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Abstract. Data on protein post-translational modifications (PTMs) increased exponentially in the last years due to the refinement of mass spec-
trometry techniques and the development of databases to store and share datasets. Nevertheless, these data per se do not create comprehen-
sive biochemical knowledge. Complementary studies on protein biochemistry are necessary to fully understand the function of these PTMs 
at the molecular level and beyond, for example, designing rational metabolic engineering strategies to improve crops. Phosphoenolpyruvate 
carboxykinases (PEPCKs) are critical enzymes for plant metabolism with diverse roles in plant development and growth. Multiple lines of evi-
dence showed the complex regulation of PEPCKs, including PTMs. Herein, we present PEPCKs as an example of the integration of combined 
mechanisms modulating enzyme activity and metabolic pathways. PEPCK studies strongly advanced after the production of the recombinant 
enzyme and the establishment of standardized biochemical assays. Finally, we discuss emerging open questions for future research and the 
challenges in integrating all available data into functional biochemical models.
Keywords: Allosteric regulation; carbon metabolism; enzyme regulation; gluconeogenesis; metabolic control; photosynthesis; phosphoenolpyruvate 
carboxykinases; post-translational modification.

Introduction
Plant biochemistry focuses on understanding the kinetics, 
structure and regulatory mechanisms that govern en-
zymes and metabolic pathways in plants (Hartman et al., 
2023). This historical approach is essential to understand 
biological processes in detail and is the foundation of ra-
tional strategies in metabolic engineering and synthetic 
biology for crop improvement (Wurtzel et al. 2019). Over 
the past two decades, the development of mass spectrom-
etry techniques coupled with specialized databases for data 
storage and sharing has resulted in an explosion of plant 
protein post-translational modifications (PTMs; Smith and 
Kelleher 2013; Aebersold et al. 2018; Willems et al. 2019). 
Furthermore, the refinement of mass spectrometry proto-
cols allowed the detection of low-stoichiometry PTMs, 
which were previously considered unimportant but are 
now being revisited with renewed interest (Prus et al. 2019). 
Having plenty of data/information does not translate into 
meaningful and practical knowledge/understanding (Ackoff 
1999; Dammann 2019). A combined array of genetic and 
biochemical techniques is necessary to truly compre-
hend the function of PTMs and their integration with our 
knowledge of enzyme regulation (Stitt and Gibon 2014). 
This integrated approach is exemplified by the study of 
phosphoenolpyruvate carboxykinases (PEPCKs), which 

are critical in central metabolism and physiological pro-
cesses (Fig. 1). The biological relevance of PEPCK is asso-
ciated with its complex regulation, recently evidenced by 
combining genetic, biochemical and systems biology ap-
proaches. Finally, we discuss open questions, which deter-
mine future lines of research.

Plant PEPCK characteristics
PEPCKs catalyse the decarboxylation of oxaloacetate (OAA) 
to PEP through an enol intermediate that is phosphorylated 
using adenosine triphosphate (ATP) (EC 4.1.1.49), guanosine 
triphosphate (GTP) (EC 4.1.1.32) or inorganic pyrophos-
phate (PPi) (EC 4.1.1.38), following a nucleophilic substitu-
tion of the SN2 type (Matte et al. 1997; Holyoak et al. 2006; 
Johnson et al. 2016). Although the reaction is fully reversible 
in vitro, at least in plants, it mainly courses into the OAA 
decarboxylation direction in vivo. PEPCKs need two metal 
ions for optimal activity, one that complexes with the nucleo-
tide substrate and the other that acts as a cofactor and might 
bind the enzyme in the absence of the substrate (Lee et al. 
1981; Matte et al. 1997; Holyoak et al. 2006; Rojas et al. 
2019). The nucleotide is activated by Mg2+ and Mn2+, while a 
transition metal like Mn2+, Co2+ or Ca2+ acts as the cofactor. 
The cofactor promotes the decarboxylation of OAA through 
the formation of an intermediary complex that stabilizes the 
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enolate ion during catalysis (O´Leary 1992; Matte et al. 1997; 
Johnson et al. 2016).

ATP-dependent PEPCKs were found in bacteria, yeasts and 
plants, while those using GTP are present in mammals, ar-
chaea and a small group of bacteria (Fukuda et al. 2004; Aich 
and Delbaere 2007; Chiba et al. 2015; Rojas et al. 2019). The 
distribution of PPi-dependent PEPCKs is less clear; this ac-
tivity was discovered in crude extracts of Propionibacterium 
shermanii, and the coding gene was later identified in 
Entamoeba histolytica (Siu et al. 1961; Chiba et al. 2015). 
PEPCKs differ in their quaternary structure, being the GTP-
dependent monomeric (Matte et al. 1997), the PPi-dependent 
homodimeric (Chiba et al. 2019) and the ATP-dependent 
homomultimeric, conformed either by four or six subunits 
(Burnell 1986; Walker and Leegood 1995; Martín et al. 2011; 
Rojas et al. 2019; Toressi et al. 2023).

The evolutionary trajectory of PEPCKs is a matter of 
controversy. Some authors have suggested that there is no 
homology between ATP- and GTP-dependent PEPCKs, but 

their primary sequence has similar motifs for substrate and 
metal binding (Matte et al. 1997; Fukuda et al. 2004; Aich 
and Delbaere 2007). PPi-dependent PEPCKs lack the cata-
lytic domains described for the ATP- and GTP-dependent 
PEPCKs, so the evolutionary distance might be higher (Chiba 
et al. 2015). On the contrary, other authors have concluded 
that all PEPCK forms likely arose from a common ancestor 
(Walker and Chen 2002, 2021). Supporting this view, the tri-
dimensional protein structures are similar, reinforcing that 
different PEPCKs are homologous (Chiba et al. 2019).

ATP-dependent PEPCKs have cytosolic localization in 
higher plants (Reiskind and Bowes 1991; Ito et al. 2011; 
Tsiatsiani et al. 2013). Other photosynthetic organisms, like 
the diatom Skeletonema costatum and the algae Laminaria 
setchellii contain a chloroplastic PEPCK (Cabello-Pasini et 
al. 2001). The characteristics of the reaction catalysed by 
PEPCKs attach them to critical energetic nodes in metab-
olism, independently of the organism. Let’s analyse the par-
ticularities of the physiological role of PEPCKs in plants.

Figure 1. General overview of the metabolic pathways and enzymes that converge on PEP in plants. (1) Enolase (EC 4.2.1.11), (2) Pyr kinase (EC 
2.7.1.40), (3) PEP phosphatase (3.1.3.60), (4) ATP-dependent PEPCK (EC 4.1.1.49), (5) PEP carboxylase (EC 4.1.1.31), (6) Pyr PPi dikinase (EC 2.7.9.1), 
(7) PEP synthase (EC 2.7.9.2), (8) DAHP synthase (EC 2.5.1.54), (9) 3-phosphoshikimate 1-carboxyviniltransferase (EC 2.5.1.19). DAHP, 3-deoxy-7-
phosphoheptunolate; E4P, erythrose-4-phosphate, ESPS, 5-5-enolpyruvylshikimate 3-phosphate.
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Physiological roles
Decarboxylation of C4 acids in C4 and crassulacean 
acid metabolism photosynthesis.  In C3 photosynthesis, 
ribulose-1,5-bisphosphate carboxylase-oxygenase (RuBisCO) 
mediates CO2 fixation into ribulose-1,5-bisphosphate, to 
produce two molecules of 3-phosphoglycerate (3PGA, 
three-carbon). This reaction is the initial step of the Calvin–
Benson–Bassham cycle (CBBc), a chloroplast carbon cycle 
that sustains all life on earth (Sage 2004; Rojas et al. 2021a). 
The oxygenase activity of RuBisCO can fix O2 instead of CO2, 
generating 3PGA and 2-phosphoglycolate. As this latter two-
carbon intermediate is toxic to the plant, it has to be recycled 
through photorespiration, which leads to energy, carbon and 
nitrogen losses, decreasing plant productivity (Portis 2001; 
Trípodi et al. 2021; Rojas et al. 2021a).

C4 and crassulacean acid metabolism (CAM) photosyn-
thesis evolved from C3 ancestors to mitigate the detrimental 
effects of photorespiration and water loss by transpir-
ation, respectively (Sage 2004; John et al. 2014; Trípodi et 
al. 2021). The different lineages of C4 plants developed the 
Kranz anatomy, differentiation between mesophyll (MC) 
and bundle sheath cells (BSC), as well as CO2-concentrating 
mechanisms. The latter include the initial fixation of CO2 
by phosphoenolpyruvate carboxylase (PEPC) in mesophyll 

cells, transport of C4 acids to BSC and decarboxylation near 
RuBisCO, enabling efficient carbon fixation via the CBBc. 
Based on the primary decarboxylase employed in the pro-
cess, plant lineages were classified as NAD-dependent malic 
enzyme (NAD-ME, EC 1.1.1.38-39), NADP-dependent malic 
enzyme (NADP-ME, EC 1.1.1.40) and PEPCK subtypes 
(Hatch et al. 1975; John et al. 2014). In the PEPCK lineage, 
malate (Mal) and Asp are transported to the BSC. Within 
these cells, Asp is decarboxylated by the consecutive action of 
Asp aminotransferase (EC 2.6.1.1) and PEPCK in the cytosol, 
while Mal decarboxylation courses through mitochondrial 
NAD-ME (Maier et al. 2011) (Fig. 2A).

Despite the above-mentioned classification, decarboxyl-
ation pathways are flexible and might operate simultaneously 
in diverse species (Furbank 2011; Maier et al. 2011; Wang et 
al. 2014). In maize (NADP-ME subtype), carbon is primarily 
fixed as Mal, but significant pools (~25% of the fixed carbon) 
and rapid labelling of Asp have also been observed (Hatch 
1971; Meister et al. 1996; Wingler et al. 1999; Majeran et 
al. 2010; Pick et al. 2011; Muhaidat and McKown 2013; 
Weissmann et al. 2015; Arrivault et al. 2017). Furthermore, 
PEPCK is expressed in the BSC of the NADP-ME subtype 
and supports Asp-dependent photosynthesis in isolated BSC 
(Chapman et al. 1980; Chapman and Hatch 1981; Walker 

Figure 2. Summary of the physiological roles of PEPCKs. (A) The CO2-concentrating mechanisms operating in C4 plants. PEPCKs decarboxylate, 
in the cytosol, the OAA resulting from Asp decarboxylation. Then, the resulting PEP returns to the MC to restart the C4 cycle. MC; mesophyll cells, 
BSC; bundle sheath cells. (B) Mal cycling in CAM plants. CAM plants open their stomata during cold humid nights to incorporate CO2, reducing H2O 
loss. The CO2 is incorporated into Mal, which accumulates inside the vacuole. During hot dry days, CAM plants keep their stomata closed, and Mal 
is released from the vacuole to be decarboxylated and the resulting CO2 fixed into the CBBc. (C) Gluconeogenesis during oilseeds germination. TAGs 
are degraded in a process distributed between different pathways and organelles. PEPCKs and PPDKs represent the first step of the gluconeogenic 
pathway. (D) Amino and organic acid metabolism. PEPCKs localize at a metabolic node between the amino acids derived from PEP and those derived 
from intermediates of the TCA cycle. AspAT, Asp aminotransferase; AlaAT, Ala aminotransferase; CA, carbonic anhydrase; NAD-ME, NAD-dependent 
malic enzyme; NADP-ME, NADP-dependent malic enzyme; PEPC, PEP carboxylase; PEPCK, ATP-dependent phosphoenolpyruvate carboxykinase; PK, 
Pyr kinase; PPDK, Pyr PPi dikinase.
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et al. 1997; Wingler et al. 1999; Majeran et al. 2010; Pick et 
al. 2011; Washburn et al. 2021). It has been suggested that 
Asp decarboxylation varies with developmental and envir-
onmental conditions (Chapman and Hatch 1981; Furbank 
2011). Also, in sugarcane (classified as NADP-ME sub-
type), PEPCK activity is induced during sugar accumulation, 
drought and shade stress (Sales et al. 2018; Cacefo et al. 
2019; Marquardt et al. 2021). However, this is controversial 
as other authors have shown that sugarcane does not have 
substantial PEPCK (Walker et al. 1997; Sage et al. 2013).

In CAM photosynthesis, atmospheric CO2 fixation also 
produces a C4 acid. However, in this case, the initial carbon 
assimilation by PEPC and the following incorporation into 
the CBBc are temporary. CAM plants have a high water-use 
efficiency, which allows them to inhabit desertic environ-
ments. They open their stomata to capture CO2 during cold 
and humid nights and keep them closed on hot and dry days, 
reducing transpiration to a minimal level (Trípodi et al. 2021). 
During the night, CO2 is fixed by the enzymatic tandem car-
bonic anhydrase (EC 4.2.1.1), PEPC and Mal dehydrogenase, 
and the product Mal is then stored in the vacuole. During 
the day, the hydroxy acid undergoes decarboxylation by 
NAD(P)-ME or PEPCK, releasing CO2 near RuBisCO to feed 
the CBBc (Dittrich et al., 1973) (Fig. 2A). CAM plants were 
classified into two groups, one that decarboxylates Mal via 
NAD(P)-ME (with undetectable PEPCK) and another that 
uses PEPCK (having low NAD(P)-ME activity) (Dittrich et 
al. 1973; Holtum and Osmond 1981; Borland et al. 1998) 
(Fig. 2B). However, it is worth noting that this classification 
is not rigid, and there is evidence of multiple decarboxylase 
activities (similar to what happens to C4 plants) present in 
CAM plants, at similar levels (Black et al. 1996; Peckmann 
et al. 2012; Mukundan et al. 2023). This would give CAM 
photosynthesis increased efficiency and plasticity under 
different physiological and environmental conditions. In 
Mesembryanthemum crystallinum, a species that performs C3 
photosynthesis but can switch to CAM in response to salinity 
or water-deficit stress, the PEPCK gene has a stress-inducible 
expression that peaks at dawn, indicating a potential role of 
PEPCK in CAM induction (Lim et al. 2019).

Carbon fixation in algae.  Giordano et al. (2005) re-
viewed the evidence for the existence of a C4-like metabolism 
in algae, although the collected evidence is inconclusive. In 
the marine alga Udotea flabellum, which exhibits C4-like 
photosynthesis without cellular compartmentalization, the 
carboxylase activity of PEPCK was found to be equivalent 
to that of RuBisCO (Reiskind and Bowes 1991). These au-
thors also reported that 3-mercaptopiconilic acid (3-MPA), 
a specific inhibitor of PEPCK (Leegood and Ap Rees 1978a, 
b), reduced photosynthesis by 70%, highlighting the enzyme’s 
role in carbon fixation in this organism (Reiskind and Bowes 
1991). In the diatom Thalassiosiva weissflogii, which has a 
C4-like metabolism, PEPCK may also decarboxylate C4 acids 
(Reinfelder et al. 2004). In the diatoms S. costatum and L. 
setchellii, the chloroplastic localization of PEPCK coin-
cides with its role as a decarboxylase that delivers CO2 near 
RuBisCO (Cabello-Pasini et al. 2001). In Phaeodactylum 
tricornutum, PEPCK localizes in the mitochondria, and 
knockdown of the gene encoding this enzyme reduces growth 
and photosynthesis while increasing TAG accumulation under 
nitrogen-limiting conditions (Yang et al. 2016). The PEPCK 
role in algae not only could be related to carbon fixation, but 

also to gluconeogenesis and organic acids and nitrogen me-
tabolisms (Toressi et al. 2023).

Gluconeogenesis in oleaginous seeds.  The work of 
Leegood and Ap Rees (1978a, b) provided important sup-
portive data for the role of PEPCK in plant gluconeogenesis. 
These authors studied PEPCK activity in cucumber cotyledons 
and purified the enzyme from this source. They also demon-
strated that treatments with 3-MPA halted the gluconeogenic 
flux in this system (Leegood and Ap Rees 1978a, b). The 
accumulation of PEPCK coincided with those of other 
gluconeogenic enzymes, such as isocitrate lyase and Mal 
synthase, in the cotyledons of Cucurbita pepo and Cucumis 
sativus (Kim and Smith 1994), Arabidopsis thaliana (Rylott 
et al. 2001) and Ricinus communis (Martín et al. 2007), a 
few days after the imbibition of seeds. Later, genetic studies in 
A. thaliana furthered the understanding of the physiological 
functions of PEPCKs. Arabidopsis has two genes coding 
for ATP-dependent PEPCKs: PEPCK1 (At4g37870) and 
PEPCK2 (At5g65690). The PEPCK1 gene is predominantly 
expressed during seed germination, while PEPCK2 expres-
sion is less abundant and restricted to specific plant tissues 
(Malone et al. 2007; Rojas et al. 2021b).

The study of knock-out mutants and silenced lines in 
PEPCK1 provided further insight into the critical involve-
ment of PEPCK in plant gluconeogenesis (Rylott et al. 2003; 
Penfield et al. 2004). These mutants exhibited growth impair-
ment when cultivated on basal media without an external 
carbon source, but their growth was normal when the media 
was supplemented with sucrose (Rylott et al. 2003; Penfield et 
al. 2004). Once the seedlings developed their photosynthetic 
apparatus, their growth was similar to that of wild-type (WT) 
plants. Additionally, these mutants did not alter the catab-
olism rate of reserve lipids, but showed reduced levels of sol-
uble sugars. However, under suboptimal illumination or dark 
conditions, their growth was further compromised, resulting 
in reduced hypocotyl elongation compared to WT plants. 
This reduction in hypocotyl elongation was also observed 
when the endosperm, the tissue where oleaginous plants store 
reserve lipids, was eliminated. Hence, these phenotypes could 
be attributed to a decrease in the sucrose supply received by 
the embryo from the endosperm (Penfield et al. 2004).

As pepck1 mutants can develop their photosynthetic ap-
paratus and mature into adult plants, the step catalysed by 
PEPCK, although critical, is not the only path through which 
carbon could flow to gluconeogenesis (Rylott et al. 2003; 
Penfield et al. 2004). Eastmond et al. (2015) discovered that 
Arabidopsis employs two pathways to channel carbon from 
reserves to gluconeogenesis: one via PEPCK, which channels 
carbon from lipids degradation, and the other via PPDK, 
which channels carbon from protein reserves (Fig. 2C). In 
Arabidopsis, PPDK has an expression pattern like PEPCK1, 
peaking approximately 2 days after imbibition. Seedling es-
tablishment is impaired in ppdk mutants, and the double-
mutant ppdk/pepck1 displays a severe starvation response 
(Eastmond et al. 2015). This two-enzyme model for carbon 
channelling during Arabidopsis seeds germination was subse-
quently confirmed by Henninger et al. (2022).

The contribution of PEPCK and PPDK to gluconeogenesis 
during seed germination may vary across plant species. For 
instance, germinating cucumber cotyledons exhibit abundant 
PEPCK activity but undetectable levels of PPDK (Walker et al. 
2021). Therefore, it is important to investigate the prevalence 
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of both enzymes in gluconeogenesis during germination 
across different plants, considering factors such as species, 
tissue type, developmental stage and environmental condi-
tions like nitrogen supply (Walker et al. 2021). Moreover, 
distinct signalling cascades may regulate the involvement of 
each enzyme in gluconeogenesis. For example, in Arabidopsis 
seedling establishment, the SnRK1 kinase serves as a critical 
regulator of reserve mobilization. SnRK1 phosphorylates 
the transcription factor BASIC LEUCINE ZIPPER63 which 
binds and activates the PPDK promoter. Notably, SnRK1 
does not appear to regulate PEPCK1 (Henninger et al. 2022), 
suggesting that gluconeogenesis may be controlled through 
complex interactions of multiple signalling pathways.

Gluconeogenesis during fruit maturation.  Studies 
have demonstrated that gluconeogenesis occurs in several 
fruits (Sweetman et al. 2009; Walker et al. 2016; exten-
sively reviewed in Walker et al. 2021) with PEPCK (rather 
than PPDK) being the primary pathway utilized, except pos-
sibly in tomato (Famiani et al. 2014, 2016). Gluconeogenesis 
from Mal and citrate can occur in certain fruits even when 
there is no net breakdown of these organic acids. It seems 
that gluconeogenesis in fruits is associated with a transient 
release of Mal and/or citrate from the vacuole (Walker et 
al. 2021). In tomato fruits, silencing the PEPCK gene by 
interfering RNA led to a decrease in sugar concentration 
and increased levels of Mal (Osorio et al. 2013; Huang et 
al. 2015a). Conversely, overexpressing the same gene using 
a constitutive (35SCAMV) or fruit-specific promoters (fruit-
ripening-specific E8 promoter; Huang et al. 2015b) resulted 
in the opposite phenotype, along with faster germination and 
seedling growth.

Stress response.  In Arabidopsis, PEPCK1 is expressed in 
biotic stress-response structures like hydathodes, trichomes 
and guard cells (Chen et al. 2000, 2002; Penfield et al. 2012). 
In Capsicum annum, a PEPCK gene was isolated from a 
cDNA library constructed from leaves infected with an aviru-
lent Xanthomonas strain (Choi et al. 2015). Following in-
fection, PEPCK expression and activity increased, suggesting 
its involvement in biotic stress response. Additionally, silen-
cing this gene in pepper plants rendered them more suscep-
tible to infection, while overexpression increased resistance 
(Choi et al. 2015). The authors of this work also observed 
that drought, cold and stress-related hormones (such as sali-
cylic acid and abscisic acid, ethylene and methyl-jasmonate) 
triggered the induction of the PEPCK gene.

Arabidopsis pepck1 mutants are susceptible to drought due 
to stomatal malfunction resulting in increased transpiration 
(Daloso et al. 2017). Mal metabolism in guard cells plays a 
crucial role in the opening and closure of stomata (Daloso et 
al. 2017; Robaina-Estévez et al. 2017). In pepck1 mutants, 
anomalies in Mal metabolism within these cells may explain 
the malfunctioning of this mechanism, as ABA signalling is 
not affected (Penfield et al. 2012). Furthermore, the induction 
of the PEPCK gene has been observed in tomato plants ex-
posed to saline stress (Saito et al. 2008) and in Brassica napus 
leaves subjected to cold stress (Saez-Vasquez et al. 1995). In 
sugarcane, PEPCK activity is induced during drought stress 
and shade conditions (Sales et al. 2018; Cacefo et al. 2019).

Cataplerotic reactions, amino acid metabolism and 
cytosolic pH regulation.  The removal of intermediates 

from the tricarboxylic acid (TCA) cycle is crucial to prevent 
their accumulation in specific metabolic situations. These en-
zymatic steps, known as cataplerotic reactions, are critical to 
cellular homeostasis (Owen et al. 2002). In the case of PEPCK, 
it converts OAA into PEP, which can undergo gluconeogenesis 
or generate Pyr (Leegood and Walker 2003) (Fig. 2D). In 
plants, cataplerotic reactions are important during certain 
physiological conditions, such as castor oil seeds germination 
(Stewart and Beevers 1967), amino acid respiration in Pisum 
sativum (Larson and Beevers 1965) or the use of glutamate 
as a respiratory substrate in sugar beet phloem (Lohaus et al. 
1994). However, the precise role of PEPCK in these plant pro-
cesses requires further investigation.

The PEPCK reaction is localized between the OAA/Asp 
family of amino acids (Asn, Lys, Thr, Met and Ile), those 
derived from PEP (Phe, Tyr and Trp), and Ala derived from 
Pyr (Lea et al. 2001) (Fig. 2D). In grape seeds, PEPCK ac-
tivity is induced by nitrogenous compounds (Asp, NH4

+ and 
Gln), suggesting a potential role in their metabolism and the 
regulation of cytosolic pH through Mal formation and dis-
similation (Walker et al. 1999; Lea et al. 2001; Chen et al. 
2004; Delgado-Alvarado et al. 2007). Decarboxylases of C4 
acids are localized in the mid-vein of Arabidopsis, and their 
mutation affects the abundance of amino acids derived from 
Pyr and PEP. By feeding the xylem stream of the Arabidopsis 
pepck1 mutant with 14C-labelled bicarbonate and Mal, it was 
observed that the levels of Ala (derived from PEP) were re-
duced, while Asp (produced from OAA) increased compared 
to WT plants (Brown et al. 2010).

Regulatory mechanisms
Allosteric regulation.  Over the years, and under certain 
assay conditions, several metabolites have been shown to 
affect PEPCK activity in vitro. The enzymes from Urochloa 
panicoides, Chloris gayana and Panicum maximum (C4 plants) 
are inhibited by the glycolytic intermediates 3PGA, Fru6P, 
Fru1,6bisP and DHAP under certain conditions (Hatch and 
Mau 1977; Burnell 1986). For the maize (also performing 
C4 photosynthesis) PEPCK, sensitivity to 3PGA inhibition 
is only evident in the enzyme’s N-terminal proteolyzed form 
(Furumoto et al. 1999). A detailed study on the allosteric regu-
lation of a short version of the enzyme from Ananas comosus 
(a CAM species) revealed differential regulation between its 
carboxylase and decarboxylase activities (Martín et al. 2011). 
The decarboxylase activity was inhibited by Fru2,6bisP, 
3PGA, Asp and Pro, while succinate activated it. The carb-
oxylase activity was inhibited by Fru6P, Fru1,6bisP, 3PGA, 
citrate, Mal and UDPGlc (Martín et al. 2011). However, the 
authors of this study were unable to purify the full-length 
form of the enzyme to make a comparative assessment of dif-
ferences in allosteric regulation. Chlamydomonas reinhardtii 
has two PEPCKs; a full-length ChlrePEPCK1 and a shorter 
ChlrePEPCK2 that lacks 55 amino acids at the N-terminus. 
ChlrePEPCK1 and ChlrePEPCK2 carboxylase activity 
is inhibited by citrate and phenylalanine. ChlrePEPCK2 
carboxylase activity is also inhibited by glutamine. The de-
carboxylase activity of ChlrePEPCK1 is activated by phenyl-
alanine and malate, while ChlrePEPCK2 decarboxylase 
activity does not show any effect by these metabolites and is 
inhibited by glutamine (Toressi et al. 2023).

It is important to note that PEPCK activity was typically 
assayed using relatively high concentrations of Mn2+ (0.5–5 
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mM), which allow for maximal activity. However, the con-
centration of this metal in plant cells remains within the 
micromolar range (Quiquampoix et al. 1993; Pittman 2005). 
Improvements to the in vivo assay of PEPCK allowed the 
enzyme’s activity to be measured at more physiological con-
centrations of metal ions and so, physiologically relevant con-
clusions could be obtained from the in vitro assays (Chen et 
al. 2002; Rojas et al. 2019). In the case of Arabidopsis (a C3 
plant), there are differences in the regulation of AthPEPCK1 
and AthPEPCK2 (Rojas et al. 2019). Glc6P, Fru6P and Glc1P 
inhibit AthPEPCK1 but not AthPEPCK2, while Fru1,6bisP 
inhibits both enzymes. Glc6P is the primary inhibitor of 
AthPEPCK1, followed by Glc1P, Fru6P and Fru1,6bisP. Mal 
activates AthPEPCK1 but not AthPEPCK2. The regulation by 
Mal may be critical in stimulating the flux of carbon released 
through lipid degradation into gluconeogenesis during seed 
germination. Once the photosynthetic apparatus develops, in-
creased levels of triose- and hexose-phosphates may inhibit 
PEPCK, thereby inhibiting gluconeogenesis. AthPEPCK1 is 
also inhibited by shikimate, a precursor of aromatic amino 
acids and defence compounds, thus regulating the synthesis of 
PEP, the initial substrate of the shikimate pathway (Rojas et 
al. 2019). The regulation of PEPCK by Mal and Glc6P is op-
posite to that of PEPC, which may be an important mode of 
regulation for two enzymes catalysing opposite reactions and 
present in the plant cytosol simultaneously. This regulation 
could be key in preventing a futile carboxylation/decarboxyl-
ation cycle that would deplete cytosolic ATP (Leegood and 
Walker 2003; Martín et al. 2011; Rojas et al. 2019).

Regulation by dipeptides.  Identifying novel protein–me-
tabolite interactions is crucial for discovering new regulatory 
elements in plant metabolism. For this, PROMIS (PROtein 
Metabolite Interactions using Size separation) proved to be 
a valuable tool for mining novel small molecule regulators 
(Veyel et al. 2017, 2018). AthPEPCK1 co-elutes with a series 
of hydrophobic/polar dipeptides: Ile-Gln, Ala-Ile, Phe-Gln, 
Leu-Thr, Ser-Tyr, and Ser-Val. Enzymatic assays demonstrated 
that these dipeptides inhibit recombinant AthPEPCK1 with 
I0.5 values ranging from 52 to 828 µM. They can also inhibit 
PEPCK activity in crude extracts, and this inhibition is not 
observed with the individual amino acids (Moreno et al. 
2021). The inhibition of AthPEPCK1 by dipeptides is more 
potent than that of sugar phosphates (Rojas et al. 2019; 
Moreno et al. 2021). The origin and roles of these regula-
tory dipeptides are still not fully understood. Additionally, 
the dipeptide’s in vivo concentration range remains unknown, 
which is important for determining if they can affect PEPCK 
activity in vivo. It is possible that they participate in signalling 
during abiotic stress in Arabidopsis (Doppler et al. 2019; 
Thirumalaikumar et al. 2021). Moreover, dipeptides have 
been detected in Arabidopsis root exudates, downstream of 
the MPK3 and MPK6 signalling cascade, suggesting their in-
volvement in plant–microbe and plant–plant communication 
systems (Strehmel et al. 2017).

Arabidopsis mutants in components of the autophagy 
pathway, including (atg18 and nbr1-2) simple mutants as well 
as [atg4(4a/4b) and nbr1-2/atg5] double mutants exhibited 
reduced dipeptides levels upon heat stress when compared to 
the WT (Thirumalaikumar et al. 2021). Autophagy plays a 
critical role in macromolecule recycling (Kenny et al. 1976) 
and seedling germination (Avin-Wittenberg et al. 2015). 

Arabidopsis mutants in genes involved in the autophagic 
response are sensitive to carbon and nitrogen starvation, 
which can be alleviated by supplying sucrose to the seedlings 
(Bassham 2009). Also, these mutants exhibit decreased levels 
of free amino acids and increased protein content, indicating 
impaired mobilization of reserve proteins and lipids (Avin-
Wittenberg et al. 2015). Notably, one of the increased proteins 
was CRUCIFERIN3, a major reserve protein in Arabidopsis 
seeds (Herman and Larkins 1999; Wan et al. 2007).

It would be intriguing to explore whether the inhibition of 
AthPEPCK1 by H-P dipeptides regulates the channelling of 
carbon released through protein degradation during seed ger-
mination via PPDK, which does not interact with H-P dipep-
tides (Veyel et al. 2018). Arabidopsis seeds overexpressing the 
sunflower WRKY10 transcription factor exhibited increased 
gluconeogenesis, enhanced lipid utilization, reduced protein 
consumption and a higher flux through PEPCK during ger-
mination (Raineri et al. 2016).

Proteolytic regulation.  Plant PEPCKs undergo proteolysis 
at the N-terminus in vivo. The proteolysis is affected by the 
pH (diminishing at pH 9–10), cannot be avoided by protease 
inhibitors and does not alter the quaternary structure of the 
enzyme (Walker and Leegood 1995; Walker et al. 1995; Rojas 
et al. (2021b)). In Arabidopsis, AthPEPCK1 is a target of the 
cysteine-protease METACASPASE9 (AthMC9) (Tsiatsiani 
et al. 2013). AthMC9 is found in the nucleus, cytosol and 
apoplast (Vercammen et al. 2006; Kwon and Hwang 2013; 
Tsiatsiani et al. 2013), and participates in regulating cellular 
death in various physiological contexts, such as the immune 
response (Kim et al. 2013; Shen et al. 2019) and vascular tissue 
development (Escamez et al. 2016, 2019). Proteolysis of the 
N-terminal domain of PEPCK appears to activate the enzyme, 
as crude extracts from the Arabidopsis mc9 mutant exhibit 
decreased enzyme activity, while 35S:MC9 overexpressing 
lines show increased PEPCK activity (Tsiatsiani et al. 2013). 
The level of AthPEPCK1 level peaks 24-48 h post-imbibition, 
and proteolytic forms of the protein are generated during this 
germination stage. Shorter PEPCK versions are also present in 
Anana comosus and C. reinhardtii, but in these cases, a tran-
scriptional event leading to these shorted versions cannot be 
excluded (Martín et al. 2011; Torresi et al. 2023).

In plants, the abundance of the proteolyzed form is low 
compared to the non-proteolized form (Walker and Leegood 
1995; Walker et al. 1995; Rojas et al. (2021b)). Some au-
thors argue that low-stoichiometry PTMs may be physio-
logically irrelevant. Nevertheless, studies have shown that 
low-stoichiometry PTMs can reflect specific modifications 
occurring at a particular time and location (Prus et al. 2019). 
For instance, if a modification is specific to a group of cells, 
the modified protein will be diluted in a protein extract, 
leading to lower abundance (Orsburn et al. 2022). This may 
be the case of PEPCK, as proteolysis has been demonstrated 
to occur only in the cotyledons and embryonic axis of pea 
seedlings (Delgado-Alvarado et al. 2007).

Truncated mutants of AthPEPCK1 on the putative cleavage 
sites of AthMC9 (Δ19 and Δ101 mutants) generated protein 
forms with similar kinetic parameters and quaternary struc-
ture compared to the WT enzyme. However, the activation 
by Mal and inhibition by Glc6P were abolished in the Δ101 
mutant (Rojas et al. 2021b). Proteolysis during germination 
may serve as a mechanism to regulate enzyme levels and, 
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consequently, modulate the gluconeogenic flux. Furthermore, 
the shorter versions of AthPEPCK1 may fulfil different roles 
during the transition of seedlings from an autotrophic to a 
heterotrophic state. Interestingly, the proteolysis of PEPCK 
cleaved the N-terminal portion of the protein, which has been 
predicted to contain an intrinsically disordered motif and 
a major phosphorylation site. Intrinsically disordered mo-
tifs evolved to have a disordered structure under physiological 
conditions (Peterson et al. 2017). These motifs exhibit rapid 
conformational fluctuations and are involved in signalling 
cascades, protein–protein interaction modules, allosteric re-
gulations and auto-inhibitory domains, and are usual targets 
of PTMs (Wright and Dyson 2014).

Phosphorylation.  In the leaves of C4 and CAM plants, 
phosphorylation of PEPCK in its N-terminal domain has been 
observed during the dark period (Walker and Leegood 1995; 
Leegood and Walker 1996). This phosphorylation was recre-
ated in vitro by PEPC kinase and cAMP-dependent protein 
kinase (Walker and Leegood 1995). In crude extracts from 
the fodder Megathyrsus maximus, lower PEPCK activity was 
detected during the night, suggesting an inhibitory effect of 
phosphorylation (Walker et al. 2002). Nevertheless, purifica-
tion of PEPCK from day and night samples resulted in pre-
parations with different substrate affinities but no differences 
in specific activity when measured using in vivo assay condi-
tions that assess maximum activity (Walker and Chen 2002). 
Only the enzyme from night samples exhibited increased KM 
for OAA and ATP. Therefore, PEPC and PEPCK are regulated 
through phosphorylation to prevent futile phosphorylation–
dephosphorylation cycles (Leegood and Walker 2003; Bailey 
et al. 2007). During the day, in C4 and CAM plant leaves, 
dephosphorylation of both enzymes leads to PEPC inhibition 
and PEPCK activation. Conversely, during the night, when 
both enzymes are phosphorylated, the opposite activity con-
ditions occur.

The recent development and optimization of mass 
spectrometry protocols led to unprecedented amounts 
of phosphoproteomic data (Smith and Kelleher 2013; 
Aebersold et al. 2018; Willems et al. 2019). This techno-
logical progress has also enabled the detection and analysis 
of low-stoichiometry PTMs that were previously considered 
irrelevant (Prus et al. 2019). AthPEPCK1 and AthPEPCK2 
undergo phosphorylation at multiple sites. Phosphomimetic 
mutants at Ser-62 exhibited increased enzyme activity, while 
mutants at Thr-56 decreased activity. The phosphomimetic 
mutant at Thr-66 displayed no difference compared to the 
WT enzyme (Shen et al. 2017). This information further sup-
ports the notion that AthPEPCK1 is intricately regulated in 
a complex manner by different signals mediated by effectors 
and PTMs.

In Zea mays, mass spectrometry profiling of PEPCK re-
vealed that light conditions altered its phosphorylation 
status (Chao et al. 2014). In Arabidopsis, treatment with 
flg22, a 22-amino acid peptide derived from Pseudomonas 
syringae flagellin, resulted in increased phosphorylation 
of Thr-22 and decreased phosphorylation of Ser-62 and 
Thr-66 (Rayapuram et al. 2014, 2018). These findings 
suggest that phosphorylation may transduce different en-
vironmental signals. Although unequivocal evidence of 
the protein kinase(s) responsible for PEPCKs phosphoryl-
ation is lacking, studies have implicated SnRK2.2/SnRK2.3/

SnRK2.6, MPK6, GSK3 and TOR (de la Fuente van Bentem 
et al. 2008; Wang et al. 2013; Rayapuram et al. 2018; van 
Leene et al. 2019).

Open questions and future lines of research
Although significant research has been performed on PEPCKs’ 
function and regulation, many questions await answers: (i) 
How do different PTMs regulate enzyme activity, and how 
do they integrate with allosteric regulation? (ii) What are 
the biological outcomes of the different PTMs?; (iii) What 
are the modifying enzymes and signalling cascades acting on 
PEPCKs? (iv) Are dipeptides physiologically important modu-
lators of PEPCK in vivo? and (v) Does PEPCK have an im-
portant role in non-PEPCK C4 and CAM plants, in particular, 
under stress situations? More research is needed to answer 
these questions but results will likely come from a combin-
ation of in vitro and in vivo biochemical approaches. The pi-
oneer studies of Richard Leegood and Robert P. Walker with 
the enzyme purified from plant sources were key to studying 
the biochemical properties of plant PEPCKs (Leegood and Ap 
Rees 1978a, b; Leegood et al. 1996, 2003; Walker and Chen 
2002; Walker and Leegood 1995; Walker et al. 1995, 1997, 
2002). Nevertheless, having a recombinant system to produce 
high amounts of the enzyme and mutant versions will be im-
portant in searching for the biochemical effects of PTMs on 
the enzyme activity in detail.

In the era of Big Data in biology, vast amounts of 
transcriptomic, metabolomics and proteomic data are added 
each day to public databases. Some examples of useful 
tools are BRENDA (Chang et al. 2021), Plant PTM viewer 
(Willems et al. 2019), PhosPhat (Durek et al. 2010), BAR 
(Winter et al. 2007), and TAIR (Huala et al. 2001). This gives 
plant biochemists enormous potential to explore novel modes 
of metabolic regulation in combination with other biochem-
ical techniques (Hartman et al. 2023). A pipeline to trans-
late the biochemical knowledge to metabolic engineering 
research would start with pure preparations of the enzymes 
and mutant versions that mimic the PTMs to clearly under-
stand their regulation. Enzymes could also be engineered to 
introduce new regulatory modes or abolish the existing ones 
(Erb et al. 2017). Then, the promising mutants could be ex-
pressed in vivo, followed by the analysis of the resulting 
plants’ phenotypic and metabolic effects. The PEPCK ex-
ample is similar to what happens with other highly regulated 
enzymes (e.g. glyceraldehyde-3-phosphate dehydrogenases, 
ADP-glucose pyrophosphorylases, sucrose synthases, Glc6P 
dehydrogenases, among other interesting examples). The cur-
rent challenge is integrating data from multiple regulations 
on enzyme activity, generated in vitro and in vivo, to develop 
general models and reduce the existing gap between both 
approaches (for some good examples, we suggest reading 
the work of Liebermeister et al. 2006; Blätke et al. 2019; 
Treves et al. 2022). This would lead to more biochemical 
knowledge and understanding that would certainly speed up 
agrobiotechnology innovations.
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