n−k(f)−2 .

(c) k(f) < (n− 2) and s < 2(n−k(f)−1)
n−k(f)−2 .

We have,

i) If either (a) or (b) holds, then there exists (for some c ∈ R) a positive smooth
function u ∈ Sf that is a solution of

(9)

{

an∆gu+ sgu = cus−1 on M,
2

n−2
∂u
∂η

+ hgu = 0 on ∂M.

ii) Let assume that Ỹ (M,∂M, [g]) is finite. If either (a) or (c) is fulfilled, then there
exists (for some c ∈ R) a positive smooth function u ∈ Sf such that

(10)

{

an∆gu+ sgu = 0 on M,
2

n−2
∂u
∂η

+ hgu = cus−1 on ∂M.

Remark 1.3. The conformal invariant Ỹ (M,∂M, [g]) might be not finite. Let λD1 , λ
B
1 (g),

and λL1 (g) be the first eigenvalues of the followings eigenvalue problems:

(11)

{

Lg(u) = λD1 (g)u on M,

u = 0 on ∂M,

(12)

{

Lg(u) = 0 on M,

Bg(u) = λB1 (g)u on ∂M

(13)

{

Lg(u) = λL1 (g)u on M,

Bg(u) = 0 on ∂M

It can be seen that if the first eigenvalue of Dirichlet eigenvalue problem, λD1 , is negative
then Q(M,∂M, [g]) = −∞ (see [19]). We have that

sign
(

Ỹ (M,∂M, [g])
)

= sign
(

λB1 (g)
)

= sign
(

λL1 (g)
)

= sign
(

Y (M,∂M, [g])
)

.

Therefore, if Y (M,∂M, [g]) ≥ 0 then Ỹ (M,∂M, [g]) is finite. For instance, the latter situ-
ation holds if [g] admits a metric of non-negative scalar curvature.

A consequence of the above theorem above is:

Corollary 1.4. Let assume that k(f) ≥ 1 and Ỹ (M,∂M, [g]) is finite. Then there exist
Riemannian metrics h1 and h2 that belong to [g]f such that
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i) h1 has constant scalar curvature and ∂M is minimal.
ii) h2 is scalar flat and the mean curvature is constant on ∂M .

If (M,g) admits an isoparametric function with K(f) ≥ 1 and Y (M,∂M, [g]) > 0 then
Han-Li conjecture holds.

Theorem 1.5. Let assume that Y (M,∂M, [g]) > 0 and k(f) ≥ 1, then for any c ∈ R there
exists a metric hc ∈ [g]f with constant scalar curvature 1 and constant mean curvature c on
∂M .

By Corollary 3.4, see Section 3, if ∂M is connected the metric h2 ∈ [g]f provided by
Corollary 1.4 is unique. However, for the minimal boundary Yamabe problem we might
have multiplicity among the metrics in [g]f .

Let (Mm, g) be a compact Riemannian manifold (m ≥ 2) with non-empty boundary, posi-
tive constant scalar curvature and minimal boundary. Let (Nn, h) be any closed Riemannian
manifold with positive constant scalar curvature and t > 0, then (M × N, g(t) = g + th)
is a manifold with constant scalar curvature sg(t) = sg +

1
t
sh and boundary ∂M ×N . The

mean curvature on ∂M ×N is zero. Assume that f is an isoparametric function of (M,g).
After we have done the identification between real valued functions on M and real valued
functions onM×N that do not depend on N is easy to verify that an isoparametric function
of (M,g) is an isoparametric function of (M ×N, g(t)) as well.

With the assumptions mentioned above we obtain:

Theorem 1.6. There exists a sequence of positive real numbers {ti}i∈N that tends to zero
and satisfies that for any sequence of positive numbers {εi}i∈N there exist a sequence {ui}i∈N,
with ui ∈ Sf , and a sequence of positive numbers {γi}i∈N such that

• |γi − ti| < εi,

• u
pm+n−2
i g(γi) ∈ [g(γi)]f is a constant scalar curvature with minimal boundary.

The article is organized as follows. In Section 2 we discuss some facts about the theory
of isoparametrics functions and isoparametric hypersurfaces on manifolds with boundary.
In Section 3 we prove Theorem 9, Corollary 1.4 and Theorem 1.5. Finally, in Section 4 we
prove Theorem 1.6.

2. Isoparametric functions

In this section we revisit some well known facts on the theory of isoparametric functions
on closed Riemannian manifolds and we point out the similarities and some differences that
arise in the setting of compact manifold with non-empty boundary.

Let f : M −→ [t−, t+] be an isoparametric function. We denote with Mt the level set
f−1(t) and with Bf :=

{

p ∈M : ∇f |p = 0
}

.
Let us see a few examples of isoparametric functions on manifolds with boundary.
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Example 2.1. Let −1 ≤ c1 < c2 ≤ 1. We write Sn
c1,c2

the points of the unitary sphere

Sn ⊂ R
n+1 such that c1 ≤ xn+1 ≤ c2. We consider Sn

c1,c2
endowed with the metric induced

by gn0 . If |ci| < 1, then ∂Sn
c1,c2

= Σ1 ∪ Σ2 where Σi = {x : xn+1 = ci}. The functions

f(x) = xn+1 and h(x) = x21 + · · · + x2n − x2n+1 fulfill conditions (7) and (8) and they are
constant along Σi. Therefore f and h are isoparametric functions of (Sn

c1,c2
, gn0 ).

The function fj(x) = xj with j < n + 1 satisfies Conditions (7) and (8), however Σi is
not included in any level set if |ci| < 1.

Example 2.2. Let M̃ be a closed manifold and let Σ ⊂ M̃ be a connected hypersurface that
is the boundary of some region M . Let assume that Σ is the regular level set of a Morse-Bott
function f , such that the critical level sets of f are exactly M+ and M−. In addition we
assume that M+ and M− are connected and have codimension at least 2. Then, as we have
mentioned in the Introduction, by (Theorem 1.1, [36]) there exists a Riemannian metric g

on M̃ such that f is an isoparametric function of (M̃ , g). Hence, f |M is an isoparametric
function of (M,g|M ).

If f is an isoparametric function of a closed Riemannian manifold (M,g), Wang proved in
(Lemma 3, [41]) that f(Bf ) = {t−, t+}. However, when ∂M 6= ∅ f(Bf ) might be a proper
subset of {t−, t+}, even Bf = ∅. For instance, let f : Sn

c1,c2
−→ [−1, 1] as in Example 2.1.

If −1 < c1 < c2 < 1, Bf = ∅; if c1 = −1 and c2 < 1 or if c1 < −1 and c2 = 1 f(Bf ) = −1
and f(Bf ) = 1, respectively; h(Bh) = {0, 1} for h(x) = x21 + · · ·+ x2n − x2n+1 on Sn

0,1.

Let f be an isoparametric function of (M,g) and let [t1, t2] an interval such that f(Bf )∩
[t1, t2] = ∅. With the same proof of (Lemma 1, [41]) we can see that for any x ∈ Mt1 and
y ∈Mt2 it yields

(14) d(x,Mt2) = d(y,Mt1) =

∫ t2

t1

df
√

b(f)
.

Equation (14) says that the regular level sets are equidistant to each other. The shortest

path between Mt1 and Mt2 are the integral curves of the tangent field (b ◦ f)− 1
2∇f .

If Mt2 is the only critical level set between the level sets {Mt}t∈[t1,t2] then

(15) d(Mt1 ,Mt2) = lim
t→t−2

∫ t

t1

df
√

b(f)
.

This equation implies that f(Bf ) ⊆ {t−, t+}. Indeed, if there exists x ∈ Bf such that
f(x) = t0 ∈ (t−, t+), let ε > 0 such that f(Bf )∩ [t0− ε, t0] = t0. On one hand from (15) we

have that distance between Mt0−ε and Mt0 is equals to lim
t→t−0

∫ t

t0−ε
df√
b(f)

. On the other

hand, b attains a minimum at t0. Since t0 is an interior point of [t−, t+], then b′(t0) = 0.
Therefore, in neighborhood of t0, the Taylor expansion of b is c(t − t0)

2 + o((t − t0)
2) for

some constant c. However, this implies that

lim
t→t−0

∫ t

t0−ε

df
√

b(f)
= +∞
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which is a contradiction.
For x ∈ M let Hx : TxM −→ TxM be the linear operator induced by the Hessian of f ,

Hf , at x. We write with Eλ(x) the eigenspace associated to the eigenvalue λ of Hx.
The proof of the following proposition is similar to the one of Theorem A point a) in [41].

We refer the reader to [41] for the proof.

Proposition 2.3. M+ and M− are (possible non-connected) submanifolds of M . If M+ ∩
Bf = ∅ (M− ∩ Bf = ∅) then M+ (M−) is a hypersurface. If M+ ⊆ Bf (M− ⊆ Bf ) and
x ∈M+ (x ∈M−) the dimension of the connected component of M+ (M−) where x belongs
is equals to dim (E0(x)).

We call M+ and M− focal submanifolds although they might not be focal sets (see
Proposition 2.1, [24]).

Remark 2.4. If a connected component C of a focal submanifold does not belong to ∂M ,
then C ⊆ Bf .

Let P be a submanifold of M and x ∈ P . We denote with N1
xP the fiber of the unitary

normal bundle of P at x. Given t > 0 we say that StP is a tube of radius t over P if

StP :=
{

y = expx(tv) : where x ∈ P and v ∈ N1
xP
}

.

By S≤tP we denote

S≤tP =
{

y = expx(sv) : where x ∈ P, 0 ≤ s ≤ t and v ∈ N1
xP
}

.

Let Mt0 be a regular level set and let r be the distance between Mt0 and the focal
submanifold V . Let M r

t0
⊂ Mt0 be the union of the connected components of Mt0 whose

distant to M+ is r. We define φr :=M r
t0
−→ V by

φr(x) = expx(rξN (x)).

where ξN (x) = ∇f√
b(f(x))

if V = M+ or −ξN (x) if V = M−. Following [41] (see Lemma 7

and Lemma 9, [41]) it yields

φ−1
r0

(V ) =M r
t0
⊆Mt0

which implies that M r
t0

is a tube over M+. We obtained the following:

Proposition 2.5. A regular level set is a union of tubes over either of the focal submani-
folds.

For closed manifolds any regular level set of an isoparametric function is a tube over
any of the focal submanifolds (Theorem A, [41]). However, this might be not the case for
manifolds with non-empty boundary. For instance, the regular level sets of f(x) = x2n+1 on
Sn
− 1

2
,1
are not a tube over M+.

Remark 2.6. In this setting there are some manifolds that admit isoparametric functions
such that some regular level sets are not tubes over neither of the focal submanifolds. For
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instance, let us consider the cylinder M = S
1 × [−π

2 ,
7
4π] and f(x, y, z) = cos z. Since

df = − sin z dz, where dθ is the angular component, we have that

||∇f ||2 = ||df ||2 = sin2 z = 1− cos2 z = 1− f2(x, y, z),

and

∆gf = − cos z = −f(x, y, z).
f is locally constant on ∂M . Therefore, f is an isoparametric function, however, for any

t ∈
(

0,
√
2
2

)

, Mt is not a tube over the focal submanifolds.

2.1. Curvature of the level sets. Let Mt with t ∈ (t−, t+). Let St denote the shape
operator on Mt and ht(x) the mean curvature of Mt at x with respect to the unit normal
ξN (x). Then, for all X,Y ∈ TxMt we have that

(16) 〈St(X), Y 〉 = −Hf(X,Y )

|∇f | .

To see this, recall that the unit normal vector field to Mt is given by ξN (x) = ∇f√
b◦f . We

denote with ρ =
√
b ◦ f = |∇f |, then we have ∇f = ρξN . Since the shape operator St

satisfies 〈St(X), Y 〉 = −〈∇XξN , Y 〉 for any X,Y ∈ TxMt we have that

Hf (X,Y ) = 〈∇X∇f, Y 〉 = 〈∇X(ρξN ), Y 〉 = 〈X(ρ)ξN + ρ∇XξN , Y 〉
= X(ρ)〈ξN , Y 〉+ ρ〈∇XξN , Y 〉 = −ρ〈St(X), Y 〉

where for the last equality we used that 〈ξN , Y 〉 = 0 since Y ∈ TxMt and ξN is orthogonal
to Mt.

Proposition 2.7. Let t ∈ (t−, t+). Then,

(17) ht =
1

ρ2
(ρ∆gf − 〈∇f,∇ρ〉) .

Proof. Let x ∈ Mt and let {E1, . . . , En−1} be an orthonormal basis of TxMt. Since f is
constant along Mt, then we have Ei(f) = 0 and Ei(ρ

−1) = 0 for all 1 ≤ i ≤ n − 1. Using
(16) we have that Hf(X,Y ) = −ρ〈St(X), Y 〉 = ρ〈∇XξN , Y 〉 for X,Y ∈ TxMt. We can
compute the Laplace-Beltrami operator of f in the following way

∆gf = − trgHf = −
n−1
∑

i=1

Hf (Ei, Ei)−Hf(ξN , ξN )

= −
n−1
∑

i=1

ρ〈∇Ei
ξN , Ei〉 − 〈∇ξN∇f, ξN 〉 = −

n−1
∑

i=1

ρ〈∇Ei

(

ρ−1∇f
)

, Ei〉 − 〈∇ξN∇f, ξN〉

= −
n−1
∑

i=1

〈∇Ei
∇f,Ei〉 − 〈∇ξN∇f, ξN〉.
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By definition,

ht = −
n−1
∑

i=1

〈∇Ei
ξN , Ei〉 = −

n−1
∑

i=1

〈∇Ei
(ρ−1∇f), Ei〉 = −1

ρ

n−1
∑

i=1

〈∇Ei
∇f,Ei〉

=
1

ρ
(∆gf − 〈∇ξN∇f, ξN 〉) = 1

ρ

(

∆gf − 1

ρ2
〈∇∇f∇f,∇f〉

)

=
1

ρ

(

∆gf − 1

2ρ2
(∇f)(||∇f ||2)

)

=
1

ρ

(

∆gf − 1

2ρ2
(∇f)(ρ2)

)

=
1

ρ

(

∆gf − 2ρ

2ρ2
(∇f)(ρ)

)

=
1

ρ

(

∆gf − 1

ρ
(∇f)(ρ)

)

=
1

ρ

(

∆gf − 1

ρ
〈∇f,∇ρ〉

)

=
1

ρ2
(ρ∆gf − 〈∇f,∇ρ〉) .

�

This allows us to prove the following

Proposition 2.8. Mt has constant mean curvature for all t ∈ (t−, t+).

Proof. Using the last proposition and Equations (7) and (8) we have

ht =
1

ρ2
(ρ∆gf − 〈∇f,∇ρ〉) = 1

ρ2

(

ρ · a ◦ f − 〈∇f,∇
√

||∇f ||2〉
)

=
1

ρ2

(

ρ · a ◦ f − 〈∇f,∇
√

b ◦ f〉
)

=
1

ρ2

(

ρ · a ◦ f −
〈

∇f, 1

2ρ
(b′ ◦ f)∇f

〉)

=
1

ρ
a ◦ f − 1

2ρ
b′ ◦ f− =

(

2a− b′

2
√
b

)

◦ f.

Since f is constant along Mt, the last expression does not depend on x ∈Mt. �

Remark 2.9. If (M,g) is a manifold with non-constant mean curvature on the boundary,
then (M,g) does not admit an isoparametric function.

In [25], Ge and Tang proved that the focal submanifolds of an isoparametric function f
on a complete Riemannian manifold M are minimal submanifolds. The strategy they used
was the following. Using the results of Wang ([41]) we know that the focal submanifolds
are smooth manifolds and every Mt is a tubular hyper-surface over either of the focal
submanifolds. To see, for instance, thatM+ is a minimal submanifold, take a point x ∈M+

and v ∈ N1
xM+ a unitary normal vector to TxM+. If we consider ηv(t) := expx(tv) the

unique geodesic through x in the direction of v, we can take Fermi coordinates (x1, . . . , xn)
centered at x with respect to M+ such that ∂

∂xn
|ηv(t) = N|ηv(t) , where N is the (outward)

unitary vector field ofMt. Using this coordinate system we can relate Tv, the shape operator
of M+ in the direction of v, with St by obtaining the Taylor expansion of St in terms of t.
Let T v

ab, 1 ≤ a, b ≤ m = dimM+, and Sij, 1 ≤ i, j ≤ n be the coefficients in this coordinate
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system of Tv and St, respectively. By several straightforward calculations, Ge and Tang
proved that at any point of ηv(t) = expx(tv) ∈Mt we have

St = (Sij) =





Tv + tA+O(t2) tB +O(t2) O(t2)
tC +O(t2) −t−1I +D +O(t2) O(t2)

0 0 0





where the matrices A,B,C,D are given by

A :=

(

〈

Rv ∂
∂xa

v,
∂

∂xb

〉

+
∑

c

T v
acT

vcb

)

,

D :=
1

3

(〈

R
v, ∂

∂xl

v,
∂

∂xk

〉)

B :=

(〈

Rv ∂
∂xa

v,
∂

∂xk

〉)

C :=
1

3

(〈

Rv ∂
∂xl

v,
∂

∂xb

〉)

for a, b, c ∈ {1, . . . ,m}, l, k ∈ {m+ 1, . . . , n − 1}, and O(t2) are matrices of order less than
2. Therefore, the principal curvatures of Mt at ηv(t) = expx(tv) are the eigenvalues of

St :=

(

Tv + tA+O(t2) tB +O(t2)
tC +O(t2) t−1I +D +O(t2)

)

.

Since the mean curvature of Mt is constant then

ht = tr(St) = tr(Tv)−
n−m− 1

t
+ t(trA+ trD) +O(t2),

does not depend on x ∈ M+ and v ∈ N1
xM+. Therefore, for all v ∈ N1

pM+ we have

tr(Tv) = tr(T−v) = − tr(Tv). Hence, tr(Tv) = 0 for all v ∈ N1
xM+ and all x ∈ M+, which

implies that M+ is a minimal submanifold.
In the setting of manifolds with boundary this is not true since some of the focal varieties

could contain some component of the boundary which is a regular hypersurface of constant
mean curvature but not necessarily minimal. Nonetheless, if the focal variety contains no
component of the boundary, we can proceed exactly as in the case of closed manifolds.
Hence, we can guarantee the following

Proposition 2.10. If all the components of the focal submanifold V has codimension at
leas 2, then V is a minimal submanifold.

3. Proof of Theorem 1.2, Corollary 1.4, and Theorem 1.5

Let f be an isoparametric function of (M,g). We denote by Hq
1,f (M) the completion of

Sf with respect to the Sobolev norm

‖u‖1,q =
(

∫

M

|∇u|qdvg +
∫

M

uqdvg
)

1
q .
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3.1. Proof of Theorem 1.2 and Corollary 1.4.

Theorem 1.2 follows from Lemma 3.1 which is an adaptation of Lemma 6.1 in [29] to the
setting of compact manifolds with boundary.

Lemma 3.1. Let (Mn, g) be a compact Riemannian manifold with non-empty boundary
and let f be an isoparametric function with k(f) ≥ 1. Let s ≥ 1, we have that

i) if q ≥ n− k(f), then the inclusion map of Hq
1,f(M) into Ls(M) and the trace map

tr : Hq
1,f (M) −→ Ls(∂M) are both continuous and compact.

ii) If q < n− k(f), the inclusion map of Hq
1,f (M) into Ls(M) is continuous if

s ≤ q(n− k(f))

n− k(f)− q
,

and it is compact if the strict inequality holds.
iii) If q < n− k(f), then tr : Hq

1,f(M) −→ Ls(∂M) is a continuous map if

s ≤ q(n− 1− k(f))

n− k(f)− q
,

and it is compact if the above inequality is strict.

The argument to prove the lemma above is similar to the proof of Lemma 6.1 in [29].
For convenience of the reader we sketch the proof here. The key idea is to make use of
the geometry of the foliation induced by the isoparametric function f in order to obtain an
improvement of the Sobolev embedding theorems for functions that belong to Sf . As one
can check, if q < n and k(f) ≥ 1 we get either n−k(f)−q ≤ 0 or q(n−k(f))/(n−k(f)−q) >
q∗ := qn/(n− q) and q(n− 1− k(f))/(n− k(f)− q) > q∂,∗ := q(n− 1)/(n− q). Therefore,
for a sufficiently small positive ε, Lemma 3.1 says that Hq

1,f (M) is compactly embedded at

the same time into Lq∗+ε(M) and Lq∂,∗+ε(∂M).

Proof. Let us denote with R
l
+ the upper half-space of the Euclidean space Rl endowed with

the restriction of the Euclidean metric gle. For x ∈M , we denote with k(x) the dimension of
the connected component of Mf(x) where x is contained. By the assumptions of the lemma,
k(x) ≥ 1 for any x ∈ M . Since the leafs of the foliation induced by the isoparametric
function, Mt, are equidistant to each other (see Section 2), given x ∈ M we can use Fermi
coordinates centered at x to construct a coordinate system (Wx, ϕx) such that

(a) x ∈Wx.

(b) ϕx(Wx) = U × V , where U and V are open sets of Rk(x) and R
n−k(x)
+ , respectively.

(c) U × π(ϕx(y)) ⊂ ϕx(Mf(y) ∩ Wx) for any y ∈ Wx, where π is the projection of

R
k(x) × R

n−k(x)
+ onto R

n−k(x)
+ .

(d) There exists a constant ax > 0 such that a−1
x dvgne ≤ dvg ≤ axdvgne in Wx.

(e) If x ∈ ∂M and
{

∂
∂ϕ1

x
, . . . , ∂

∂ϕn
x

}

is the basis of TxM induced by the coordinate

system, then ∂
ϕn
x
points in the direction of η.
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Since M is a compact manifold, M admits a finite open cover by these charts. Let
{

(Wi, ϕi)
}N

i=1
be one of these covers where (Wi, ϕi) is centered at xi and ϕi(Wi) = Ui × Vi.

Given a smooth function u in Sf we define ui : Vi ⊂ R
n−k(xi)
+ −→ R by

ui(y) = u(ϕ−1
i (x, y))

where x is any point in Ui. These functions are well defined by property (b). Indeed, if
b = π(ϕi(y)) and (a, b) ∈ Ui × {b}, then ϕ−1

i (a, b) ∈ Mf(y) ∩Wi and u|Wi
is constant along

Mf(y) ∩Wi.
Since dvg|∂M = i∗(ιηdvg), where i : ∂M →֒ M is the inclusion map and ιη is the interior

multiplication, we also have that (ax)
−1dvgn−1

e
≤ dvg|∂M ≤ axdvgn−1

e
. Using property (c)

we are able to compare the Ls−norm of u and ui and their gradients. Indeed, there exist
positive constants Ai, Bi and Ci (that depend only on (Wi, ϕi)) such that

(18) Ai‖ui‖Ls(Vi) ≤ ‖u‖Ls(Wi) ≤ Bi‖ui‖Ls(Vi),

(19) ‖∇ui‖Ls(Vi) ≤ Ci‖u‖Ls(Wi)

and

(20) ‖u|∂M‖Ls(∂Wi) ≤ Di‖u|∂Vi
‖Ls(∂Vi).

Taking into account that k(f) ≤ k(xi) for any i, the assumptions i) and ii) imply that

either q ≥ n − k(xi) or q < n− k(xi) and s ≤ (n−k(xi))q
n−k(xi)−q

. Since Vi ⊂ R
n−k(xi)
+ is a bounded

domain that satisfies the cone condition is well known (see for instance [1]) that the inclusion
of Hq

1(Vi) into L
s(Vi) is a continuous map. Therefore, for some positive constant Ei and Fi

we have that

(21) ‖u‖Ls(Wi) ≤ Bi‖ui‖Ls(Vi) ≤ Ei‖ui‖Hq
1 (Vi) ≤ Fi‖u‖Hq

1 (Wi),

where in the second and in the last inequality we used Inequalities (18) and (19), respectively.
Finally, we obtain

‖u‖Ls(M) ≤
N
∑

i=1

‖u‖Ls(Wi) ≤
r
∑

i=N

Fi‖u‖Hq
1 (Wi) ≤ F‖u‖Hq

1 (M)

which says that the inclusion of Hq
1,f (M) into Ls(M) is a continuous map

Note that with these assumptions, we obtain that Hq
r,f (M) is continously included into

Ls(M) for any r ≥ 1.
By the trace embedding theorem for Euclidean domains (see for instance [1]), we get that

||u|∂M ||Ls(∂Wi) ≤ Di||ui|∂Wi
||Ls(∂Vi) ≤ Hi

(

||∇ui||Lq(Vi) + ||ui||Lq(Vi)

)

≤ Ji
(

||∇u||Lq(Wi) + ||u||Lq(Wi)

)
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whether n − k(xi) ≤ q or n − k(xi) > q and 1 ≤ s ≤ q(n−1−k(xi))
n−q−k(xi)

. If n − k(f) ≤ q or

n− k(f) > q and 1 ≤ s ≤ q(n−1−k(f))
n−q−k(f) this holds for all 1 ≤ i ≤ m, and we have that

||u|∂M ||Ls(∂M) ≤
m
∑

i=1

||u|∂Wi
||Ls(∂Wi) ≤ J

m
∑

i=1

(

||∇u||Lq(Wi) + ||u||Lq(Wi)

)

≤ J̃
(

||∇u||Lq(M) + ||u||Lq(M)

)

which proves the continuity of the trace map under the assumptions of iii).
Now we are going to prove the compactness of the inclusion map of Hq

1,f (M) into Ls(M)

when either

(22) q ≥ n− k(f)

or

(23) q < n− k(f) and s <
q(n− k(f))

n− k(f)− q
.

In order to prove the compactness is enough to show that any bounded sequence {uj} of
Hq

1,f (M) has a convergent subsequence in Ls(M). Let us consider a partition of the unity

{φi}Ni=1 subordinated to the open cover {(Wi, ϕi)} such that

φi(ϕ
−1
i (x̃, y)) = φi(ϕ

−1
i (x̄, y))

for any x̃ and x̄ ∈ Ui and y ∈ Vi . For u ∈ Sf we define the compact supported functions
ui : Vi −→ R as

ui(y) := φi(ϕ
−1
i (y)).ui(y).

Let {uj}j∈N be a bounded sequence in Hq
1,f (M), then by (18) and (19) we see that the

sequence

{uij}j∈N
is a bounded sequence of Hq

1(Vi).
Assume that either (22) or (23) holds. Then for any 1 ≤ i ≤ N , either q ≥ n− k(xi) or

q < n−k(xi). If the latter holds, it yields q < n−k(f) and one can check that s < q(n−k(xi))
n−k(xi)−q

holds as well. Any set Vi fulfills the cone condition, therefore by the Rellich-Kondrachov
Theorem (see Theorem 6.3, [1]) there is a subsequence {ujk} such that {uijk} is a Cauchy

sequence in Ls(Vi). By Inequality (18) {φiujk} is a Cauchy sequence in Wi as well. Since
{φi}ri=1 is a partition of the unity, {ujk}k∈N converges in Ls(M).

The proof of the compactness of tr : Hq
1,f (M) −→ Ls(∂M) under assumption iii) is

similar. If q ≥ n− k(f) or q < n− k(f) and 1 ≤ s < q(n−1−k(f))
n−k(f)−q

, then the same inequalities

hold for all 1 ≤ i ≤ N after replacing k(f) for k(xi). Since Hq
1(Vi) →֒ Ls(∂Vi) is compact,

then we have a subsequence {uj} such that {(uj,i)|∂Vi} is a Cauchy sequence in Ls(∂Vi)

for all 1 ≤ i ≤ N . By Property (d) of the coordinate systems {(Wi, ϕi)} and since ∂M =
∪N
i=1∂Wi = ∪N

i=1∂ϕ
−1
i (Ui × Vi) = ∪N

i=1ϕ
−1
i (Ui × ∂Vi), we have that (ρiuj)|∂M is a Cauchy
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sequence in Ls(∂M) for all 1 ≤ i ≤ N , and since {ρi}mi=1 is a partition of unity, we obtain
that {uj |∂M} converges strongly in Ls(∂M).

�

Let us consider the functionals Js
g : H2

1 (M) − {0} −→ R and Qs
g : H2

1 (M) − {0} −→ R

defined by

Js
g,f (u) :=

E(u)
(

∫

M
usdvg

)
2
s

and

Qs
g(u) :=

E(u)
(

∫

∂M
usdσ

) 2
s

,

where

E(u) :=

∫

M

an|∇u|2g + sgu
2dvg + 2(n − 1)

∫

∂M

hgu
2dσ.

Note that Jpn
g = Jg and Q

p∂n
g = Qg.

We are going to consider

Y s
f (M,∂M, g) := inf

u∈H2
1,f (M)−{0}

Js
g,f (u),

Ỹ s(M,∂M, g) := inf
u∈H2

1 (M)−{0}
Qs

g(u)

and

Ỹ s
f (M,∂M, g) := inf

u∈H2
1,f (M)−{0}

Qs
g(u).

It follows from definitions that Ỹ p∂n(M,∂M, g) = Ỹ (M,∂M, g) and

(24) Ỹ s(M,∂M, g) ≤ Ỹ s
f (M,∂M, g).

It is well known that positive critical points of Js
g,f |H2

1,f (M)−{0} and Qs
g,f |H2

1,f (M)−{0} satisfy

Equation (9) and Equation (10) respectively (see for instance [20] and [18]). Hence to prove

Theorem 1.2 is sufficient to show that Y s
f (M,∂M, [g]) and Ỹ s

f (M,∂M, [g]) are attained by
smooth positive functions.

Proof of Theorem 1.2. Assume that either (a) or (b) hold. Let {ui}i∈N be a minimizing
sequence of non-negative functions with ‖ui‖2,1 = 1. Taking q = 2 by Lemma 3.1 we have
that H2

1,f(M) is compactly embedded in Ls(M). Therefore, there is subsequence of {ui}
that converges to a nonzero function u ∈ Sf that minimizes Y s

f (M,∂M, g). Actually, using
standard elliptic regularity theory it can be seen that u is smooth. By the strong maximum
principle, u is positive in the interior of M . By the Hopf boundary point Lemma, u is also
positive along the boundary. This proves i).
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Now let assume that Ỹ (M,∂M, [g]) > −∞. We claim that Ỹ s(M,∂M, g) is finite for any

2 ≤ s ≤ p∂n. Therefore, Inequality (24) implies that Ỹ s
f (M,∂M, g) is finite.

If Ỹ (M,∂M, [g]) ≥ 0, then E(u) ≥ 0 for any u ∈ H2
1 (M). Hence, Ỹ s

f (M,∂M, g) ≥ 0 for

any 2 ≤ s ≤ p∂n.
If s′ ≤ s, by Hölder inequality we have that

(

∫

∂M

us
′

dσ
)

2
s′ ≤

(

∫

∂M

usdσ
)

2
s
vol(∂M)

2(s−s′)

ss′ .

Therefore, if E(u) < 0 and s ≥ 2, Qs
g(u) ≥ Q2

g(u)vol(∂M)
s−2
s . Hence

(25) Ỹ s(M,∂M, g) ≥ λB1 (g)vol(∂M)
s−2
s

whenever Ỹ (M,∂M, [g]) < 0. On the other hand, it is well known (see [19]) that Ỹ (M,∂M, [g]) >

−∞ implies that λB1 (g) > −∞. Thus, (25) implies that Ỹ s(M,∂M, g) is finite when

Ỹ (M,∂M, [g]) is finite and negative and this proves the claim.
Let assume that in addition either (a) or (c) hold as well. Lemma 3.1 says that the

embedding of H2
1,f (M) into Ls(∂M) is compact. Using a similar argument to the one used

in the proof of item i) we obtain that Ỹ s
f (M,∂M, [g]) is attained by a positive smooth

function that is constant along the level sets of f .
�

Let f be an isoparametric function of (M,g) and let us consider the Riemannian metric
h = φg where φ = ψ ◦ f with ψ > 0. By straightforward computations we obtain that

∆hf = −(n− 2)ψ′(f)
2φ2

‖∇gf‖2g +
1

φ
∆g(f) = −(n− 2)ψ′(f)b(f)

2φ2
+
a(f)

φ
,

and

‖∇hf‖2h =
1

φ
‖∇gf‖2g =

b(f)

φ
.

Therefore, f is an isoparametric function of (M,h) as well, that is h ∈ [g]f . Actually, using
a similar argument as in the proof of Proposition 3.1 in [29] it can be seen that any metric
in [g]f is of this form. Hence, in order to prove Corollary 1.4 is is enough to show that
there exist u1 and u2 positive smooth functions of Sf that are solutions of Equation (6)
with c2 = 0 and c1 = 0 respectively.

Proof of Corollary 1.4. Let us assume that k(f) < (n − 2), otherwise we are done taking
in Theorem 1.2 s1 = pn and s2 = p∂n. Since k(f) ≥ 1, note that 2n(n − k(f) − 2) <
2(n−k(f))(n−2), then pn < 2(n−k)/(n−k−2) and assumption (b) of Theorem 1.2 is fulfilled
for s1 = pn. Therefore, there exists a positive smooth function u1 ∈ Sf that is solution of
Equation (9) with s1 = pn. Also note that 2(n− 1)(n− k(f)− 2) < 2(n− k(f)− 1)(n− 2).
Thus, assumption (c) of Theorem 1.2 is fulfilled for s2 = p∂n. Hence, there exists a positive
smooth function u2 ∈ Sf that is solution of Equation (10) with s2 = p∂n. �
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Remark 3.2. Let (M,g) be compact Riemannian manifold with ∂M 6= ∅ and constant
positive scalar curvature and let (N,h) be any closed Riemannian manifold with constant
positive scalar curvature. If f is an isoparametric function of (M,g), we mentioned in the
Introduction that f is an isoparametric function of (M ×N, g + h) as well, but now all the
level sets of f have positive dimension. Therefore, by Corollary 1.4 there exist µ1 and µ2 in
[g+h]f such that µ1 is of constant scalar curvature and ∂M ×N is minimal with respect to
µ1 and µ2 is scalar flat and ∂M ×N is a constant mean curvature hypersurface with respect
to µ2.

Proposition 3.3. Let (M,g) be a compact Riemannian manifold with a non-empty con-
nected boundary that admits an isoparametric function f . There exists at most one unit
volume scalar flat metric in [g]f such that the boundary has constant mean curvature.

Proof. Let assume that there are two metrics g1 and g2 that satisfy the statement of the
proposition. We can write g2 = upn−2g1 where u is a positive smooth function that belongs
to Sf . Then u satisfies

{

∆g1u = 0 on M,
2

n−2
∂u
∂η

+ hg1u = hg2u
pn
2 on ∂M.

Since ∂M is connected and u ∈ Sf , u is constant on ∂M . On the other hand u is an
harmonic function, then it must be constant on M . Let u ≡ c, then 1 = vol(g2) = cpn ,
hence g2 = g1. �

By Corollary 1.4 and Proposition 3.3 we obtain:

Corollary 3.4. Let (M,g) with ∂M connected and f an isoparametric function. If k(f) ≥ 1

and Ỹ (M,∂M, [g]) is finite then there exists only one metric in [g]f with unit volume, zero
scalar curvature and constant mean curvature on ∂M .

3.2. Proof of Theorem 1.5.

When Y (M,∂M, [g]) > 0 we can state Theorem 1.2 in a more general fashion.

Proposition 3.5. Let (Mn, g) be a compact manifold (n ≥ 3) with boundary and Y (M,∂M, [g]) >
0. Let p, q ≥ 1 and q < p. Let f be an isoparametric function of (M,g) and assume that
sg ∈ Sf . Let us denote with (a), (b) and (c) the following assumptions:

(a) k(f) ≥ n− 2.

(b) k(f) < (n− 2) and p < 2(n−k(f))
n−k(f)−2 .

(c) k(f) < (n− 2) and q < 2(n−k(f)−1)
n−k(f)−2 .

Either if (a) holds or (b) and (c) hold, then for any c1 > 0 and c2 ∈ R there exists a positive
smooth function u ∈ Sf that is a solution of

(26)

{

an∆gu+ sgu = c1u
p−1 on M,

2
n−2

∂u
∂η

+ hgu = c2u
q−1 on ∂M.
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Proof. For a > 0, let us define

Ba,b
p,q :=

{

u ∈ H2
1 (M) : a

∫

M

|u|pdvg + b

∫

∂M

|u|qdσg = 1
}

,

and by Ba,b
p,q,f we denote the set Ba,b

p,q∩Sf . It is well known (see for instance [4]) that positive

critical points of the functional E restricted to Ba,b
p,q are positive solution of Equation (26)

with

c1 =
apE(u)

ap
∫

M
updvg + bq

∫

∂M
uqdσg

and

c2 =
bqE(u)

2(n − 1)
(

ap
∫

M
updvg + bq

∫

∂M
uqdσg

) .

Let

Y a,b
p,q (M,∂M, [g]) := inf

B
a,b
p,q

E(u)

and

Y a,b
p,q;f(M,∂M, [g]) := inf

B
a,b
p,q,f

E(u).

Since a > 0, we have that −∞ < Y a,b
p,q (M,∂M, [g]) ≤ Y a,b

p,q;f(M,∂M, [g]).

Any positive minimizer of Y a,b
p,q;f(M,∂M, [g]) satisfies Equation (26) for

c1 =
apY a,b

p,q;f(M,∂M, [g])

ap
∫

M
updvg + bq

∫

∂M
uqdσg

and

c2 =
bqY a,b

p,q;f(M,∂M, [g])

2(n − 1)
(

ap
∫

M
updvg + bq

∫

∂M
uqdσg

) .

To see the existence of such minimizer, let {ui} ∈ Ba,b
p,q,f be a minimizing sequence of non-

negative functions. It can be seen that any sequence of bounded energy is uniformly bounded
in H2

1 (M) (see Proposition 2.4 in [22], therefore {ui} is a bounded in H2
1,f(M). Either if

(a) holds, or (b) and (c) hold, we have that H2
1,f (M) →֒ Lp(M) and H2

1,f (M) →֒ Lq(∂M)

are both compact embeddings. Therefore, there is a subsequence {uik} that converges to a

nonzero function u ∈ Sf ∩ Ba,b
p,q that minimizes Y a,b

p,q;f(M,∂M, [g]). By standard regularity

results, we have that u is smooth. Since u is nonzero, by the strong maximum principle, u
is positive in the interior of M and by the Hopf boundary point Lemma, u is also positive
along the boundary. �
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Proof of Theorem 1.5. For any a > 0 and b ∈ R, taking p = pn and q = p∂n it follows from

Proposition 3.5 that exists a positive smooth minimizer uab of Y a,b

pn,p∂n
(M,∂M, [g]). After a

normalization we obtain a smooth positive solution va,b of equation

(27)

{

Lg(vab) = vpn−1
ab on M,

Bg(vab) = cabv
p∂n−1
ab on ∂M

where

ca,b =
b

√

2n(n− 2)a

[Y a,b

pn,p∂n;f
(M,∂M, [g])

A(uab)

]
1
2
.

with

A(uab) = apn

∫

M

upnab dvg + bp∂n

∫

∂M

u
p∂n
ab dσg.

Note that

(28)

{

p∂n ≤ A(uab) ≤ pn if b ≥ 0,

pn ≤ A(uab) if b < 0.

Then we have that

(29)
b

2n
√
a

[

Y a,b

pn,p∂n;f
(M,∂M, [g])

] 1
2 ≤ ca,b.

If b > 0 we also have that

(30) cab ≤
b

2
√

n(n− 1)a

[

Y a,b

pn,p∂n;f
(M,∂M, [g])

]
1
2
.

For any u ∈ C∞(M) there exists a unique λab > 0 such that λabu ∈ Ba,b

pn,p∂n
. Actually,

λa,b is the unique solution of F u
ab(t) = 1 where F u

ab : R≥0 −→ R is defined by

F u
ab(t) = (a

∫

M

upndvg)t
pn + (b

∫

M

up
∂
ndσg)t

p∂n .

Note that F u
ab(0) = 0 and F u

ab is an increasing function if b ≥ 0 and it has a unique global
minimum if b < 0.

If a2 ≥ a1 we have that

(31) Y a1,b

pn,p∂n;f
(M,∂M, [g]) ≥ Y a2,b

pn,p∂n;f
(M,∂M, [g]).

Indeed, for a positive u ∈ C∞(M), let ū = λa1,bu. Then,

a2

∫

M

ūpndvg + b

∫

∂M

ūp
∂
ndσg = (a2 − a1)

∫

M

ūpndvg + 1 ≥ 1.

This implies that λa2b ≤ 1 for ū. Then for any u ∈ C∞(M) we have that

E(λa2bū) ≤ E(ū)
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which implies Inequality (31).
Similarly, if b2 ≥ b1, we have that

Y a,b1
pn,p∂n;f

(M,∂M, [g]) ≥ Y a,b2
pn,p∂n;f

(M,∂M, [g]).

Let a = 1 and b = 0, then Y 1,0
pn,p∂n;f

(M,∂M, [g]) = Yf (M,∂M, g), and c1,0 = 0.

By (Proposition 3.2, [22]) we known that the function b −→ Y a,b

pn,p∂n;f
(M,∂M, [g]) is con-

tinuous.
Let b = 1, by Inequality (29) and by (31), we have that lima→0+ cab = +∞.
Let a = 1, then

lim
b→0+

Y 1,b
pn,p∂n;f

(M,∂M, [g]) = Yf (M,∂M, g).

Therefore, by Inequality (30) we have that limb→0+ c1b = 0.
Let b = −1, it follows from (31) that lima→0+ ca,−1 = −∞ and lima→+∞ ca,−1 = 0−.

�

4. Proof of Theorem 1.6

Let (M,g) be a Riemannian manifold with boundary with constant scalar curvature and
minimal boundary and let f be an isoparametric function. Let us assume for simplicity
that ∂M is connected. Consider

X := A× R>0

where A is the space of positive functions with zero normal derivative at the boundary that
also belong to Sf . For s > 2, let F s : X −→ C2,α(M) ∩ Sf be the map defined by

(32) F s(u, λ) := ∆gu+ λ
(

u− us−1).

Note that F s(1, λ) = 0 for any λ > 0. The points of the form (1, λ) with λ ∈ R>0 are called
trivial zeroes of F and {1} ×R>0 the axis of trivial zeroes.

The linearization of F s at a given trivial zero (1, λ0) is

DuF
s(1, λ0)(v) = ∆gv + λ0(2− s)v.

A function v belongs to the kernel of DuF
s(1, λ0) if and only if v ∈ Sf and satisfies the

following Neumann boundary value problem

(33)

{

∆gv = λ0(s− 2)v on M,
∂v
∂η

= 0, on ∂M.

That is, v ∈ Sf should be an eigenfunction with associate eigenvalue λ0(s − 2).
It is well known that the spectrum of the Neumann eigenvalue problem restricted to Sf

is a non-bounded sequence

0 = µf,N0 < µf,N1 ≤ µf,N2 ≤ · · · ≤ µf,Nk ր +∞.

Let Ef,N
i denotes the space of eigenfunctions with associated eigenvalue µf,Ni .



SOLUTIONS 21

Let v = ϕ ◦ f ∈ Sf . By a straightforward computation we see that v is a Neumann
eigenfunction with associated eigenvalue µ if and only if ϕ fulfills

{

−b(f)ϕ′′(f) + a(f)ϕ′(f) = µϕ(f) on M,

ϕ′(f)∂f
∂η

= 0 on ∂M,

where a and b are the functions that appear in the Equations (7) and (8), respectively.

Therefore, v ∈ Ef,N
i if and only if ϕ satisfies

(34)

{

−b(t)ϕ′′(t) + a(t)ϕ′(t)− µf,Ni ϕ(t) = 0 t ∈ [t−, t+]− {r},
ϕ′(r) = 0

where r is the value that f takes on ∂M . This implies that dim (Ef,N
i ) = 1 for any i. We

have the following proposition.

Proposition 4.1. The dimension of the kernel of DuF
s(1,

µ
f,N
i

s−2 ) is 1.

Let µf,Ni be an eigenvalue of the Neumann problem and let vi such that Ef,N
i = span(vi).

Since DuF
s(1,

µ
f,N
i

s−2 ) is a self-adjoint operator we see that

(35)

∫

M

DuF
s(1,

µf,Ni

s− 2
)(v)vidvg = 0

for any v ∈ Sf with ∂v
∂η

= 0. Hence,

(36) V := Range
(

DuF
s(1,

µf,Ni

s− 2
)
)

has codimension 1.

One can check that

(37) DλF
s(1,

µf,Ni

s− 2
) = 0

and

(38) DλλF
s(1,

µf,Ni

s− 2
) = 0.

Also, using that
∫

M
Duλ(1,

µ
f,N
i

s−2 )(vi)vidvg 6= 0 and Equation (35) we obtain that

(39) DuλF
s(1,

µf,Ni

s− 2
)(vi) /∈ V.

Since Proposition 4.1, (36), (37), (38) and (39) we can use the Crandall-Rabinowitz’s
local bifurcation theorem (see for instance [16] or [35]) to conclude that a trivial zero (1, λ)
is a bifurcation point of F s if and only if

(40) λ =
µf,Ni

s− 2
.
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This means that there is a curve α in X that cuts transversally the axis of trivial zeroes

at (1,
µ
f,N
i

s−2 ). More precisely, for r small enough α is parametrized by

(41) α(r) =
(

rvi +O(r2), β(r)
)

with β(0) =
µ
f,N
i

s−2 .

Let us recall the assumptions of Theorem 1.6. For t > 0, (M × N, g(t) = g + th)
is the Riemannian product where (Mm, g) is a compact Riemannian manifold (m ≥ 2)
with boundary, constant scalar curvature and minimal boundary and (N,h) is any closed
Riemannian manifold with positive constant scalar curvature.

Proof of Theorem 1.6. We normalize Equation (1) by taking c = sg(t). Then a positive
solution u of Equation (1) that depends only on M satisfies

(42)

{

∆gu+ λ(t)u = λ(t)upm+n−1 on M,
∂u
∂η

= 0 on ∂M,

where

λ(t) =
sg + t−1sh
am+n

Recall that upm+n−2g(t) is a metric of constant scalar curvature and minimal boundary.
Note that since the scalar curvature of g(t) is constant and hg(t) = 0 on ∂(M ×N) u ≡ 1 is
a trivial solution of Equation (42) for any t > 0.

Let consider the map F pm+n . By (40) we get that (1, λ) is a bifurcation point of F pm+n

if and only if

λ =
(m+ n− 2)µf,Ni

4
.

Therefore, if

ti =
sh

µf,Ni (m+ n− 1)− sg
,

whenever µf,Ni (m+ n− 1) 6= sg, (1, λ(ti)) is a bifurcation point. Note that since {µf,Ni }i∈N
is not bounded from above the sequence {ti} tends to 0 as i goes to +∞. By the existence
of the curve α (see (41)) we know that given εi > 0 there exists γi such that |ti − γi| < εi
such that there exists a positive smooth solution uγi ∈ Sf of Equation (42) with λ(γi).

�
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